
Optimizador de Personas Nómadas Mejorado con Seno-Coseno (NPO) para la 
Optimización de la Planificación de Tareas de Flujos de Trabajo Científicos Grandes 
y Sintéticos Extra-grandes en Entornos de Nube

Data and Metadata. 2025; 4:1000
doi: 10.56294/dm20251000

ORIGINAL

Improved Sine-Cosine Nomadic People Optimizer (NPO) for Large and Synthetic 
Extra-large Scientific Workflow Task Scheduling Optimization in Cloud Environment

Saif Hameed1
  , Hend Marouane2

  , Ahmed Fakhfakh3
  , Sinan Salih4

  

ABSTRACT

Cloud computing has become an increasingly fundamental technology in recent years, influencing many 
different areas of the economy. It offers significant features such as greater scalability, on-demand resource 
allocation for varied workflows, and a pay-as-you-go pricing system. For cloud service providers, efficient and 
optimized scheduling is essential since it lowers resources consumption, operation expenses, and guarantees 
users’ service level agreements. However, scheduling optimization becomes increasingly challenging due to 
the inherent heterogeneity of cloud resources and the growing scale of workflows. To tackle these issues, this 
study presents hybrid Sine-Cosine Nomadic People Optimizer (called QNPO) aimed at optimization of multi-
objective cloud task scheduling with a special emphasis on large and extra-large scientific workflow. Sixteen 
synthetic extra-large heterogeneous workflows datasets were composed in this study and used to evaluate 
the proposed approach on a heterogeneous cloud infrastructure configure in Workflow Sim. The results 
indicated that the QNPO consistently outperformed traditional optimization algorithms in all proposed 
evaluation scenarios, achieving a significant improvement in scheduling efficiency between 30 and 60 %.

Keywords: Workflow Task Scheduling; Heterogeneous Cloud; Synthetic Extra-Large Workflows; Nomadic 
People Optimizer; Multi-Swarm Optimization; Makespan; Sine-Cosine Optimization.

RESUMEN
 
La computación en la nube es ha convertido en una tecnología fundamental en los últimos años, influyendo en 
diversas áreas de la economía. Ofrece características significativas como una mayor escalabilidad, asignación 
de recursos bajo demanda para diferentes flujos de trabajo y un sistema de precios basado en el pago por 
uso. Para los proveedores de servicios en la nube, una programación eficiente y optimizada es esencial, ya 
que reduce el consumo de recursos, los gastos operativos y garantiza el cumplimiento de los acuerdos de 
nivel de servicio con los usuarios. Sin embargo, la optimización de la programación se vuelve cada vez más 
desafiante debido a la heterogeneidad inherente de los recursos en la nube y al crecimiento en la escala 
de los flujos de trabajo. Para abordar estos desafíos, este estudio presenta un Optimizador de Personas 
Nómadas híbrido basado en Seno-Coseno (denominado QNPO) orientado a la optimización de la programación 
de tareas en la nube de múltiples objetivos, con especial énfasis en flujos de trabajo científicos grandes y
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extra-grandes. En este estudio se compusieron dieciséis conjuntos de datos sintéticos de flujos de trabajo 
heterogéneos extra-grandes y se utilizaron para evaluar el enfoque propuesto en una infraestructura de 
nube heterogénea configurada en WorkflowSim. Los resultados mostraron que el QNPO superó de manera 
consistente a los algoritmos de optimización tradicionales en todos los escenarios de evaluación propuestos, 
logrando una mejora significativa en la eficiencia de la programación entre el 30 % y el 60 %.

Palabras clave: Programación de Tareas de Flujos de Trabajo; Nube Heterogénea; Flujos de Trabajo 
Sintéticos Extra-Grandes; Optimizador de Personas Nómadas; Optimización Multi-Swarm; Makespan; Costo; 
Optimización Seno-Coseno.

INTRODUCTION
It is commonly known that cloud computing is a reliable platform for delivering scalable resources with a 

pay-per-use pricing structure that charges users according to their actual usage. Cloud resources are typically 
provided as Infrastructure as a Service (IaaS), combining networking, storage, and specialized hardware like 
GPUs.(1,2) In such model, users can lease resources as needed without the necessity of resource ownership. 
Furthermore, clouds simplify the scalability of resources to satisfy specific service levels or the processing 
needs of customers’ applications.(3,4) The use of cloud-based applications and software has grown significantly 
in the last several years in a number of industries, including businesses, scientific research, and education. 
However, its broad adoption has also brought a number of notable challenges.(5,6)

The successful mapping of various user tasks to suitable resources is one of the main challenges facing 
the efficient use of cloud resources.(7) Efficient Workflow Task Scheduling (WTS) is a challenging process due 
to the varied nature of available cloud resources and the volume of processes that cloud’s customers utilize. 
In addition, cloud computing resources are leased dependent on the required network bandwidth, storage 
space, and processing power defined by workflows. These workflows ranging from simple single-task to 
intricate multitask, and on the other hand, necessitate coordinated execution across several cloud services.(8,9) 
Furthermore, ensuring Quality of Service (QoS) further complicates the scheduling decision since it requires the 
evaluation of several scheduling conditions. 

These issues highlight the necessity for sophisticated optimization techniques that can address the posed 
challenges with emphasis extra-large workflows in cloud computing.(10,11) The wide use and adoption of cloud-
based services and applications brought much attention to WTS optimization techniques and remained an active 
field of research. Researchers have investigated a wide range of approaches, such as heuristic, metaheuristic, 
and nature-inspired optimization algorithms to address the challenges associated with tasks scheduling in cloud 
systems with emphasis on improving the exploration and exploitation capabilities of these algorithms.(12,13,14)

Despite these efforts, number of notable limitations have been identified. From investigating the potential 
of optimization techniques such as Particle Swarm Optimization (PSO), Grey Wolf Optimizer (GWO), and 
Genetic techniques (GA), single-swarm algorithms usually require high number of optimization iterations to 
get satisfactory outcomes and frequently struggle to reach near-optimal solutions in a reasonable time.(15,16,17) 
This inefficiency is further worsened by the increase complexity associated with large number of tasks, Service 
Level Agreements (SLAs), QoS requirements, diverse nature of available cloud resources, and the presence of 
conflicting objectives in multi-objective task scheduling optimization as such the evaluated algorithms show 
only slight improvements.(18) 

Furthermore, hybridization of optimization techniques can greatly improve convergence and exploration 
towards optimal scheduling solution. For example, it has been demonstrated in the reviewed literature that 
using algorithms with strong exploration in population initialization or hybrid exploitation of newly derived 
solutions can be effective, even in com-plex multi-objective task scheduling settings.(19,20,21) While effective, 
hybrid approaches can result in a significant increase in time complexity, especially when applied in scheduling 
extra-large workflows. 

Thus, computational efficiency and effectiveness are important factors to take into account while developing 
task-scheduling optimization algorithms. Swift decision-making is crucial because it has an immediate impact 
on user satisfaction, cloud performance, and the long-term viability of cloud-based solutions. This emphasizes 
the need for large-scale optimization algorithms. In this study, the term “large-scale” describes the algorithms 
that can effectively explore large solution spaces, especially when dealing with thousands of tasks, diverse 
cloud resources, and conflicting scheduling constraints.

Given these identified challenges, this study proposed an improved Meeting Room Approach using Sine-Cosine 
optimization algorithm (known as Quick NPO or QNPO) aimed at efficient scheduling of extra-large workflows 
and utilization of cloud resources. Sixteen synthetic workflows (~3000-10000 task) with varying number of tasks 
and heterogeneity are composed in this study for the evaluation of the proposed QNPO, and also to standardize 
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the future research of large-scale task scheduling algorithms evaluation.
For further reading, the remainder of the paper is organized as follow: a comprehensive review of related 

research is presented in section 2. Cloud and workflow model, followed by scheduling problem formulation, 
optimization fitness function, multi-swarm NPO optimization algorithm, QNPO and proposed enhancement, 
synthetic and hybrid synthetic extra-large workflows are detailed in section 3, 4, 5, and 6, respectively. The 
performance evaluation and conclusion are covered in section 7 and 8, respectively.

Related Works
The demand for computer resources is increasing in several industries; cloud computing infrastructure, 

owing to its cost-effective pay-per-use pricing mechanism, reliability, and efficient resource scalability, has 
garnered significant interest. Furthermore, the crucial role that efficient scheduling plays in improving cloud 
resource utilization and lowering operating costs has also attracted much attention to cloud task scheduling and 
schedule optimization. This section presents a comprehensive overview of the relevant literature landscape, 
with a focus on task scheduling optimization for large and extra-large workflows scheduling.

Xia et al.(17) developed the Adaptive Evolutionary Scheduling Algorithm (AESA) that uses novel techniques like 
dynamic variable analysis and heuristic population initialization to increase energy efficiency and scheduling 
performance. AESA focus-es on balancing various objectives, improving the efficiency of evolutionary search, 
and optimizing crucial decision factors. The study evaluates AESA’s efficacy using Hyper-volume (HV) and 
Dominance Ratio (DR), with the ultimate goal of achieving more sustainable and productive cloud computing 
operations. AESA reduces the search space and increases search efficiency by clustering tasks onto a small set 
of resources using a heuristic population initialization technique.(22) 

By creating a novel multi-objective approach for workflow scheduling in cloud computing, a study aimed 
to address the shortcomings of the conventional rule-based heuristics in cloud computing environments. The 
method emphasizes the significance of combining task scheduling and virtual machine allocation through 
a cooperative evolutionary strategy and makes use of evolutionary computation and simulation tools to 
automatically develop high-performing scheduling rules. A cooperative evolutionary strategy was also suggested 
using Genetic Programming Hyper-Heuristic (GPHH) to concurrently develop priority criteria for task scheduling 
and virtual machine (VM) al-location. When optimizing these objectives in comparison to benchmark heuristics, 
the suggested algorithms achieved a 72,91 % increase in hypervolume and a 90,26 % improvement in hypervolume 
performance on previously unseen instances.(23) 

The Hybrid HEFT PSO-Genetic Algorithm (HEPGA) was presented by a study with several significant 
improvements to handle the challenges of workflow scheduling in cloud computing environments. The technique 
creates a strong hybrid approach by combining the advantages of Genetic Algorithms (GA) with Particle Swarm 
Optimization (PSO). PSO is used to improve search space exploration and particle velocities by utilizing Levy 
distribution to produce a diversified population of possible solutions. GA us-es selection, crossover, and mutation 
to improve these solutions and minimize Makespan by maximizing task-to-processor mappings.(24) 

The CE-PRO technique was first presented by a study to concurrently reduce the Makespan and cost of 
several workflows in cloud computing settings. This effectively tackles the difficulties caused by users’ differing 
Quality of Service (QoS) demands. Using two different populations, they optimize both Makespan and cost by 
first combining a Poor and Rich Optimization (PRO) technique with a Multi-Population Multi-Objective (MPMO) 
framework.(25)

This two-population approach speeds up convergence and increases search diversity. To increase diversity 
and avoid premature convergence, they ultimately create a hybrid mutation-based Elite Enhancement 
Strategy (EES) that performs several scales of mutation operations on elite solutions. The MOMWS strategy 
was introduced by a study, it combines several strategies, including a prioritize assignment algorithm for 
urgency-based scheduling, task preparation to minimize data transmission, and an evolutionary multi-objective 
optimization techniques-based Makespan and cost-aware scheduling algorithm.(25,26) The primary goals are to 
minimize workflow Makespan, which is necessary for timely task completion, and to reduce resource billing 
costs by optimizing cloud resource consumption. The results show improved performance of MOMWS than the 
existing scheduling mechanisms as it combined task preprocessing, priority assignment, and evolutionary multi-
objective optimization strategies, resulting in improved cost savings and scheduling efficiency. 

