
Optimizador de Personas Nómadas Mejorado con Seno-Coseno (NPO) para la
Optimización de la Planificación de Tareas de Flujos de Trabajo Científicos Grandes
y Sintéticos Extra-grandes en Entornos de Nube

Data and Metadata. 2025; 4:1000
doi: 10.56294/dm20251000

ORIGINAL

Improved Sine-Cosine Nomadic People Optimizer (NPO) for Large and Synthetic
Extra-large Scientific Workflow Task Scheduling Optimization in Cloud Environment

Saif Hameed1
 , Hend Marouane2

 , Ahmed Fakhfakh3
 , Sinan Salih4

 

ABSTRACT

Cloud computing has become an increasingly fundamental technology in recent years, influencing many
different areas of the economy. It offers significant features such as greater scalability, on-demand resource
allocation for varied workflows, and a pay-as-you-go pricing system. For cloud service providers, efficient and
optimized scheduling is essential since it lowers resources consumption, operation expenses, and guarantees
users’ service level agreements. However, scheduling optimization becomes increasingly challenging due to
the inherent heterogeneity of cloud resources and the growing scale of workflows. To tackle these issues, this
study presents hybrid Sine-Cosine Nomadic People Optimizer (called QNPO) aimed at optimization of multi-
objective cloud task scheduling with a special emphasis on large and extra-large scientific workflow. Sixteen
synthetic extra-large heterogeneous workflows datasets were composed in this study and used to evaluate
the proposed approach on a heterogeneous cloud infrastructure configure in Workflow Sim. The results
indicated that the QNPO consistently outperformed traditional optimization algorithms in all proposed
evaluation scenarios, achieving a significant improvement in scheduling efficiency between 30 and 60 %.

Keywords: Workflow Task Scheduling; Heterogeneous Cloud; Synthetic Extra-Large Workflows; Nomadic
People Optimizer; Multi-Swarm Optimization; Makespan; Sine-Cosine Optimization.

RESUMEN

La computación en la nube es ha convertido en una tecnología fundamental en los últimos años, influyendo en
diversas áreas de la economía. Ofrece características significativas como una mayor escalabilidad, asignación
de recursos bajo demanda para diferentes flujos de trabajo y un sistema de precios basado en el pago por
uso. Para los proveedores de servicios en la nube, una programación eficiente y optimizada es esencial, ya
que reduce el consumo de recursos, los gastos operativos y garantiza el cumplimiento de los acuerdos de
nivel de servicio con los usuarios. Sin embargo, la optimización de la programación se vuelve cada vez más
desafiante debido a la heterogeneidad inherente de los recursos en la nube y al crecimiento en la escala
de los flujos de trabajo. Para abordar estos desafíos, este estudio presenta un Optimizador de Personas
Nómadas híbrido basado en Seno-Coseno (denominado QNPO) orientado a la optimización de la programación
de tareas en la nube de múltiples objetivos, con especial énfasis en flujos de trabajo científicos grandes y

© 2025; Los autores. Este es un artículo en acceso abierto, distribuido bajo los términos de una licencia Creative Commons (https://
creativecommons.org/licenses/by/4.0) que permite el uso, distribución y reproducción en cualquier medio siempre que la obra original
sea correctamente citada

1College of Computer Science and Information Technology, University of Anbar. Ramadi, Iraq.
2National School of Electronics and Telecommunications (ENET’COM), NTS’COM Laboratory, fax University. Sfax, Tunisia.
3Digital and Numeric Research Center of Sfax (CRNS), Sfax University. Sfax, Tunisia.
4Technical College of Engineering, Al-Bayan University. Baghdad 10011, Iraq.

Cite as: Hameed S, Marouane H, Fakhfakh A, Salih S. Improved Sine-Cosine Nomadic People Optimizer (NPO) for Large and Synthetic Extra-
large Scientific Workflow Task Scheduling Optimization in Cloud Environment. Data and Metadata. 2025; 4:1000. https://doi.org/10.56294/
dm20251000

Submitted: 08-09-2024 Revised: 07-01-2025 Accepted: 14-05-2025 Published: 15-05-2025

Editor: Dr. Adrián Alejandro Vitón Castillo

Corresponding Author: Saif Hameed 

https://doi.org/10.56294/dm20251000
https://orcid.org/0000-0002-9304-332X
mailto:dove_white84@uoanbar.edu.iq?subject=
https://orcid.org/0000-0002-6447-2627
mailto:hend.marouane@enetcom.usf.tn?subject=
https://orcid.org/0009-0005-3219-2371
mailto:Ahmed.Fakhfakh@enetcom.usf.tn?subject=
https://orcid.org/0000-0003-0717-7506
mailto:sinan.salih@albayan.edu.iq?subject=
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.56294/dm20251000
https://doi.org/10.56294/dm20251000
https://orcid.org/0000-0002-7811-2470
mailto:dove_white84@uoanbar.edu.iq?subject=

https://doi.org/10.56294/dm20251000

extra-grandes. En este estudio se compusieron dieciséis conjuntos de datos sintéticos de flujos de trabajo
heterogéneos extra-grandes y se utilizaron para evaluar el enfoque propuesto en una infraestructura de
nube heterogénea configurada en WorkflowSim. Los resultados mostraron que el QNPO superó de manera
consistente a los algoritmos de optimización tradicionales en todos los escenarios de evaluación propuestos,
logrando una mejora significativa en la eficiencia de la programación entre el 30 % y el 60 %.

Palabras clave: Programación de Tareas de Flujos de Trabajo; Nube Heterogénea; Flujos de Trabajo
Sintéticos Extra-Grandes; Optimizador de Personas Nómadas; Optimización Multi-Swarm; Makespan; Costo;
Optimización Seno-Coseno.

INTRODUCTION
It is commonly known that cloud computing is a reliable platform for delivering scalable resources with a

pay-per-use pricing structure that charges users according to their actual usage. Cloud resources are typically
provided as Infrastructure as a Service (IaaS), combining networking, storage, and specialized hardware like
GPUs.(1,2) In such model, users can lease resources as needed without the necessity of resource ownership.
Furthermore, clouds simplify the scalability of resources to satisfy specific service levels or the processing
needs of customers’ applications.(3,4) The use of cloud-based applications and software has grown significantly
in the last several years in a number of industries, including businesses, scientific research, and education.
However, its broad adoption has also brought a number of notable challenges.(5,6)

The successful mapping of various user tasks to suitable resources is one of the main challenges facing
the efficient use of cloud resources.(7) Efficient Workflow Task Scheduling (WTS) is a challenging process due
to the varied nature of available cloud resources and the volume of processes that cloud’s customers utilize.
In addition, cloud computing resources are leased dependent on the required network bandwidth, storage
space, and processing power defined by workflows. These workflows ranging from simple single-task to
intricate multitask, and on the other hand, necessitate coordinated execution across several cloud services.(8,9)
Furthermore, ensuring Quality of Service (QoS) further complicates the scheduling decision since it requires the
evaluation of several scheduling conditions.

These issues highlight the necessity for sophisticated optimization techniques that can address the posed
challenges with emphasis extra-large workflows in cloud computing.(10,11) The wide use and adoption of cloud-
based services and applications brought much attention to WTS optimization techniques and remained an active
field of research. Researchers have investigated a wide range of approaches, such as heuristic, metaheuristic,
and nature-inspired optimization algorithms to address the challenges associated with tasks scheduling in cloud
systems with emphasis on improving the exploration and exploitation capabilities of these algorithms.(12,13,14)

Despite these efforts, number of notable limitations have been identified. From investigating the potential
of optimization techniques such as Particle Swarm Optimization (PSO), Grey Wolf Optimizer (GWO), and
Genetic techniques (GA), single-swarm algorithms usually require high number of optimization iterations to
get satisfactory outcomes and frequently struggle to reach near-optimal solutions in a reasonable time.(15,16,17)
This inefficiency is further worsened by the increase complexity associated with large number of tasks, Service
Level Agreements (SLAs), QoS requirements, diverse nature of available cloud resources, and the presence of
conflicting objectives in multi-objective task scheduling optimization as such the evaluated algorithms show
only slight improvements.(18)

Furthermore, hybridization of optimization techniques can greatly improve convergence and exploration
towards optimal scheduling solution. For example, it has been demonstrated in the reviewed literature that
using algorithms with strong exploration in population initialization or hybrid exploitation of newly derived
solutions can be effective, even in com-plex multi-objective task scheduling settings.(19,20,21) While effective,
hybrid approaches can result in a significant increase in time complexity, especially when applied in scheduling
extra-large workflows.