Pasdar et al.(26) developed the Hybrid Scheduling for Hybrid Clouds (HSHC) algorithm for the optimization 
of scientific workflow execution in hybrid cloud environments. By incorporating public cloud billing policies 
and analyzing various pricing models, the algorithm was further improved to optimize scientific workflow 
scheduling in hybrid cloud environments. The results show up to 25 % faster execution times and 40 % cost re-
ductions compared to the existing HEFT, CPOP, HSGA, and PSO algorithms.(27) 

The Hybrid Collaborative Multi-Objective Fruit Fly Optimization Algorithm (HCM-FOA) was proposed by Qin 
et al.(27) with the dual objectives of minimizing total execution time (TET) and lowering execution cost (TEC). 
The algorithm combines a unique clustering approach with a hybrid initialization technique to improve resource 
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allocation performance and handle the heterogeneous and elastic nature of cloud resources. To find a collection 
of Pareto optimal solutions that strike a balance between these two goals, HCMFOA uses Pareto dominance to 
evaluate solutions. The technique dynamically di-vides the swarm into several sub-swarms using a reference 
points-based clustering strategy, facilitating more efficient solution space exploration.(28) 

To schedule application workflows on hybrid cloud infrastructures while optimizing both Makespan (total 
workflow completion time) and Economic Cost (financial expenditure on resources), Hafsi et al.(28) proposed the 
Genetically-modified Multi-objective Particle Swarm Optimization (GMPSO). Among the several improvements 
is the incorporation of novel genetic operations, which improve solution space exploration and produce a 
variety of high-quality scheduling solutions.(29) 

To improve workflow scheduling in heterogeneous multi-cloud computing environments, Mohammadzadeh 
and Masdari proposed HGSOA-GOA (Hybrid Grass-hopper Swarm Optimization Algorithm - Grasshopper 
Optimization Algorithm), which successfully combines the strengths of the Seagull Optimization Algorithm (SOA) 
and GOA. The introduction of chaotic maps, which take the place of conventional random number generation 
to better explore the solution space and prevent local optima, is a significant advance. The proposed algorithm 
additionally uses a knee-point approach for Pareto front solution selection.(30) 

To effectively plan scientific workflows in cloud computing environments, Li et al.(30) presented the PSO+LOA 
strategy, a hybrid method that combines Particle Swarm Optimization (PSO) with the Lion Optimization 
Algorithm (LOA). Evaluations showed that PSO+LOA outperformed other algorithms by maintaining consistent 
performance and obtaining an appropriate balance between exploration and exploitation, particularly in 
large-scale processes. This balance makes it a better option for process scheduling since it delays premature 
convergence and improves convergence accuracy.(31) 

A new heuristic named Cost and Makespan Scheduling of Workflows in Clouds (CMSWC) was introduced 
by Han et al.(31) to effectively minimize these two objectives at the same time. Several major issues with 
workflow scheduling in cloud computing systems are addressed by the CMSWC heuristic. The improvements 
include a two-phase scheduling strategy that consists of resource selection and task prioritization. This strategy 
increases computing performance by reducing the search space by concentrating only on pertinent leased 
virtual machines. Additionally, CMSWC incorporates a shift-based density estimation (SDE) technique into the 
crowding distance calculation to enhance the non-dominated solution selection process while successfully 
balancing variety and con-vergence.(32) 

The Improved Many-Objective Particle Swarm Optimization (I_MaOPSO) algorithm was proposed by 
Saeedi et al.(32) and successfully addresses the difficulties associated with many-objective optimization. Four 
competing objectives are the main focus of I_MaOPSO: minimizing cost, Makespan, and energy consumption 
while optimizing reliability.(33) The complexity of many-objective optimization problems (MaOPs), which are 
frequently disregarded in the literature currently under publication, can be handled by I_MaOPSO thanks to this 
capacity. The HyperVolume (HV) metric showed substantial improvements, with the I_MaOPSO achieving up to 
262 % higher HV than its equivalents, demonstrating its superior capacity to produce a variety of high-quality 
solutions. 

Wu et al.(34) proposed several significant improvements to optimize the scheduling of large-scale scientific 
workflows on cloud platforms. One of these is the DAG Splitting Method, which splits and merges the directed 
acyclic graph (DAG) of tasks into independent task sets to preprocess the DAG of tasks, allowing for concurrent 
execution and optimizing the use of multi-vCPU virtual machines (VMs). The study shows that scheduling large-
scale scientific workflows on cloud platforms is much improved by the COM-SE framework, which combines the 
DAG splitting method with the TOID algorithm.

Despite the effectiveness of reviewed methods, several notable drawbacks and weaknesses can be identified 
that could limit the overall performance in applications of scheduling large and extra-large workflows. Detailed 
further in table 1, are some of the highlighted weaknesses of several reviewed literatures. Evaluated workflows 
varies significantly from one study to another. Number of reviewed articles utilized established and publicly 
available workflows in WorkflowSim while others independently generated their own workflows.

Table 1. Summary of weaknesses and limitations of the reviewed literatures.
Ref. Workflow Weaknesses
(22) Workflow datasets (50, 100, 

1000)
Large number of population (120), and high number of optimization iterations; 
nx3x103, where n is the number of tasks in workflow.
High computational overhead due to multiple components and strategies in the 
proposed method.
The number of VMs was not reported in the study.

(23) Workflow datasets (30, 50, 100), 
Independent tasks (109-2388)

The number of VMs is relatively high―40―in comparison to the number of tasks 
in the evaluated workflows tasks.
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Only small workflows were evaluated limiting the replicability of results and 
performance assessment for large workflows.
Tasks and VM allocation algorithms limit scalability in large cloud environments.

(24) Independent tasks (100-1000) High computational complexity, > 3000 evaluation of fitness function.
Limited assessment of proposed approach and unjustified number of VMs (5-
150) in comparison to number of evaluated tasks.

(27) Workflow datasets (50-1000), 
Independent tasks

The initial scheduling phase relies heavily on static information of available 
workflow and cloud resources. This can lead to suboptimal solution in extensive 
large-scale workflows.
Computational overhead increased dramatically in dynamic scheduling phase of 
large-scale workflow due to continuous monitoring of resources and adjustment 
of scheduling decisions.

(28) Workflow datasets (30-1000) Number of VMs and Makespan were not reported.
Hybrid population initialization is computationally complex and parameters 
sensitive.
Point-based clustering technique to enhance solution exploration is workflow 
dependent. Thus, poor clustering performance can result in inefficient 
exploration behavior.

(29) Workflow datasets (30-1000) Proposed novel random start-end genetic crossover and mutation operations is 
highly dependent on workflow, thus, potentially limiting algorithm performance 
especially for large-scale workflows.
High computational complexity and overhead due to single-swarm optimization 
algorithm (PSO+GA), crossover, mutation, and sophisticated encoding scheme.

(32) Workflow datasets (30-100),
Independent tasks

Number of  is not given in the study, and resources are considered to be 
infinitely available.
Narrowing search space through iterative heuristics during initial phase risks 
exclusion of resources and potentially lead to overlook tasks mapping to cloud 
resources.
Shift-based density estimation and elitist study strategies are dependent on 
rank of solutions, and are prone to high computational overhead in large and 
real-time scheduling applications.

(34) Independent tasks (100-1000) The performance of the proposed approach is reliant on the tasks dependency 
analysis and splitting of DAG file into smaller tasks sequences, complex 
workflows can potentially lead to suboptimal scheduling solution.
The proposed scheduling optimization approach is not suitable for extra-large 
dynamic workflows and cloud environment, where real-time adjustments and 
rescheduling of tasks are necessary.

Workflow Model Representation
Scientific workflows are organized sets of tasks used in studies to assess how well task scheduling algorithms 

perform in cloud settings. Usually, Directed Acyclic Graphs (DAGs) with nodes and edges are used to depict 
these workflows. Within the workflow, each node represents a task or computing step, and the edges indicate 
the dependencies among the tasks. An edge connecting Task A to Task B, for example, signifies that Task B 
depends on Task A and cannot begin until Task A is completed.(35,36) Consider a workflow W where there are n 
number of tasks; T is a set of all tasks defined as T={T1, T2, T3,…..,Tn}. 

Figure 1. Steps of scheduling scientific tasks from DAG file to available Cloud virtual resources in WorkflowSim
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Tasks are connected through edges Ei=(Ti,Tj) t, where E={E1, E2, E3,…….,Ee}. Each task T constitutes the 
list of tasks in a workflow with a list of dependencies that are predecessor to T denoted as pred(T), and a list 
of successor tasks that are dependent on the T itself defined as succ(T). However, workflow entry tasks are 
described as the list of tasks with pred(T)= ∅ while workflow exit tasks are tasks with succ(T)=∅. The length of 
the specified workflow W determines the number of tasks T, and the user-cloud service agreement determines 
the length of the resources list. The processes for scheduling scientific workflow on available cloud resources 
are shown in figure 1. The tasks list is created from the DAG file and then mapped to the available resources by 
the Cloud Scheduler following scheduling optimization. 

Makespan
Makespan is the total amount of time needed to complete all of the tasks in a specific workflow. In the case 

of workflow G=(T,E), where T is a sequence or collection of dependent or independent tasks represented by 
the notation T={T1, T2, T3,….., Tn}, where n is the number of tasks in a workflow. E is a set that describes the 
relationships or dependencies between each task in the workflow. The complete execution time CÊ for a given 
task Ti is then calculated as the sum of execution time for Ê(Ti) detailed as follow:

CÊ𝑇𝑇𝑇𝑇 = (∑ Ê𝑛𝑛
𝑖𝑖=1 (𝑇𝑇𝑖𝑖)      (1) 

 

µ = 𝑚𝑚𝑚𝑚𝑚𝑚(CÊⱯ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)   (2) 
 

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = Ê(𝑇𝑇𝑖𝑖𝑖𝑖) ∗ γj   (3) 

 

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (4) 

 

Š(𝑇𝑇𝑖𝑖) =  ∑ 𝑂𝑂𝑂𝑂𝑗𝑗𝑛𝑛
𝑗𝑗=1  (5) 

 

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (Š(𝑇𝑇𝑖𝑖)/ 𝑆𝑆𝑆𝑆𝑚𝑚𝑗𝑗)  ∗ Ɠ𝑗𝑗      (6) 

 

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (7) 

 

ᵬ(𝑇𝑇𝑖𝑖) =  ∑ 𝐼𝐼𝐼𝐼𝑗𝑗𝑛𝑛
𝑗𝑗=1        (8) 

 

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (ᵬ(𝑇𝑇𝑖𝑖)/ 𝐵𝐵𝐵𝐵𝑚𝑚𝑗𝑗)  ∗ ₿𝑗𝑗      (9) 

 

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (10) 

 

𝐹𝐹 = { 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(µ(𝑺𝑺))
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑺𝑺)) (11) 

 

𝐹𝐹 = ( 𝑤𝑤1 ∗ µ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑤𝑤2 ∗ Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤        (12) 
 
 

𝑋𝑋𝑐𝑐⃗⃗⃗⃗ =  𝜎𝜎𝑐𝑐⃗⃗  ⃗  × √𝑅𝑅  × cos𝜃𝜃     (13) 
 

𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + ( 𝑎𝑎𝑐𝑐 ∗ ( 𝜎𝜎𝑐𝑐 − 𝑋𝑋𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ⊕  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (14) 

 

𝑎𝑎𝑐𝑐 =  
∑ √(𝜎𝜎𝑐𝑐⃗⃗⃗⃗ −𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗  )
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛  (15) 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ~ 𝑢𝑢 =  𝑡𝑡−λ (1 < λ ≤ 3) (16) 
 

Δ𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛹𝛹 (
√∑ (𝜎𝜎𝐸𝐸− 𝜎𝜎𝑖𝑖

𝑁𝑁)2𝐷𝐷
𝑖𝑖

𝑑𝑑 ) (17) 

Where Ê refers to the required time for the completion of the mapped task Ti to resource VMj; hence, 
Ê=length(Ti)/(PPvmj*PEj), where PPvmj is the capability or processing power of VMj (MIPS) and PEj is the 
number of available processing cores for resource VMj. Therefore, Makespan µ for workflow is the maximum 
running time:

CÊ𝑇𝑇𝑇𝑇 = (∑ Ê𝑛𝑛
𝑖𝑖=1 (𝑇𝑇𝑖𝑖)      (1) 

 

µ = 𝑚𝑚𝑚𝑚𝑚𝑚(CÊⱯ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)   (2) 
 

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = Ê(𝑇𝑇𝑖𝑖𝑖𝑖) ∗ γj   (3) 

 

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (4) 

 

Š(𝑇𝑇𝑖𝑖) =  ∑ 𝑂𝑂𝑂𝑂𝑗𝑗𝑛𝑛
𝑗𝑗=1  (5) 

 

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (Š(𝑇𝑇𝑖𝑖)/ 𝑆𝑆𝑆𝑆𝑚𝑚𝑗𝑗)  ∗ Ɠ𝑗𝑗      (6) 

 

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (7) 

 

ᵬ(𝑇𝑇𝑖𝑖) =  ∑ 𝐼𝐼𝐼𝐼𝑗𝑗𝑛𝑛
𝑗𝑗=1        (8) 

 

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (ᵬ(𝑇𝑇𝑖𝑖)/ 𝐵𝐵𝐵𝐵𝑚𝑚𝑗𝑗)  ∗ ₿𝑗𝑗      (9) 

 

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (10) 

 

𝐹𝐹 = { 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(µ(𝑺𝑺))
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑺𝑺)) (11) 

 

𝐹𝐹 = ( 𝑤𝑤1 ∗ µ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑤𝑤2 ∗ Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤        (12) 
 
 

𝑋𝑋𝑐𝑐⃗⃗⃗⃗ =  𝜎𝜎𝑐𝑐⃗⃗  ⃗  × √𝑅𝑅  × cos𝜃𝜃     (13) 
 

𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + ( 𝑎𝑎𝑐𝑐 ∗ ( 𝜎𝜎𝑐𝑐 − 𝑋𝑋𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ⊕  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (14) 

 

𝑎𝑎𝑐𝑐 =  
∑ √(𝜎𝜎𝑐𝑐⃗⃗⃗⃗ −𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗  )
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛  (15) 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ~ 𝑢𝑢 =  𝑡𝑡−λ (1 < λ ≤ 3) (16) 
 

Δ𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛹𝛹 (
√∑ (𝜎𝜎𝐸𝐸− 𝜎𝜎𝑖𝑖

𝑁𝑁)2𝐷𝐷
𝑖𝑖

𝑑𝑑 ) (17) 

Processing Cost
The processing cost of each virtual machine VM is predetermined and charged on pay-per-use basis for a 

specific processing period. The time unit cost γj defined for resource VMj is multiplied by the execution time 
of task T Ê(Ti)  mapped on that resource. Hence, the processing cost for task Ti mapped to resource VMj is:

CÊ𝑇𝑇𝑇𝑇 = (∑ Ê𝑛𝑛
𝑖𝑖=1 (𝑇𝑇𝑖𝑖)      (1) 

 

µ = 𝑚𝑚𝑚𝑚𝑚𝑚(CÊⱯ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)   (2) 
 

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = Ê(𝑇𝑇𝑖𝑖𝑖𝑖) ∗ γj   (3) 

 

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (4) 

 

Š(𝑇𝑇𝑖𝑖) =  ∑ 𝑂𝑂𝑂𝑂𝑗𝑗𝑛𝑛
𝑗𝑗=1  (5) 

 

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (Š(𝑇𝑇𝑖𝑖)/ 𝑆𝑆𝑆𝑆𝑚𝑚𝑗𝑗)  ∗ Ɠ𝑗𝑗      (6) 

 

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (7) 

 

ᵬ(𝑇𝑇𝑖𝑖) =  ∑ 𝐼𝐼𝐼𝐼𝑗𝑗𝑛𝑛
𝑗𝑗=1        (8) 

 

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (ᵬ(𝑇𝑇𝑖𝑖)/ 𝐵𝐵𝐵𝐵𝑚𝑚𝑗𝑗)  ∗ ₿𝑗𝑗      (9) 

 

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (10) 

 

𝐹𝐹 = { 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(µ(𝑺𝑺))
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑺𝑺)) (11) 

 

𝐹𝐹 = ( 𝑤𝑤1 ∗ µ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑤𝑤2 ∗ Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤        (12) 
 
 

𝑋𝑋𝑐𝑐⃗⃗⃗⃗ =  𝜎𝜎𝑐𝑐⃗⃗  ⃗  × √𝑅𝑅  × cos𝜃𝜃     (13) 
 

𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + ( 𝑎𝑎𝑐𝑐 ∗ ( 𝜎𝜎𝑐𝑐 − 𝑋𝑋𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ⊕  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (14) 

 

𝑎𝑎𝑐𝑐 =  
∑ √(𝜎𝜎𝑐𝑐⃗⃗⃗⃗ −𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗  )
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛  (15) 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ~ 𝑢𝑢 =  𝑡𝑡−λ (1 < λ ≤ 3) (16) 
 

Δ𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛹𝛹 (
√∑ (𝜎𝜎𝐸𝐸− 𝜎𝜎𝑖𝑖

𝑁𝑁)2𝐷𝐷
𝑖𝑖

𝑑𝑑 ) (17) 

For a workflow comprised of n number of tasks, the processing cost can be determined as follows:

CÊ𝑇𝑇𝑇𝑇 = (∑ Ê𝑛𝑛
𝑖𝑖=1 (𝑇𝑇𝑖𝑖)      (1) 

 

µ = 𝑚𝑚𝑚𝑚𝑚𝑚(CÊⱯ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)   (2) 
 

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = Ê(𝑇𝑇𝑖𝑖𝑖𝑖) ∗ γj   (3) 

 

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (4) 

 

Š(𝑇𝑇𝑖𝑖) =  ∑ 𝑂𝑂𝑂𝑂𝑗𝑗𝑛𝑛
𝑗𝑗=1  (5) 

 

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (Š(𝑇𝑇𝑖𝑖)/ 𝑆𝑆𝑆𝑆𝑚𝑚𝑗𝑗)  ∗ Ɠ𝑗𝑗      (6) 

 

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (7) 

 

ᵬ(𝑇𝑇𝑖𝑖) =  ∑ 𝐼𝐼𝐼𝐼𝑗𝑗𝑛𝑛
𝑗𝑗=1        (8) 

 

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (ᵬ(𝑇𝑇𝑖𝑖)/ 𝐵𝐵𝐵𝐵𝑚𝑚𝑗𝑗)  ∗ ₿𝑗𝑗      (9) 

 

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (10) 

 

𝐹𝐹 = { 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(µ(𝑺𝑺))
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑺𝑺)) (11) 

 

𝐹𝐹 = ( 𝑤𝑤1 ∗ µ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑤𝑤2 ∗ Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤        (12) 
 
 

𝑋𝑋𝑐𝑐⃗⃗⃗⃗ =  𝜎𝜎𝑐𝑐⃗⃗  ⃗  × √𝑅𝑅  × cos𝜃𝜃     (13) 
 

𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + ( 𝑎𝑎𝑐𝑐 ∗ ( 𝜎𝜎𝑐𝑐 − 𝑋𝑋𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ⊕  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (14) 

 

𝑎𝑎𝑐𝑐 =  
∑ √(𝜎𝜎𝑐𝑐⃗⃗⃗⃗ −𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗  )
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛  (15) 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ~ 𝑢𝑢 =  𝑡𝑡−λ (1 < λ ≤ 3) (16) 
 

Δ𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛹𝛹 (
√∑ (𝜎𝜎𝐸𝐸− 𝜎𝜎𝑖𝑖

𝑁𝑁)2𝐷𝐷
𝑖𝑖

𝑑𝑑 ) (17) 

Storage Cost 
This is defined as costs associated with the storage of data relevant to the currently executed task Ti on 

resource VMj. The set of output files generated from task Ti in the workflow environment is defined in the 
workflow XML file under the tag “output; therefore, output (Ti )={OF1, OF2, OF3,……OFn}. The storage required 
for task Ti is then derived from the sum of the output file sizes of all task such that:

CÊ𝑇𝑇𝑇𝑇 = (∑ Ê𝑛𝑛
𝑖𝑖=1 (𝑇𝑇𝑖𝑖)      (1) 

 

µ = 𝑚𝑚𝑚𝑚𝑚𝑚(CÊⱯ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)   (2) 
 

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = Ê(𝑇𝑇𝑖𝑖𝑖𝑖) ∗ γj   (3) 

 

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (4) 

 

Š(𝑇𝑇𝑖𝑖) =  ∑ 𝑂𝑂𝑂𝑂𝑗𝑗𝑛𝑛
𝑗𝑗=1  (5) 

 

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (Š(𝑇𝑇𝑖𝑖)/ 𝑆𝑆𝑆𝑆𝑚𝑚𝑗𝑗)  ∗ Ɠ𝑗𝑗      (6) 

 

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (7) 

 

ᵬ(𝑇𝑇𝑖𝑖) =  ∑ 𝐼𝐼𝐼𝐼𝑗𝑗𝑛𝑛
𝑗𝑗=1        (8) 

 

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (ᵬ(𝑇𝑇𝑖𝑖)/ 𝐵𝐵𝐵𝐵𝑚𝑚𝑗𝑗)  ∗ ₿𝑗𝑗      (9) 

 

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (10) 

 

𝐹𝐹 = { 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(µ(𝑺𝑺))
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑺𝑺)) (11) 

 

𝐹𝐹 = ( 𝑤𝑤1 ∗ µ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑤𝑤2 ∗ Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤        (12) 
 
 

𝑋𝑋𝑐𝑐⃗⃗⃗⃗ =  𝜎𝜎𝑐𝑐⃗⃗  ⃗  × √𝑅𝑅  × cos𝜃𝜃     (13) 
 

𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + ( 𝑎𝑎𝑐𝑐 ∗ ( 𝜎𝜎𝑐𝑐 − 𝑋𝑋𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ⊕  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (14) 

 

𝑎𝑎𝑐𝑐 =  
∑ √(𝜎𝜎𝑐𝑐⃗⃗⃗⃗ −𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗  )
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛  (15) 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ~ 𝑢𝑢 =  𝑡𝑡−λ (1 < λ ≤ 3) (16) 
 

Δ𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛹𝛹 (
√∑ (𝜎𝜎𝐸𝐸− 𝜎𝜎𝑖𝑖

𝑁𝑁)2𝐷𝐷
𝑖𝑖

𝑑𝑑 ) (17) 

Where OFj refers to the jth output file for task Ti; the related storage cost for task Ti is then given as:

CÊ𝑇𝑇𝑇𝑇 = (∑ Ê𝑛𝑛
𝑖𝑖=1 (𝑇𝑇𝑖𝑖)      (1) 

 

µ = 𝑚𝑚𝑚𝑚𝑚𝑚(CÊⱯ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)   (2) 
 

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = Ê(𝑇𝑇𝑖𝑖𝑖𝑖) ∗ γj   (3) 

 

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (4) 

 

Š(𝑇𝑇𝑖𝑖) =  ∑ 𝑂𝑂𝑂𝑂𝑗𝑗𝑛𝑛
𝑗𝑗=1  (5) 

 

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (Š(𝑇𝑇𝑖𝑖)/ 𝑆𝑆𝑆𝑆𝑚𝑚𝑗𝑗)  ∗ Ɠ𝑗𝑗      (6) 

 

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (7) 

 

ᵬ(𝑇𝑇𝑖𝑖) =  ∑ 𝐼𝐼𝐼𝐼𝑗𝑗𝑛𝑛
𝑗𝑗=1        (8) 

 

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (ᵬ(𝑇𝑇𝑖𝑖)/ 𝐵𝐵𝐵𝐵𝑚𝑚𝑗𝑗)  ∗ ₿𝑗𝑗      (9) 

 

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (10) 

 

𝐹𝐹 = { 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(µ(𝑺𝑺))
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑺𝑺)) (11) 

 

𝐹𝐹 = ( 𝑤𝑤1 ∗ µ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑤𝑤2 ∗ Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤        (12) 
 
 

𝑋𝑋𝑐𝑐⃗⃗⃗⃗ =  𝜎𝜎𝑐𝑐⃗⃗  ⃗  × √𝑅𝑅  × cos𝜃𝜃     (13) 
 

𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + ( 𝑎𝑎𝑐𝑐 ∗ ( 𝜎𝜎𝑐𝑐 − 𝑋𝑋𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ⊕  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (14) 

 

𝑎𝑎𝑐𝑐 =  
∑ √(𝜎𝜎𝑐𝑐⃗⃗⃗⃗ −𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗  )
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛  (15) 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ~ 𝑢𝑢 =  𝑡𝑡−λ (1 < λ ≤ 3) (16) 
 

Δ𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛹𝛹 (
√∑ (𝜎𝜎𝐸𝐸− 𝜎𝜎𝑖𝑖

𝑁𝑁)2𝐷𝐷
𝑖𝑖

𝑑𝑑 ) (17) 

 

Where Svmj refers to the total available storage for resource VMj, while Gj is the related storage cost of 
VMj. The task has no storage cost if output (Ti)= ∅. Equation 7 represents the total storage cost for n number 
of tasks executed in a workflow.