Thus, computational efficiency and effectiveness are important factors to take into account while developing
task-scheduling optimization algorithms. Swift decision-making is crucial because it has an immediate impact
on user satisfaction, cloud performance, and the long-term viability of cloud-based solutions. This emphasizes
the need for large-scale optimization algorithms. In this study, the term “large-scale” describes the algorithms
that can effectively explore large solution spaces, especially when dealing with thousands of tasks, diverse
cloud resources, and conflicting scheduling constraints.

Given these identified challenges, this study proposed an improved Meeting Room Approach using Sine-Cosine
optimization algorithm (known as Quick NPO or QNPO) aimed at efficient scheduling of extra-large workflows
and utilization of cloud resources. Sixteen synthetic workflows (~3000-10000 task) with varying number of tasks
and heterogeneity are composed in this study for the evaluation of the proposed QNPO, and also to standardize

Data and Metadata. 2025; 4:1000 2

https://doi.org/10.56294/dm20251000

the future research of large-scale task scheduling algorithms evaluation.
For further reading, the remainder of the paper is organized as follow: a comprehensive review of related

research is presented in section 2. Cloud and workflow model, followed by scheduling problem formulation,
optimization fitness function, multi-swarm NPO optimization algorithm, QNPO and proposed enhancement,
synthetic and hybrid synthetic extra-large workflows are detailed in section 3, 4, 5, and 6, respectively. The
performance evaluation and conclusion are covered in section 7 and 8, respectively.

Related Works
The demand for computer resources is increasing in several industries; cloud computing infrastructure,

owing to its cost-effective pay-per-use pricing mechanism, reliability, and efficient resource scalability, has
garnered significant interest. Furthermore, the crucial role that efficient scheduling plays in improving cloud
resource utilization and lowering operating costs has also attracted much attention to cloud task scheduling and
schedule optimization. This section presents a comprehensive overview of the relevant literature landscape,
with a focus on task scheduling optimization for large and extra-large workflows scheduling.

Xia et al.(17) developed the Adaptive Evolutionary Scheduling Algorithm (AESA) that uses novel techniques like
dynamic variable analysis and heuristic population initialization to increase energy efficiency and scheduling
performance. AESA focus-es on balancing various objectives, improving the efficiency of evolutionary search,
and optimizing crucial decision factors. The study evaluates AESA’s efficacy using Hyper-volume (HV) and
Dominance Ratio (DR), with the ultimate goal of achieving more sustainable and productive cloud computing
operations. AESA reduces the search space and increases search efficiency by clustering tasks onto a small set
of resources using a heuristic population initialization technique.(22)

By creating a novel multi-objective approach for workflow scheduling in cloud computing, a study aimed
to address the shortcomings of the conventional rule-based heuristics in cloud computing environments. The
method emphasizes the significance of combining task scheduling and virtual machine allocation through
a cooperative evolutionary strategy and makes use of evolutionary computation and simulation tools to
automatically develop high-performing scheduling rules. A cooperative evolutionary strategy was also suggested
using Genetic Programming Hyper-Heuristic (GPHH) to concurrently develop priority criteria for task scheduling
and virtual machine (VM) al-location. When optimizing these objectives in comparison to benchmark heuristics,
the suggested algorithms achieved a 72,91 % increase in hypervolume and a 90,26 % improvement in hypervolume
performance on previously unseen instances.(23)

The Hybrid HEFT PSO-Genetic Algorithm (HEPGA) was presented by a study with several significant
improvements to handle the challenges of workflow scheduling in cloud computing environments. The technique
creates a strong hybrid approach by combining the advantages of Genetic Algorithms (GA) with Particle Swarm
Optimization (PSO). PSO is used to improve search space exploration and particle velocities by utilizing Levy
distribution to produce a diversified population of possible solutions. GA us-es selection, crossover, and mutation
to improve these solutions and minimize Makespan by maximizing task-to-processor mappings.(24)

The CE-PRO technique was first presented by a study to concurrently reduce the Makespan and cost of
several workflows in cloud computing settings. This effectively tackles the difficulties caused by users’ differing
Quality of Service (QoS) demands. Using two different populations, they optimize both Makespan and cost by
first combining a Poor and Rich Optimization (PRO) technique with a Multi-Population Multi-Objective (MPMO)
framework.(25)