CÊ𝑇𝑇𝑇𝑇 = (∑ Ê𝑛𝑛
𝑖𝑖=1 (𝑇𝑇𝑖𝑖)      (1) 

 

µ = 𝑚𝑚𝑚𝑚𝑚𝑚(CÊⱯ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)   (2) 
 

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = Ê(𝑇𝑇𝑖𝑖𝑖𝑖) ∗ γj   (3) 

 

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (4) 

 

Š(𝑇𝑇𝑖𝑖) =  ∑ 𝑂𝑂𝑂𝑂𝑗𝑗𝑛𝑛
𝑗𝑗=1  (5) 

 

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (Š(𝑇𝑇𝑖𝑖)/ 𝑆𝑆𝑆𝑆𝑚𝑚𝑗𝑗)  ∗ Ɠ𝑗𝑗      (6) 

 

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (7) 

 

ᵬ(𝑇𝑇𝑖𝑖) =  ∑ 𝐼𝐼𝐼𝐼𝑗𝑗𝑛𝑛
𝑗𝑗=1        (8) 

 

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (ᵬ(𝑇𝑇𝑖𝑖)/ 𝐵𝐵𝐵𝐵𝑚𝑚𝑗𝑗)  ∗ ₿𝑗𝑗      (9) 

 

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (10) 

 

𝐹𝐹 = { 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(µ(𝑺𝑺))
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑺𝑺)) (11) 

 

𝐹𝐹 = ( 𝑤𝑤1 ∗ µ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑤𝑤2 ∗ Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤        (12) 
 
 

𝑋𝑋𝑐𝑐⃗⃗⃗⃗ =  𝜎𝜎𝑐𝑐⃗⃗  ⃗  × √𝑅𝑅  × cos𝜃𝜃     (13) 
 

𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + ( 𝑎𝑎𝑐𝑐 ∗ ( 𝜎𝜎𝑐𝑐 − 𝑋𝑋𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ⊕  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (14) 

 

𝑎𝑎𝑐𝑐 =  
∑ √(𝜎𝜎𝑐𝑐⃗⃗⃗⃗ −𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗  )
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛  (15) 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ~ 𝑢𝑢 =  𝑡𝑡−λ (1 < λ ≤ 3) (16) 
 

Δ𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛹𝛹 (
√∑ (𝜎𝜎𝐸𝐸− 𝜎𝜎𝑖𝑖

𝑁𝑁)2𝐷𝐷
𝑖𝑖

𝑑𝑑 ) (17) 

Bandwidth Cost 
In workflow environment, the amount of bandwidth needed for task Ti is determined by the number of input 

files it has, which is defined as input input (Ti)={IF1, IF2, IF3,……IFn }. The needed bandwidth for task Ti is then 
computed using equation 8 based on the sum of all task’s input file sizes because these tasks may or may not 
require data transfer across the cloud infrastructure.
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CÊ𝑇𝑇𝑇𝑇 = (∑ Ê𝑛𝑛
𝑖𝑖=1 (𝑇𝑇𝑖𝑖)      (1) 

 

µ = 𝑚𝑚𝑚𝑚𝑚𝑚(CÊⱯ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)   (2) 
 

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = Ê(𝑇𝑇𝑖𝑖𝑖𝑖) ∗ γj   (3) 

 

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (4) 

 

Š(𝑇𝑇𝑖𝑖) =  ∑ 𝑂𝑂𝑂𝑂𝑗𝑗𝑛𝑛
𝑗𝑗=1  (5) 

 

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (Š(𝑇𝑇𝑖𝑖)/ 𝑆𝑆𝑆𝑆𝑚𝑚𝑗𝑗)  ∗ Ɠ𝑗𝑗      (6) 

 

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (7) 

 

ᵬ(𝑇𝑇𝑖𝑖) =  ∑ 𝐼𝐼𝐼𝐼𝑗𝑗𝑛𝑛
𝑗𝑗=1        (8) 

 

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (ᵬ(𝑇𝑇𝑖𝑖)/ 𝐵𝐵𝐵𝐵𝑚𝑚𝑗𝑗)  ∗ ₿𝑗𝑗      (9) 

 

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (10) 

 

𝐹𝐹 = { 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(µ(𝑺𝑺))
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑺𝑺)) (11) 

 

𝐹𝐹 = ( 𝑤𝑤1 ∗ µ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑤𝑤2 ∗ Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤        (12) 
 
 

𝑋𝑋𝑐𝑐⃗⃗⃗⃗ =  𝜎𝜎𝑐𝑐⃗⃗  ⃗  × √𝑅𝑅  × cos𝜃𝜃     (13) 
 

𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + ( 𝑎𝑎𝑐𝑐 ∗ ( 𝜎𝜎𝑐𝑐 − 𝑋𝑋𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ⊕  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (14) 

 

𝑎𝑎𝑐𝑐 =  
∑ √(𝜎𝜎𝑐𝑐⃗⃗⃗⃗ −𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗  )
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛  (15) 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ~ 𝑢𝑢 =  𝑡𝑡−λ (1 < λ ≤ 3) (16) 
 

Δ𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛹𝛹 (
√∑ (𝜎𝜎𝐸𝐸− 𝜎𝜎𝑖𝑖

𝑁𝑁)2𝐷𝐷
𝑖𝑖

𝑑𝑑 ) (17) 

Where, IFj = jth input file for Ti. The associated bandwidth cost for Ti is determined using equation 9:

CÊ𝑇𝑇𝑇𝑇 = (∑ Ê𝑛𝑛
𝑖𝑖=1 (𝑇𝑇𝑖𝑖)      (1) 

 

µ = 𝑚𝑚𝑚𝑚𝑚𝑚(CÊⱯ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)   (2) 
 

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = Ê(𝑇𝑇𝑖𝑖𝑖𝑖) ∗ γj   (3) 

 

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (4) 

 

Š(𝑇𝑇𝑖𝑖) =  ∑ 𝑂𝑂𝑂𝑂𝑗𝑗𝑛𝑛
𝑗𝑗=1  (5) 

 

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (Š(𝑇𝑇𝑖𝑖)/ 𝑆𝑆𝑆𝑆𝑚𝑚𝑗𝑗)  ∗ Ɠ𝑗𝑗      (6) 

 

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (7) 

 

ᵬ(𝑇𝑇𝑖𝑖) =  ∑ 𝐼𝐼𝐼𝐼𝑗𝑗𝑛𝑛
𝑗𝑗=1        (8) 

 

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (ᵬ(𝑇𝑇𝑖𝑖)/ 𝐵𝐵𝐵𝐵𝑚𝑚𝑗𝑗)  ∗ ₿𝑗𝑗      (9) 

 

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (10) 

 

𝐹𝐹 = { 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(µ(𝑺𝑺))
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑺𝑺)) (11) 

 

𝐹𝐹 = ( 𝑤𝑤1 ∗ µ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑤𝑤2 ∗ Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤        (12) 
 
 

𝑋𝑋𝑐𝑐⃗⃗⃗⃗ =  𝜎𝜎𝑐𝑐⃗⃗  ⃗  × √𝑅𝑅  × cos𝜃𝜃     (13) 
 

𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + ( 𝑎𝑎𝑐𝑐 ∗ ( 𝜎𝜎𝑐𝑐 − 𝑋𝑋𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ⊕  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (14) 

 

𝑎𝑎𝑐𝑐 =  
∑ √(𝜎𝜎𝑐𝑐⃗⃗⃗⃗ −𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗  )
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛  (15) 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ~ 𝑢𝑢 =  𝑡𝑡−λ (1 < λ ≤ 3) (16) 
 

Δ𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛹𝛹 (
√∑ (𝜎𝜎𝐸𝐸− 𝜎𝜎𝑖𝑖

𝑁𝑁)2𝐷𝐷
𝑖𝑖

𝑑𝑑 ) (17) 

Where Bvmj = the available bandwidth for resource VMj, ₿j is the bandwidth cost of VMj. For a workflow 
with n number of tasks, the total bandwidth cost can be written as:

CÊ𝑇𝑇𝑇𝑇 = (∑ Ê𝑛𝑛
𝑖𝑖=1 (𝑇𝑇𝑖𝑖)      (1) 

 

µ = 𝑚𝑚𝑚𝑚𝑚𝑚(CÊⱯ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)   (2) 
 

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = Ê(𝑇𝑇𝑖𝑖𝑖𝑖) ∗ γj   (3) 

 

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (4) 

 

Š(𝑇𝑇𝑖𝑖) =  ∑ 𝑂𝑂𝑂𝑂𝑗𝑗𝑛𝑛
𝑗𝑗=1  (5) 

 

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (Š(𝑇𝑇𝑖𝑖)/ 𝑆𝑆𝑆𝑆𝑚𝑚𝑗𝑗)  ∗ Ɠ𝑗𝑗      (6) 

 

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (7) 

 

ᵬ(𝑇𝑇𝑖𝑖) =  ∑ 𝐼𝐼𝐼𝐼𝑗𝑗𝑛𝑛
𝑗𝑗=1        (8) 

 

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (ᵬ(𝑇𝑇𝑖𝑖)/ 𝐵𝐵𝐵𝐵𝑚𝑚𝑗𝑗)  ∗ ₿𝑗𝑗      (9) 

 

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (10) 

 

𝐹𝐹 = { 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(µ(𝑺𝑺))
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑺𝑺)) (11) 

 

𝐹𝐹 = ( 𝑤𝑤1 ∗ µ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑤𝑤2 ∗ Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤        (12) 
 
 

𝑋𝑋𝑐𝑐⃗⃗⃗⃗ =  𝜎𝜎𝑐𝑐⃗⃗  ⃗  × √𝑅𝑅  × cos𝜃𝜃     (13) 
 

𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + ( 𝑎𝑎𝑐𝑐 ∗ ( 𝜎𝜎𝑐𝑐 − 𝑋𝑋𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ⊕  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (14) 

 

𝑎𝑎𝑐𝑐 =  
∑ √(𝜎𝜎𝑐𝑐⃗⃗⃗⃗ −𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗  )
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛  (15) 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ~ 𝑢𝑢 =  𝑡𝑡−λ (1 < λ ≤ 3) (16) 
 

Δ𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛹𝛹 (
√∑ (𝜎𝜎𝐸𝐸− 𝜎𝜎𝑖𝑖

𝑁𝑁)2𝐷𝐷
𝑖𝑖

𝑑𝑑 ) (17) 

Problem Formulation 
Task scheduling optimization in a workflow environment primarily aims at determining the optimal task 

scheduling solution S in a manner that efficiently maps {(Ti, VMj )┤|  Ti ∈W, VMj∈Dk, i, j, k≤n, m, z} a given 
workflow W with n number of tasks T={T1, T2, T3,……,Tn} to a heterogeneous array of m resources C={VM1, 
VM2, VM3,……,VMm } from z number of data centers while maintaining several SLA parameters and satisfying 
user-defined objectives. The optimal solution S in this study is evaluated using three main parameters which 
are Makespan, data costs (storage and bandwidth), and processing cost. The objective function proposed in this 
work is further refined as follows:

CÊ𝑇𝑇𝑇𝑇 = (∑ Ê𝑛𝑛
𝑖𝑖=1 (𝑇𝑇𝑖𝑖)      (1) 

 

µ = 𝑚𝑚𝑚𝑚𝑚𝑚(CÊⱯ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)   (2) 
 

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = Ê(𝑇𝑇𝑖𝑖𝑖𝑖) ∗ γj   (3) 

 

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (4) 

 

Š(𝑇𝑇𝑖𝑖) =  ∑ 𝑂𝑂𝑂𝑂𝑗𝑗𝑛𝑛
𝑗𝑗=1  (5) 

 

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (Š(𝑇𝑇𝑖𝑖)/ 𝑆𝑆𝑆𝑆𝑚𝑚𝑗𝑗)  ∗ Ɠ𝑗𝑗      (6) 

 

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (7) 

 

ᵬ(𝑇𝑇𝑖𝑖) =  ∑ 𝐼𝐼𝐼𝐼𝑗𝑗𝑛𝑛
𝑗𝑗=1        (8) 

 

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (ᵬ(𝑇𝑇𝑖𝑖)/ 𝐵𝐵𝐵𝐵𝑚𝑚𝑗𝑗)  ∗ ₿𝑗𝑗      (9) 

 

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (10) 

 

𝐹𝐹 = { 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(µ(𝑺𝑺))
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑺𝑺)) (11) 

 

𝐹𝐹 = ( 𝑤𝑤1 ∗ µ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑤𝑤2 ∗ Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤        (12) 
 
 

𝑋𝑋𝑐𝑐⃗⃗⃗⃗ =  𝜎𝜎𝑐𝑐⃗⃗  ⃗  × √𝑅𝑅  × cos𝜃𝜃     (13) 
 

𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + ( 𝑎𝑎𝑐𝑐 ∗ ( 𝜎𝜎𝑐𝑐 − 𝑋𝑋𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ⊕  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (14) 

 

𝑎𝑎𝑐𝑐 =  
∑ √(𝜎𝜎𝑐𝑐⃗⃗⃗⃗ −𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗  )
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛  (15) 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ~ 𝑢𝑢 =  𝑡𝑡−λ (1 < λ ≤ 3) (16) 
 

Δ𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛹𝛹 (
√∑ (𝜎𝜎𝐸𝐸− 𝜎𝜎𝑖𝑖

𝑁𝑁)2𝐷𝐷
𝑖𝑖

𝑑𝑑 ) (17) 

	
Weights are commonly used in optimization fitness functions to determine the relative importance of different 

objectives or criteria. Depending on user preference and workflow characteristics including task dependencies, 
topology, number of tasks, and data costs, weight values can be adjusted accordingly. In addition, the weights 
technique provides a way to resolve conflicting objectives. For example, it can be used to balance the trade-
off between processing cost and execution time minimization. The optimization fitness function that has been 
suggested is expressed using equation 2, 4, 7, and 10 as follows: 

CÊ𝑇𝑇𝑇𝑇 = (∑ Ê𝑛𝑛
𝑖𝑖=1 (𝑇𝑇𝑖𝑖)      (1) 

 

µ = 𝑚𝑚𝑚𝑚𝑚𝑚(CÊⱯ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)   (2) 
 

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = Ê(𝑇𝑇𝑖𝑖𝑖𝑖) ∗ γj   (3) 

 

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (4) 

 

Š(𝑇𝑇𝑖𝑖) =  ∑ 𝑂𝑂𝑂𝑂𝑗𝑗𝑛𝑛
𝑗𝑗=1  (5) 

 

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (Š(𝑇𝑇𝑖𝑖)/ 𝑆𝑆𝑆𝑆𝑚𝑚𝑗𝑗)  ∗ Ɠ𝑗𝑗      (6) 

 

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (7) 

 

ᵬ(𝑇𝑇𝑖𝑖) =  ∑ 𝐼𝐼𝐼𝐼𝑗𝑗𝑛𝑛
𝑗𝑗=1        (8) 

 

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (ᵬ(𝑇𝑇𝑖𝑖)/ 𝐵𝐵𝐵𝐵𝑚𝑚𝑗𝑗)  ∗ ₿𝑗𝑗      (9) 

 

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (10) 

 

𝐹𝐹 = { 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(µ(𝑺𝑺))
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑺𝑺)) (11) 

 

𝐹𝐹 = ( 𝑤𝑤1 ∗ µ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑤𝑤2 ∗ Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤        (12) 
 
 

𝑋𝑋𝑐𝑐⃗⃗⃗⃗ =  𝜎𝜎𝑐𝑐⃗⃗  ⃗  × √𝑅𝑅  × cos𝜃𝜃     (13) 
 

𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + ( 𝑎𝑎𝑐𝑐 ∗ ( 𝜎𝜎𝑐𝑐 − 𝑋𝑋𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ⊕  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (14) 

 

𝑎𝑎𝑐𝑐 =  
∑ √(𝜎𝜎𝑐𝑐⃗⃗⃗⃗ −𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗  )
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛  (15) 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ~ 𝑢𝑢 =  𝑡𝑡−λ (1 < λ ≤ 3) (16) 
 

Δ𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛹𝛹 (
√∑ (𝜎𝜎𝐸𝐸− 𝜎𝜎𝑖𝑖

𝑁𝑁)2𝐷𝐷
𝑖𝑖

𝑑𝑑 ) (17) 

Where µworkflow and ⱯCostworkflow are the entire workflow’s Makespan and overall cost (ƿCost, ŠCost, ᵬCost); wi 
is the optimization weight whereby w1+w2= 1 and wi∈[0,1].

Nomadic People OptimizeR (NPO)
The Nomadic People Optimizer is a parameter-free large-scale optimization algorithm; inspired by the social 

and foraging habits of desert nomads. In NPO, the clan leader σc is the best solution within the clan, whereas σE 
indicates the global best solution among all clans. A group of families(x), led by σ, is called a Clan(c). A variable 
called Direction Ψ is utilized to guide Normal Leaders σN in the direction of the Best Leader σE.(37) Clan head σ is 
responsible of finding suitable places for families to live when they are sent out to find new locations. He then 
directs the redistributing of the clan’s families in a semicircular pattern around his tent. Given a family(i,j) (x), 
where j is the number of families in the clan ci, the following formula is used to get the distribution of families 
around leader σci:

CÊ𝑇𝑇𝑇𝑇 = (∑ Ê𝑛𝑛
𝑖𝑖=1 (𝑇𝑇𝑖𝑖)      (1) 

 

µ = 𝑚𝑚𝑚𝑚𝑚𝑚(CÊⱯ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)   (2) 
 

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = Ê(𝑇𝑇𝑖𝑖𝑖𝑖) ∗ γj   (3) 

 

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (4) 

 

Š(𝑇𝑇𝑖𝑖) =  ∑ 𝑂𝑂𝑂𝑂𝑗𝑗𝑛𝑛
𝑗𝑗=1  (5) 

 

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (Š(𝑇𝑇𝑖𝑖)/ 𝑆𝑆𝑆𝑆𝑚𝑚𝑗𝑗)  ∗ Ɠ𝑗𝑗      (6) 

 

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (7) 

 

ᵬ(𝑇𝑇𝑖𝑖) =  ∑ 𝐼𝐼𝐼𝐼𝑗𝑗𝑛𝑛
𝑗𝑗=1        (8) 

 

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (ᵬ(𝑇𝑇𝑖𝑖)/ 𝐵𝐵𝐵𝐵𝑚𝑚𝑗𝑗)  ∗ ₿𝑗𝑗      (9) 

 

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (10) 

 

𝐹𝐹 = { 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(µ(𝑺𝑺))
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑺𝑺)) (11) 

 

𝐹𝐹 = ( 𝑤𝑤1 ∗ µ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑤𝑤2 ∗ Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤        (12) 
 
 

𝑋𝑋𝑐𝑐⃗⃗⃗⃗ =  𝜎𝜎𝑐𝑐⃗⃗  ⃗  × √𝑅𝑅  × cos𝜃𝜃     (13) 
 

𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + ( 𝑎𝑎𝑐𝑐 ∗ ( 𝜎𝜎𝑐𝑐 − 𝑋𝑋𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ⊕  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (14) 

 

𝑎𝑎𝑐𝑐 =  
∑ √(𝜎𝜎𝑐𝑐⃗⃗⃗⃗ −𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗  )
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛  (15) 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ~ 𝑢𝑢 =  𝑡𝑡−λ (1 < λ ≤ 3) (16) 
 

Δ𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛹𝛹 (
√∑ (𝜎𝜎𝐸𝐸− 𝜎𝜎𝑖𝑖

𝑁𝑁)2𝐷𝐷
𝑖𝑖

𝑑𝑑 ) (17) 

Figure 2. NPO semicircle distribution of families(x) around Best Leader σE, Sheikh
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The global search and exploration process begins when family(i,j) (x) is distributed around each of their 
leaders σci. Families within each clan then actively and independently search for a better position that is away 
from the existing local best solution σ. Every family is guided via a distinct search space based on the following 
Levy flight formula):(37)

CÊ𝑇𝑇𝑇𝑇 = (∑ Ê𝑛𝑛
𝑖𝑖=1 (𝑇𝑇𝑖𝑖)      (1) 

 

µ = 𝑚𝑚𝑚𝑚𝑚𝑚(CÊⱯ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)   (2) 
 

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = Ê(𝑇𝑇𝑖𝑖𝑖𝑖) ∗ γj   (3) 

 

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (4) 

 

Š(𝑇𝑇𝑖𝑖) =  ∑ 𝑂𝑂𝑂𝑂𝑗𝑗𝑛𝑛
𝑗𝑗=1  (5) 

 

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (Š(𝑇𝑇𝑖𝑖)/ 𝑆𝑆𝑆𝑆𝑚𝑚𝑗𝑗)  ∗ Ɠ𝑗𝑗      (6) 

 

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (7) 

 

ᵬ(𝑇𝑇𝑖𝑖) =  ∑ 𝐼𝐼𝐼𝐼𝑗𝑗𝑛𝑛
𝑗𝑗=1        (8) 

 

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (ᵬ(𝑇𝑇𝑖𝑖)/ 𝐵𝐵𝐵𝐵𝑚𝑚𝑗𝑗)  ∗ ₿𝑗𝑗      (9) 

 

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (10) 

 

𝐹𝐹 = { 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(µ(𝑺𝑺))
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑺𝑺)) (11) 

 

𝐹𝐹 = ( 𝑤𝑤1 ∗ µ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑤𝑤2 ∗ Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤        (12) 
 
 

𝑋𝑋𝑐𝑐⃗⃗⃗⃗ =  𝜎𝜎𝑐𝑐⃗⃗  ⃗  × √𝑅𝑅  × cos𝜃𝜃     (13) 
 

𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + ( 𝑎𝑎𝑐𝑐 ∗ ( 𝜎𝜎𝑐𝑐 − 𝑋𝑋𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ⊕  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (14) 

 

𝑎𝑎𝑐𝑐 =  
∑ √(𝜎𝜎𝑐𝑐⃗⃗⃗⃗ −𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗  )
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛  (15) 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ~ 𝑢𝑢 =  𝑡𝑡−λ (1 < λ ≤ 3) (16) 
 

Δ𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛹𝛹 (
√∑ (𝜎𝜎𝐸𝐸− 𝜎𝜎𝑖𝑖

𝑁𝑁)2𝐷𝐷
𝑖𝑖

𝑑𝑑 ) (17) 

Where, Xi
new and Xi

old are the positions (new and old) of the current family, respectively; ac represent the 
area currently occupied by families within a clan; it is determined as the average distance between families 
and their respective leader σc as:

CÊ𝑇𝑇𝑇𝑇 = (∑ Ê𝑛𝑛
𝑖𝑖=1 (𝑇𝑇𝑖𝑖)      (1) 

 

µ = 𝑚𝑚𝑚𝑚𝑚𝑚(CÊⱯ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)   (2) 
 

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = Ê(𝑇𝑇𝑖𝑖𝑖𝑖) ∗ γj   (3) 

 

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (4) 

 

Š(𝑇𝑇𝑖𝑖) =  ∑ 𝑂𝑂𝑂𝑂𝑗𝑗𝑛𝑛
𝑗𝑗=1  (5) 

 

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (Š(𝑇𝑇𝑖𝑖)/ 𝑆𝑆𝑆𝑆𝑚𝑚𝑗𝑗)  ∗ Ɠ𝑗𝑗      (6) 

 

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (7) 

 

ᵬ(𝑇𝑇𝑖𝑖) =  ∑ 𝐼𝐼𝐼𝐼𝑗𝑗𝑛𝑛
𝑗𝑗=1        (8) 

 

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (ᵬ(𝑇𝑇𝑖𝑖)/ 𝐵𝐵𝐵𝐵𝑚𝑚𝑗𝑗)  ∗ ₿𝑗𝑗      (9) 

 

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (10) 

 

𝐹𝐹 = { 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(µ(𝑺𝑺))
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑺𝑺)) (11) 

 

𝐹𝐹 = ( 𝑤𝑤1 ∗ µ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑤𝑤2 ∗ Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤        (12) 
 
 

𝑋𝑋𝑐𝑐⃗⃗⃗⃗ =  𝜎𝜎𝑐𝑐⃗⃗  ⃗  × √𝑅𝑅  × cos𝜃𝜃     (13) 
 

𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + ( 𝑎𝑎𝑐𝑐 ∗ ( 𝜎𝜎𝑐𝑐 − 𝑋𝑋𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ⊕  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (14) 

 

𝑎𝑎𝑐𝑐 =  
∑ √(𝜎𝜎𝑐𝑐⃗⃗⃗⃗ −𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗  )
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛  (15) 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ~ 𝑢𝑢 =  𝑡𝑡−λ (1 < λ ≤ 3) (16) 
 

Δ𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛹𝛹 (
√∑ (𝜎𝜎𝐸𝐸− 𝜎𝜎𝑖𝑖

𝑁𝑁)2𝐷𝐷
𝑖𝑖

𝑑𝑑 ) (17) 

This implies that the steps towards exploring the search space are shortened by shorter distances between 
families(x) and their leader σc, while steps towards exploring the search space are longer when families(x) 
is far from the current local best solution, σc. This adaptive behavior guarantees quick convergence to local 
optima and affects the efficiency of NPO exploration. Regarding the search direction specified in equation 14, 
random walks with random steps based on levy distribution are produced using the efficient levy flight strategy 
(equation 16). Comparing this strategy to other random approaches, its significantly increases steps length 
allowed it to travel the search space more reliably. In equation 14, the entry-wise multiplication is indicated 
by the product ⊕.