This two-population approach speeds up convergence and increases search diversity. To increase diversity
and avoid premature convergence, they ultimately create a hybrid mutation-based Elite Enhancement
Strategy (EES) that performs several scales of mutation operations on elite solutions. The MOMWS strategy
was introduced by a study, it combines several strategies, including a prioritize assignment algorithm for
urgency-based scheduling, task preparation to minimize data transmission, and an evolutionary multi-objective
optimization techniques-based Makespan and cost-aware scheduling algorithm.(25,26) The primary goals are to
minimize workflow Makespan, which is necessary for timely task completion, and to reduce resource billing
costs by optimizing cloud resource consumption. The results show improved performance of MOMWS than the
existing scheduling mechanisms as it combined task preprocessing, priority assignment, and evolutionary multi-
objective optimization strategies, resulting in improved cost savings and scheduling efficiency.

Pasdar et al.(26) developed the Hybrid Scheduling for Hybrid Clouds (HSHC) algorithm for the optimization
of scientific workflow execution in hybrid cloud environments. By incorporating public cloud billing policies
and analyzing various pricing models, the algorithm was further improved to optimize scientific workflow
scheduling in hybrid cloud environments. The results show up to 25 % faster execution times and 40 % cost re-
ductions compared to the existing HEFT, CPOP, HSGA, and PSO algorithms.(27)

The Hybrid Collaborative Multi-Objective Fruit Fly Optimization Algorithm (HCM-FOA) was proposed by Qin
et al.(27) with the dual objectives of minimizing total execution time (TET) and lowering execution cost (TEC).
The algorithm combines a unique clustering approach with a hybrid initialization technique to improve resource

https://doi.org/10.56294/dm20251000

 3 Hameed S, et al

https://doi.org/10.56294/dm20251000

https://doi.org/10.56294/dm20251000

allocation performance and handle the heterogeneous and elastic nature of cloud resources. To find a collection
of Pareto optimal solutions that strike a balance between these two goals, HCMFOA uses Pareto dominance to
evaluate solutions. The technique dynamically di-vides the swarm into several sub-swarms using a reference
points-based clustering strategy, facilitating more efficient solution space exploration.(28)

To schedule application workflows on hybrid cloud infrastructures while optimizing both Makespan (total
workflow completion time) and Economic Cost (financial expenditure on resources), Hafsi et al.(28) proposed the
Genetically-modified Multi-objective Particle Swarm Optimization (GMPSO). Among the several improvements
is the incorporation of novel genetic operations, which improve solution space exploration and produce a
variety of high-quality scheduling solutions.(29)

To improve workflow scheduling in heterogeneous multi-cloud computing environments, Mohammadzadeh
and Masdari proposed HGSOA-GOA (Hybrid Grass-hopper Swarm Optimization Algorithm - Grasshopper
Optimization Algorithm), which successfully combines the strengths of the Seagull Optimization Algorithm (SOA)
and GOA. The introduction of chaotic maps, which take the place of conventional random number generation
to better explore the solution space and prevent local optima, is a significant advance. The proposed algorithm
additionally uses a knee-point approach for Pareto front solution selection.(30)

To effectively plan scientific workflows in cloud computing environments, Li et al.(30) presented the PSO+LOA
strategy, a hybrid method that combines Particle Swarm Optimization (PSO) with the Lion Optimization
Algorithm (LOA). Evaluations showed that PSO+LOA outperformed other algorithms by maintaining consistent
performance and obtaining an appropriate balance between exploration and exploitation, particularly in
large-scale processes. This balance makes it a better option for process scheduling since it delays premature
convergence and improves convergence accuracy.(31)

A new heuristic named Cost and Makespan Scheduling of Workflows in Clouds (CMSWC) was introduced
by Han et al.(31) to effectively minimize these two objectives at the same time. Several major issues with
workflow scheduling in cloud computing systems are addressed by the CMSWC heuristic. The improvements
include a two-phase scheduling strategy that consists of resource selection and task prioritization. This strategy
increases computing performance by reducing the search space by concentrating only on pertinent leased
virtual machines. Additionally, CMSWC incorporates a shift-based density estimation (SDE) technique into the
crowding distance calculation to enhance the non-dominated solution selection process while successfully
balancing variety and con-vergence.(32)

The Improved Many-Objective Particle Swarm Optimization (I_MaOPSO) algorithm was proposed by
Saeedi et al.(32) and successfully addresses the difficulties associated with many-objective optimization. Four
competing objectives are the main focus of I_MaOPSO: minimizing cost, Makespan, and energy consumption
while optimizing reliability.(33) The complexity of many-objective optimization problems (MaOPs), which are
frequently disregarded in the literature currently under publication, can be handled by I_MaOPSO thanks to this
capacity. The HyperVolume (HV) metric showed substantial improvements, with the I_MaOPSO achieving up to
262 % higher HV than its equivalents, demonstrating its superior capacity to produce a variety of high-quality
solutions.