CÊ𝑇𝑇𝑇𝑇 = (∑ Ê𝑛𝑛
𝑖𝑖=1 (𝑇𝑇𝑖𝑖)      (1) 

 

µ = 𝑚𝑚𝑚𝑚𝑚𝑚(CÊⱯ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)   (2) 
 

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = Ê(𝑇𝑇𝑖𝑖𝑖𝑖) ∗ γj   (3) 

 

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (4) 

 

Š(𝑇𝑇𝑖𝑖) =  ∑ 𝑂𝑂𝑂𝑂𝑗𝑗𝑛𝑛
𝑗𝑗=1  (5) 

 

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (Š(𝑇𝑇𝑖𝑖)/ 𝑆𝑆𝑆𝑆𝑚𝑚𝑗𝑗)  ∗ Ɠ𝑗𝑗      (6) 

 

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (7) 

 

ᵬ(𝑇𝑇𝑖𝑖) =  ∑ 𝐼𝐼𝐼𝐼𝑗𝑗𝑛𝑛
𝑗𝑗=1        (8) 

 

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (ᵬ(𝑇𝑇𝑖𝑖)/ 𝐵𝐵𝐵𝐵𝑚𝑚𝑗𝑗)  ∗ ₿𝑗𝑗      (9) 

 

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (10) 

 

𝐹𝐹 = { 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(µ(𝑺𝑺))
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑺𝑺)) (11) 

 

𝐹𝐹 = ( 𝑤𝑤1 ∗ µ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑤𝑤2 ∗ Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤        (12) 
 
 

𝑋𝑋𝑐𝑐⃗⃗⃗⃗ =  𝜎𝜎𝑐𝑐⃗⃗  ⃗  × √𝑅𝑅  × cos𝜃𝜃     (13) 
 

𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + ( 𝑎𝑎𝑐𝑐 ∗ ( 𝜎𝜎𝑐𝑐 − 𝑋𝑋𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ⊕  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (14) 

 

𝑎𝑎𝑐𝑐 =  
∑ √(𝜎𝜎𝑐𝑐⃗⃗⃗⃗ −𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗  )
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛  (15) 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ~ 𝑢𝑢 =  𝑡𝑡−λ (1 < λ ≤ 3) (16) 
 

Δ𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛹𝛹 (
√∑ (𝜎𝜎𝐸𝐸− 𝜎𝜎𝑖𝑖

𝑁𝑁)2𝐷𝐷
𝑖𝑖

𝑑𝑑 ) (17) 

Fitness of each family(i,j) (x) is evaluated after a global search before selecting the best familyj (Xci
Best) from 

each clan ci. If the familyj (Xci
Best) is better than a leader σci

N for clan ci, the clan leader is selected between the 
best family and the leader of the clan in a manner that familyj (Xci

Best) will become the leader during the next 
optimization step. Furthermore, the multi-swarm structure of NPO encourages exploration and exploitation, 
not only within families of a single clan but also reaches out to involve the clan leaders through a method called 
Meeting Room Approach (MRA), which reduces the likelihood of converging to local minima.(37) The normalized 
distribution variance value between each leader and the most influential leader is determined for each leader 
using the following expression:

CÊ𝑇𝑇𝑇𝑇 = (∑ Ê𝑛𝑛
𝑖𝑖=1 (𝑇𝑇𝑖𝑖)      (1) 

 

µ = 𝑚𝑚𝑚𝑚𝑚𝑚(CÊⱯ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)   (2) 
 

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = Ê(𝑇𝑇𝑖𝑖𝑖𝑖) ∗ γj   (3) 

 

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (4) 

 

Š(𝑇𝑇𝑖𝑖) =  ∑ 𝑂𝑂𝑂𝑂𝑗𝑗𝑛𝑛
𝑗𝑗=1  (5) 

 

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (Š(𝑇𝑇𝑖𝑖)/ 𝑆𝑆𝑆𝑆𝑚𝑚𝑗𝑗)  ∗ Ɠ𝑗𝑗      (6) 

 

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (7) 

 

ᵬ(𝑇𝑇𝑖𝑖) =  ∑ 𝐼𝐼𝐼𝐼𝑗𝑗𝑛𝑛
𝑗𝑗=1        (8) 

 

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (ᵬ(𝑇𝑇𝑖𝑖)/ 𝐵𝐵𝐵𝐵𝑚𝑚𝑗𝑗)  ∗ ₿𝑗𝑗      (9) 

 

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) =  ∑ ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (10) 

 

𝐹𝐹 = { 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(µ(𝑺𝑺))
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑺𝑺)) (11) 

 

𝐹𝐹 = ( 𝑤𝑤1 ∗ µ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑤𝑤2 ∗ Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤        (12) 
 
 

𝑋𝑋𝑐𝑐⃗⃗⃗⃗ =  𝜎𝜎𝑐𝑐⃗⃗  ⃗  × √𝑅𝑅  × cos𝜃𝜃     (13) 
 

𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + ( 𝑎𝑎𝑐𝑐 ∗ ( 𝜎𝜎𝑐𝑐 − 𝑋𝑋𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ⊕  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (14) 

 

𝑎𝑎𝑐𝑐 =  
∑ √(𝜎𝜎𝑐𝑐⃗⃗⃗⃗ −𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗  )
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛  (15) 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ~ 𝑢𝑢 =  𝑡𝑡−λ (1 < λ ≤ 3) (16) 
 

Δ𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛹𝛹 (
√∑ (𝜎𝜎𝐸𝐸− 𝜎𝜎𝑖𝑖

𝑁𝑁)2𝐷𝐷
𝑖𝑖

𝑑𝑑 ) (17) 

Where σE is the current best leader’s position in the meeting room, σi
N is the ith  normal leader’s current 

position in the meeting room, while d is the problem’s solution dimension. Then, the direction variable Ψ is 
determined using the following relation:

𝛹𝛹 = { 1            if 𝑓𝑓(𝜎𝜎𝐸𝐸) ≥ 0
−1          otherwise        (18) 

 

𝜎𝜎𝑐𝑐
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗  =  𝜎𝜎𝑐𝑐𝑁𝑁⃗⃗⃗⃗  ⃗ +  Δ𝑃𝑃𝑃𝑃𝑃𝑃 (𝜎𝜎𝐸𝐸 − 𝜎𝜎𝑐𝑐

𝑁𝑁) ∗  𝐼𝐼𝐼𝐼𝑡𝑡  (19) 

 

𝑋𝑋𝑖𝑖
𝑡𝑡+1 =  {𝑋𝑋𝑖𝑖

𝑡𝑡 + 𝑟𝑟1  × sin(𝑟𝑟2) × | 𝑟𝑟3 𝑃𝑃𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑖𝑖

𝑡𝑡|,    𝑖𝑖𝑖𝑖 𝑟𝑟4 < 0,5
𝑋𝑋𝑖𝑖

𝑡𝑡+ 𝑟𝑟1  × cos(𝑟𝑟2) × | 𝑟𝑟3 𝑃𝑃𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑖𝑖

𝑡𝑡|,    𝑖𝑖𝑖𝑖 𝑟𝑟4 ≥ 0,5 (20) 

 

𝑣𝑣𝑖𝑖+1
𝑐𝑐 =  {𝑣𝑣𝑖𝑖

𝑐𝑐 + 𝑟𝑟1  × sin(𝑟𝑟2) ×  𝑟𝑟3 × 𝑣𝑣𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ,    𝑖𝑖𝑖𝑖 𝑟𝑟4 < 0,5

𝑣𝑣𝑖𝑖
𝑐𝑐 + 𝑟𝑟1  × cos(𝑟𝑟2) ×  𝑟𝑟3 × 𝑣𝑣𝑖𝑖

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,    𝑖𝑖𝑖𝑖 𝑟𝑟4 ≥ 0,5
 (21) 

 

Hence, the position of the leaders is updated as follows:
		

𝛹𝛹 = { 1            if 𝑓𝑓(𝜎𝜎𝐸𝐸) ≥ 0
−1          otherwise        (18) 

 

𝜎𝜎𝑐𝑐
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗  =  𝜎𝜎𝑐𝑐𝑁𝑁⃗⃗⃗⃗  ⃗ +  Δ𝑃𝑃𝑃𝑃𝑃𝑃 (𝜎𝜎𝐸𝐸 − 𝜎𝜎𝑐𝑐

𝑁𝑁) ∗  𝐼𝐼𝐼𝐼𝑡𝑡  (19) 

 

𝑋𝑋𝑖𝑖
𝑡𝑡+1 =  {𝑋𝑋𝑖𝑖

𝑡𝑡 + 𝑟𝑟1  × sin(𝑟𝑟2) × | 𝑟𝑟3 𝑃𝑃𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑖𝑖

𝑡𝑡|,    𝑖𝑖𝑖𝑖 𝑟𝑟4 < 0,5
𝑋𝑋𝑖𝑖

𝑡𝑡+ 𝑟𝑟1  × cos(𝑟𝑟2) × | 𝑟𝑟3 𝑃𝑃𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑖𝑖

𝑡𝑡|,    𝑖𝑖𝑖𝑖 𝑟𝑟4 ≥ 0,5 (20) 

 

𝑣𝑣𝑖𝑖+1
𝑐𝑐 =  {𝑣𝑣𝑖𝑖

𝑐𝑐 + 𝑟𝑟1  × sin(𝑟𝑟2) ×  𝑟𝑟3 × 𝑣𝑣𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ,    𝑖𝑖𝑖𝑖 𝑟𝑟4 < 0,5

𝑣𝑣𝑖𝑖
𝑐𝑐 + 𝑟𝑟1  × cos(𝑟𝑟2) ×  𝑟𝑟3 × 𝑣𝑣𝑖𝑖

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,    𝑖𝑖𝑖𝑖 𝑟𝑟4 ≥ 0,5
 (21) 

 

Where IT is the current optimization iteration while t is the total number of iterations. If the fitness value 
is higher than the prior position, the newly derived position is retained; if not, the leader returns to its old 
position. Compared to conventional single swarm methods, this exploration balance offers more efficiency by 
improving convergence rates and speed.(37) The colored circles within each clan, as shown in figure 3, indicate 
the optimal local solution, or σN.
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Figure 3. NPO Meeting Room Approach (MRA)

Enhanced Nomadic People Optimizer
The limitations of the Nomadic People Optimizer algorithm were identified through conducting a series of 

trail-and-error experiments, by varying the numbers of swarms (clans) in the population and number family(x) 
in each clan ci, such as (5, 20), (10, 10), (20, 5). The findings led to the potential proposed improvements of 
NPO algorithm. Two enhanced versions of NPO are presented in this study, detailed as follow:

Current Limitations
From the limitations identified in table 1 of the reviewed literatures, scheduling large and extra-large 

workflows faces several challenges where the selection of appropriate scheduling optimization technique must 
satisfy several criteria when applied for large-scale workflows. First and for most, the number of optimization 
iterations and population size must be carefully selected; high numbers would lead to computational overhead. 
Second, while heuristic and statistic resource mapping present several advantages in optimization of extensive 
workflows scheduling as reviewed in section 2; such methods often result in suboptimal performance due to the 
limited exploration of alternative solutions for large and dynamic solution space. 

Further still, while useful for small workflows, heuristic methods also suffer from bias and premature 
convergence. This is evident in several of the reviewed literatures where such issues are avoided as such 
heuristic methods were only used in initial or sub-initial phase of the proposed scheduling technique. Moreover, 
a recurring theme across reviewed literatures is the significant computational overhead and resource demands 
associated with the proposed approaches that was overlooked when working with large-scale workflows. 

Methods, such as weight vector and heuristic initialization, statistic resource mapping, DAG splitting, and 
shift-based density estimation, are computationally demanding and can substantially increase when applied 
to extensively large workflows. Large number of VMs and high performing virtual resources as per reviewed in 
several work limits the assessment and performance generalizability of the proposed methods when adopted 
for large-scale workflows. 

When scheduling large-scale workflows, scalability is paramount. As workflows scale up, the complexity of 
the optimization problem at hand increase exponentially. Efficient scalable scheduling algorithm in this context 
entails reduced computational complexity, strong exploration-exploitation of search space, and less dependent 
on the characteristics of workflow at hand. 

Efficient large-scale workflow task scheduling algorithm should efficiently allocate tasks to available cloud 
resource independently of workflow characteristics, less prone to local minima through strong exploration-
exploitation, and can performed with acceptable computational complexity. 

Proposed Hybrid Sine-Cosine Meeting Room (QNPO)
Given the strong exploration-exploitation of NPO, fast convergence, enhanced search space exploration, 

and less computational resource requirements, NPO satisfy most of the reviewed challenges in the previous 
section. However, and from evaluation assessment of multiple extra-large workflows, NPO performance can be 
furtherly enhanced. Sine-Cosine is a novel population-based optimization algorithm (SCA) proposed by Seyedali 
Mirjalili that leverage the exploration-exploitation of search space using sine and cosine functions.(38)

Movements of solutions in population are dictated by the dual sine-cosine functions and four adaptive 
variables help SCA to avoid local optima and converged quickly to global optimum solution. The exploration and 
exploitation behavior of SCA is explained through the following two equations:(38)
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𝛹𝛹 = { 1            if 𝑓𝑓(𝜎𝜎𝐸𝐸) ≥ 0
−1          otherwise        (18) 

 

𝜎𝜎𝑐𝑐
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗  =  𝜎𝜎𝑐𝑐𝑁𝑁⃗⃗⃗⃗  ⃗ +  Δ𝑃𝑃𝑃𝑃𝑃𝑃 (𝜎𝜎𝐸𝐸 − 𝜎𝜎𝑐𝑐

𝑁𝑁) ∗  𝐼𝐼𝐼𝐼𝑡𝑡  (19) 

 

𝑋𝑋𝑖𝑖
𝑡𝑡+1 =  {𝑋𝑋𝑖𝑖

𝑡𝑡 + 𝑟𝑟1  × sin(𝑟𝑟2) × | 𝑟𝑟3 𝑃𝑃𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑖𝑖

𝑡𝑡|,    𝑖𝑖𝑖𝑖 𝑟𝑟4 < 0,5
𝑋𝑋𝑖𝑖

𝑡𝑡+ 𝑟𝑟1  × cos(𝑟𝑟2) × | 𝑟𝑟3 𝑃𝑃𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑖𝑖

𝑡𝑡|,    𝑖𝑖𝑖𝑖 𝑟𝑟4 ≥ 0,5 (20) 

 

𝑣𝑣𝑖𝑖+1
𝑐𝑐 =  {𝑣𝑣𝑖𝑖

𝑐𝑐 + 𝑟𝑟1  × sin(𝑟𝑟2) ×  𝑟𝑟3 × 𝑣𝑣𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ,    𝑖𝑖𝑖𝑖 𝑟𝑟4 < 0,5

𝑣𝑣𝑖𝑖
𝑐𝑐 + 𝑟𝑟1  × cos(𝑟𝑟2) ×  𝑟𝑟3 × 𝑣𝑣𝑖𝑖

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,    𝑖𝑖𝑖𝑖 𝑟𝑟4 ≥ 0,5
 (21) 

 

Where, Xi
t+1 is the updated position, Xi

t is the current position, and Pi
t is the global optimal solution. To 

further understand the SCA exploitation-exploration of search space, figure 4 shows how the solution is derived 
between two solutions in the search space.(38) Given the four primary parameters in equation 20, the value 
of r1 determines the region of the next position, which could either fall between the current and destination 
solution or outside. 

The value of r2 sets the magnitude or length of movement toward or outward the destination solution. The 
parameter r3 is a stochastic weight while r4 is a random value used to equally alternate between sine and 
cosine functions. The details and equations of each of the parameters are defined by Bharathi et al.(38).

Figure 4. Illustration of Sine and Cosine and their effect on the exploration and exploitation of the next position

In comparison to other optimization algorithm, SCA was selected due to several reasons. First, the underlying 
sine-cosine exploration-exploitation functions align with NPO semicircle distribution of families(x) around clan’s 
leader σN, see equation 13. As such, prevents solution conflicts and search interruption towards global optimal 
solution. Second, SCA requires less computational cost compared to many optimization algorithms. 

Therefore, this study proposes Quick Nomadic People Optimizer (QNPO) with hybrid Sine-Cosine Meeting 
Room Approach. SCA can enhance leaders’ search for better solutions without negatively effecting the search 
direction and distribution of families in each individual clan. The introduction of SCA at this stage also permit 
adaptive evaluation, the periodic reset and re-evaluation of meeting room serves as the interface between the 
search for global optimal solution as well as local optimal solution in each clan. Improved solutions in SCA-MRA 
are then refined and exploited in semicircle distribution and family search, see equation 13 and equation 14 
respectively. Then, for every vi

c in σc
N, SCA sine-cosine dual functions can be rewritten as follow:

𝛹𝛹 = { 1            if 𝑓𝑓(𝜎𝜎𝐸𝐸) ≥ 0
−1          otherwise        (18) 

 

𝜎𝜎𝑐𝑐
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗  =  𝜎𝜎𝑐𝑐𝑁𝑁⃗⃗⃗⃗  ⃗ +  Δ𝑃𝑃𝑃𝑃𝑃𝑃 (𝜎𝜎𝐸𝐸 − 𝜎𝜎𝑐𝑐

𝑁𝑁) ∗  𝐼𝐼𝐼𝐼𝑡𝑡  (19) 

 

𝑋𝑋𝑖𝑖
𝑡𝑡+1 =  {𝑋𝑋𝑖𝑖

𝑡𝑡 + 𝑟𝑟1  × sin(𝑟𝑟2) × | 𝑟𝑟3 𝑃𝑃𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑖𝑖

𝑡𝑡|,    𝑖𝑖𝑖𝑖 𝑟𝑟4 < 0,5
𝑋𝑋𝑖𝑖

𝑡𝑡+ 𝑟𝑟1  × cos(𝑟𝑟2) × | 𝑟𝑟3 𝑃𝑃𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑖𝑖

𝑡𝑡|,    𝑖𝑖𝑖𝑖 𝑟𝑟4 ≥ 0,5 (20) 

 

𝑣𝑣𝑖𝑖+1
𝑐𝑐 =  {𝑣𝑣𝑖𝑖

𝑐𝑐 + 𝑟𝑟1  × sin(𝑟𝑟2) ×  𝑟𝑟3 × 𝑣𝑣𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ,    𝑖𝑖𝑖𝑖 𝑟𝑟4 < 0,5

𝑣𝑣𝑖𝑖
𝑐𝑐 + 𝑟𝑟1  × cos(𝑟𝑟2) ×  𝑟𝑟3 × 𝑣𝑣𝑖𝑖

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,    𝑖𝑖𝑖𝑖 𝑟𝑟4 ≥ 0,5
 (21) 

 
In general, if moving normal leader σc

N (t) towards best leader σE (t) in meeting room didn’t improve 
σc

N (t) solution, then move σc
N (t) using sine-cosine approach towards global best leader ever σE. Based on 

meeting room approach illustrated in equation 19, and SCA dual sine-cosine functions given in equation 21, the 
pseudocode of SCA-MRA can be detailed as follow (proposed improvement is highlighted in red):

Algorithm: enhanced Meeting Room Approach (SCA-MRA) in QNPO
1 Input: all Leaders σ
2 Output: best Leader Ever σE, Updated Positions for all Normal Leaders
3 Procedure:
4	 Determine the best leader ever as σE 
5	 Determine the value of the direction variable Ψ via equation 18
6	 Calculate via ΔPos equation 17
7	 For each normal leader σc

N 
8		  Move towards the best leader ever σE, via equation 19
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9		  Calculate the fitness value for σc
new using the objective function

10		  If: the fitness σc
new is better than the previous σc

N, Then keep it
11		  Else: 
12			   Generate r4
13			   If: r4 < 0,5:
14			   For each vi

c in σc
N:

Update r1, r2, r3 values
Apply sine function from equation 21 and generate σc

new

			   End For
15			   Else:
16			   For each vi

c in σc
N:

				    Update r1, r2, r3 values
Apply cosine function from equation 21 and generate σc

new

			   End For
17			   Calculate the fitness value for σc

new using the objective function
18			   If: the fitness of σc

new is better than the previous σc
N fitness, then keep it

19		  End For
20	 Return Best Leader Ever and other updates

Scientific Workflows
Current Limitations

The suggested algorithms’ scheduling enhancements are tested and verified on a variety of workflows in a 
pre-configured cloud environment. With this approach, several test scenarios can be explored and a thorough 
assessment of the algorithms can be obtained before their implementation in real-world cloud environment. 
The Pegasus Workflow Generator is used to create scientific workflows from diverse scientific domains that 
are available at the Pegasus Workflow Gallery. These workflows are uniquely structured and range in size from 
small to large. The table below details only the large scientific workflows used in workflow task scheduling 
optimization literatures.(39,40)

Table 2. Scientific workflow datasets

Dataset Name Domain/Type Number of Tasks

Montage Astronomy/Data-intensive 1000

CyberShake Earthquake science/Data and memory 
intensive

1000

Epigenomics Bioinformatics/CPU-intensive 997

Inspiral (LIGO) Physics/CPU-intensive 1000

Sipht Bioinformatics/CPU-intensive 1000

In extra-large workflows, the number of tasks can extend into thousands. With limited availability of such 
workflows, several research―including the reviewed articles―practically generate these workflows. However, 
random tasks generation (i.e. independent tasks, see table 1: results in misleading performance evaluations 
due to lack of consistency and control over generated tasks, in addition to limiting real-world applicability 
and comparison to other scientific work.(23,24,34) On the other hand, studies such as(41,42) used Pegasus Workflow 
Generator to engineer study-specific workflows.(43)

With structure customization, complex tasks relationship and dependencies, varied tasks required resources 
(such as length, memory, and bandwidth), and tasks resources constraints, workflows that mimic real-world 
applications can be created. While effective, such approach requires prerequisites such as design analysis of 
problem at hand, workflow design (tasks dependencies, data flow, and resources allocation) which requires 
strong background in systems architecture and cloud computing, and last, technical programming and tool 
expertise. 

Further still, the work of Arabnejad et al.(43), Wang et al.(44), and Li et al.(30) adopted merging approach of 
several workflows to generate realistic synthetic “bag-of-tasks” from known scientific workflows respectively. 
However, these studies did not consider the composition of more realistic heterogeneous workflows, and second, 
the number of tasks in proposed synthetic workflows did exceed 4000 tasks. Reflecting on the increasing 
complexity and scale of real-world cloud scenarios, such workflows can lead to suboptimal scheduling 
assessment, and consequently, weak scheduling algorithms’ design.(45,46,47,48,49)
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Proposed Synthetic Workflows
The synthetic workflows presented in this study are composed from either the same workflow type, i.e. 

domain (table 2), single, or hybrid; heterogeneous, and with task length from ~3000-10000. The synthetic 
workflows are presented in the form: TE-W-n (table 3), where W is the first letter of original workflows names, 
n is the number of merged workflows, and E stands for extra-large workflow while T stands for type (S-Single, 
H-Hybrid). For instance, the name HE-EIS-3 means that this synthetic workflow is Hybrid, Extra-Large, and 
composed from three datasets, Epigenomics, Inspiral, and Sipht respectively. All synthetic extra-large workflows 
are composed from large workflows and added during the simulation to WorkflowSim using the parameter 
daxPaths according to their specific composition order detailed in table 3.

Table 3. The composition of extra-large and hybrid extra-large synthetic workflows

Workflow Name Composition Number of Tasks

Montage_1000 [SE-M-3, SE-M-5] 3000, 5000

CyberShake_1000 [SE-C-3, SE-C-5] 3000, 5000

Epigenomics_997 [SE-E-3, SE-E-5] 2991, 4985

Inspiral_1000 [SE-I-3, SE-I-5] 3000, 5000

Sipht_1000 [SE-S-3, SE-S-5] 3000, 5000

Epigenomics_997, Inspiral_1000, Montage_1000 [HE-EIM-3, HE-EIM-6] 3997, 5994

Inspiral_1000, Sipht_1000, CyberShake_1000 [HE-ISC-3, HE-ISC-6] 3000, 6000

Epigenomics_997, Inspiral_1000, Sipht_1000, 
Montage_1000, CyberShake_1000

[HE-EISMC-5, HE-EISMC-10] 4997, 9994

RESULTS AND DISCUSSION 
Simulation Environment

WorkflowSim, is an open-source simulator built on CloudSim with additional capabilities like  workflow 
modeling using Directed Acyclic Graphs (DAGs), was used to implement the  suggested cloud infrastructure 
and algorithms.(46,47) A computer system equipped with an AMD Ryzen 7-4800U processor and 16,0 GB of system 
memory was used to implement all the simulations in this study. Table 4 details simulation environment 
configurations. 

The configuration of the simulation environment is crucial in assessing how well scheduling algorithms 
perform. Performance evaluation is therefore influenced by wrongly configured hardware resources, such as 
an erroneous CPU speed or an unsuitable distribution of virtual machines among cloud data centers. This can 
result in inaccurate evaluations of the algorithms’ capacity for exploration and exploitation. The adopted 
configuration and pricing model in this study matches the pricing structure of Amazon LightSail.(50,51,52,53,54)

Table 4. WorkflowSim cloud infrastructure configurations

Object Configuration Pricing in USD$

Number of VMs 18

Slow VMs VMs: 6, vCPU: 1000-1700 MIPS, vCores: 
1, vMemory: 512-1024 MB, vBandwidth: 
1024-2048 Mb/s, vStorage: 1024-2048 MB

vCPU: 0,13-0,23. vMemory: 0,1-0,12, 
vBandwidth: 0,06-0,1, vStorage: 
0,03-0,05

Balanced VMs VMs: 6, vCPU: 1100-2500 MIPS, vCores: 
2, vMemory: 512-2048 MB, vBandwidth: 
1024-3000 Mb/s, vStorage: 1024-2048 MB

vCPU: 0,2-0,3, vMemory: 0,1-0,15, 
vBandwidth: 0,06-0,1, vStorage: 
0,03-0,09

Fast VMs VMs: 6, vCPU: 2500-3000 MIPS, vCores: 
4, vMemory: 1024-2500 MB, vBandwidth: 
2048-3500, vStorage: 2048-4096 MB

vCPU: 0,4-0,8, vMemory: 0,12-0,15, 
vBandwidth:0,13-0,19, vStorage: 
0,05-0,12

Test Results of Large Scientific Workflows
First thorough assessment of proposed QNPO efficiency is performed on large scale scientific workflows. 

Datasets (CyberShake, Epigenomics, Inspiral, Montage, and Sipht detailed in table2) are commonly used to 
evaluate scheduling algorithms performance in cloud computing environment. The fitness value and two primary 
evaluation metrics (ⱯCost and Makespan µ) depicted in table 5 and table 6 highlight the evaluation results of 
five optimization algorithms-Particle Swarm Algorithm (PSO), Fire Fly Algorithm (FFA), Genetic Algorithm (GA), 
NPO, and QNPO. Staring from the first three algorithms, it is evident that PSO consistently outperformed 
FFA and GA across all workflows in terms of ⱯCost and µ. PSO relatively showed a balanced performance 
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between evaluation metrics. On the other hand, standard NPO algorithm showed nearly competitive results in 
comparison to FFA and GA; but fell behind PSO in terms of both metrics. 

Table 5. Best fitness values of five task scheduling optimization algorithms 
for large scientific workflows

Dataset PSO FFA GA NPO QNPO

CyberShake 1199 1350 1372 1431 874

Epigenomics 178104 214935 221898 231914 143320

Inspiral 11865 13031 13381 13997 8867

Montage 651 685 693 720 438

Sipht 7095 10031 9271 10078 6441

Table 6. ⱯCost and µ of five task scheduling optimization algorithms for large scientific workflows

Dataset
PSO FFA GA NPO QNPO

ⱯCost µ ⱯCost µ ⱯCost µ ⱯCost µ ⱯCost µ

CyberShake 895 303 940 409 945 426 979 452 712 161

Epigenomics 136700 41403 155451 59484 156720 65177 159415 72499 116962 26358

Inspiral 8963 2902 9306 3724 9236 4144 9496 4501 7224 1642

Montage 464 186 477 208 473 219 485 235 347 91

Sipht 5722 1372 7072 2959 6695 2575 7030 3048 5315 1125

The proposed QNPO with hybrid Sine-Cosine meeting room approach led to significant improvements in 
ⱯCost and µ compared to standard NPO. For instance, in CyberShake workflow, QNPO reduced ⱯCost by 27,3 
% to 712 USD from NPO’s 979. Similarly, a significant decrease in µ of 64,4 % compared to NPO’s 452 seconds. 
Moreover, and for the large data intensive Epigenomics workflow, QNPO reduced ⱯCost by 26,7 %, from 159 
415 to 116 962 USD, and µ was reduced by 63,6 %, from 72 499 to 26 358 seconds. The reduction of µ can be 
translated to approximately ~12,8 hours reduction in workflow execution time. 

Latin Hypercube Sampling provided even greater enhancements to QNPO. Overall assessment of performance 
metrics in Table 5 shows that the proposed QNPO considerably outperformed other algorithms with nearly ~10-40 
% in terms of ⱯCost and µ. Hybrid SCA-MRA enhanced σc

N to lead and refined families(x) exploration-exploitation 
of promising regions which facilitated fast convergence and discovery rate of global optimal solution.

Test Results of Extra-Large and Hybrid Extra-Large Synthetic Scientific Workflows
The second performance assessment of proposed QNPO is measured based on ten extra-large and six 

hybrid extra-large proposed synthetic workflows and compared to PSO algorithm, the second-best performing 
algorithm from table 6. On one hand, the synthetic complex extra-large workflows allow for scalability efficiency 
assessment of how proposed approach can handle the expansion of problem size. 

Table 7. Performance evaluation of PSO and QNPO task scheduling algo-
rithms on extra-large synthetic scientific workflows

Dataset
PSO QNPO

ⱯCost µ fitness ⱯCost µ fitness

SE-M-3 1459 578 2038 1042 273 1316

SE-M-5 2451 1020 3471 1856 415 2272

SE-C-3 2884 1164 4048 2066 589 2655

SE-C-5 4883 1941 6825 3612 792 4404

SE-E-3 472049 184366 656416 363755 74070 437825

SE-E-5 800819 300351 1101171 605687 131710 737398

SE-I-3 28794 11696 40490 21389 4760 26149

SE-I-5 48292 19921 68213 36209 7873 44083

SE-S-3 19477 7010 26488 15946 3487 19434

SE-S-5 34601 11521 46123 28589 5532 34122
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From the results illustrated in table 8, QNPO showed similar improved task scheduling performance in terms 
of ⱯCost and µ in comparison to PSO. Starting with first two CPU-intensive and one Data-intensive 3000 tasks 
hybrid workflow, HE-EIM-3, QNPO significantly reduced ⱯCost by 11,7 % from 146 904 USD (PSO) to 129 781 USD, 
and 11,7 % µ from 43 620 seconds to 27 378 seconds. When the number of tasks increased to 6000 tasks (four 
CPU-intensive and two Data-intensive workflows), QNPO reduced ⱯCost by 20,6 %, saving more than 66 114$ in 
scheduling costs, with substantial reduction of µ by 84,3 %, saving ~14,8 hours in execution time.

Table 8. Performance evaluation of PSO and QNPO task scheduling algorithms on 
hybrid extra-large synthetic scientific workflows

Dataset
PSO QNPO

ⱯCost µ fitness ⱯCost µ fitness

HE-EIM-3 146904 43620 190524 129781 27378 157160

HE-EIM-6 320386 110956 431342 254272 57429 311701

HE-ISC-3 16927 6104 23031 13247 3141 16389

HE-ISC-6 34768 13352 48120 26653 5788 32441

HE-EISMC-5 161182 51674 212857 130752 32927 163679

HE-EISMC-10 350748 128082 478831 273270 59283 332553

For the second 3000 and 5000 tasks hybrid two CPU-intensive and one Data-intensive workflows, HE-ISC-3 
(Inspiral, Sipht, and CyberShake), QNPO outperformed PSO in ⱯCost and µ by 21,7 % and 48,6 %, achieving a 
substantial reduction of 3680$ and ~0,8 hours, respectively. Increasing the number of tasks to 6000 for HE-ISC-6 
workflow, efficient scaling of QNPO achieved even higher improvements in comparison to HE-ISC-3. 

QNPO reduced the ⱯCost by 23,3 %, and µ by 56,7 %. This can be translated in task scheduling optimization to 
8115$ in execution cost savings and to ~7,5 hours reduction in execution time. This highlights the strong balance 
between scheduling objectives ⱯCost and µ, rendering QNPO to be more suitable for complex, heterogeneous, 
extra-large workflows. 

Last, the evaluation of hybrid extra-large synthetic workflow—EISMC 5000 and 10 000—was necessary to 
further investigate any optimization biases and scalability performance of QNPO. In practical applications of 
task scheduling optimizations, cloud systems rarely process homogenous tasks, but rather, a diverse workload 
that differ in processing and data requirements. 

In other words, EISMC synthetic workflow aimed at creating real-world challenging scenario with multiple CPU 
and Data intensive workflows. Moreover, and drawn from the limitations of reviewed literatures, researchers are 
encouraged to follow this approach as it ensures accuracy, insightful evaluation and replicability of experiment. 
In the HE-EISMC-5 workflow, QNPO in comparison to PSO reduced both ⱯCost and µ from 161 182$ to 130 752$, 
and from 51 674 to 32 927 seconds. 

A significant savings of 18,9 % and 36,3 %, respectively. Moreover, QNPO consistent performance achieved 
more efficient results for HE-EISMC-10 (which consists of 10 000 tasks) with 22,1 % and 53,7 % improvements 
for both objectives, ⱯCost and µ. In workflow scheduling optimization, such improvement is translated to 
reduction of 77 478$ and ~19,1 hours in execution cost and time. 

The consistent improvements observed in QNPO from the three rigorous evaluation scenarios largely 
attributed to hybrid SCA-MRA. With minimum computational overhead and strong exploration-exploitation, 
the proposed hybridization approach proven to be effective in balancing optimization objectives even for 
extra-large complex hybrid workflows. The Sine-Cosine algorithm enhanced clans’ leaders to identify promising 
search regions of the hybrid and large solution space.

CONCLUSIONS
Effective task scheduling algorithms of large-scale complex workflows poses several limitations and 

challenges surrounding scheduling efficiency, scalability, and adaptability to heterogeneous workflows and cloud 
resources. Moreover, computational complexity and weak exploration-exploitation from the several reviewed 
articles particularly limit the scheduling efficiency of extra-large and hybrid workflows. 

This study proposed enhanced Nomadic People Optimizer (NPO). QNPO consistently achieved a significant 
reduction in scheduling optimization objectives,  and , measured between 30-60 %. The SCA-MRA significantly 
improved the clans’ leaders search granularity and convergence rate of global optimal solution while maintaining 
good performance complexity. 
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