Wu et al.(34) proposed several significant improvements to optimize the scheduling of large-scale scientific
workflows on cloud platforms. One of these is the DAG Splitting Method, which splits and merges the directed
acyclic graph (DAG) of tasks into independent task sets to preprocess the DAG of tasks, allowing for concurrent
execution and optimizing the use of multi-vCPU virtual machines (VMs). The study shows that scheduling large-
scale scientific workflows on cloud platforms is much improved by the COM-SE framework, which combines the
DAG splitting method with the TOID algorithm.

Despite the effectiveness of reviewed methods, several notable drawbacks and weaknesses can be identified
that could limit the overall performance in applications of scheduling large and extra-large workflows. Detailed
further in table 1, are some of the highlighted weaknesses of several reviewed literatures. Evaluated workflows
varies significantly from one study to another. Number of reviewed articles utilized established and publicly
available workflows in WorkflowSim while others independently generated their own workflows.

Table 1. Summary of weaknesses and limitations of the reviewed literatures.
Ref. Workflow Weaknesses
(22) Workflow datasets (50, 100,

1000)
Large number of population (120), and high number of optimization iterations;
nx3x103, where n is the number of tasks in workflow.
High computational overhead due to multiple components and strategies in the
proposed method.
The number of VMs was not reported in the study.

(23) Workflow datasets (30, 50, 100),
Independent tasks (109-2388)

The number of VMs is relatively high―40―in comparison to the number of tasks
in the evaluated workflows tasks.

Data and Metadata. 2025; 4:1000 4

https://doi.org/10.56294/dm20251000

Only small workflows were evaluated limiting the replicability of results and
performance assessment for large workflows.
Tasks and VM allocation algorithms limit scalability in large cloud environments.

(24) Independent tasks (100-1000) High computational complexity, > 3000 evaluation of fitness function.
Limited assessment of proposed approach and unjustified number of VMs (5-
150) in comparison to number of evaluated tasks.

(27) Workflow datasets (50-1000),
Independent tasks

The initial scheduling phase relies heavily on static information of available
workflow and cloud resources. This can lead to suboptimal solution in extensive
large-scale workflows.
Computational overhead increased dramatically in dynamic scheduling phase of
large-scale workflow due to continuous monitoring of resources and adjustment
of scheduling decisions.

(28) Workflow datasets (30-1000) Number of VMs and Makespan were not reported.
Hybrid population initialization is computationally complex and parameters
sensitive.
Point-based clustering technique to enhance solution exploration is workflow
dependent. Thus, poor clustering performance can result in inefficient
exploration behavior.

(29) Workflow datasets (30-1000) Proposed novel random start-end genetic crossover and mutation operations is
highly dependent on workflow, thus, potentially limiting algorithm performance
especially for large-scale workflows.
High computational complexity and overhead due to single-swarm optimization
algorithm (PSO+GA), crossover, mutation, and sophisticated encoding scheme.

(32) Workflow datasets (30-100),
Independent tasks

Number of is not given in the study, and resources are considered to be
infinitely available.
Narrowing search space through iterative heuristics during initial phase risks
exclusion of resources and potentially lead to overlook tasks mapping to cloud
resources.
Shift-based density estimation and elitist study strategies are dependent on
rank of solutions, and are prone to high computational overhead in large and
real-time scheduling applications.

(34) Independent tasks (100-1000) The performance of the proposed approach is reliant on the tasks dependency
analysis and splitting of DAG file into smaller tasks sequences, complex
workflows can potentially lead to suboptimal scheduling solution.
The proposed scheduling optimization approach is not suitable for extra-large
dynamic workflows and cloud environment, where real-time adjustments and
rescheduling of tasks are necessary.

Workflow Model Representation
Scientific workflows are organized sets of tasks used in studies to assess how well task scheduling algorithms

perform in cloud settings. Usually, Directed Acyclic Graphs (DAGs) with nodes and edges are used to depict
these workflows. Within the workflow, each node represents a task or computing step, and the edges indicate
the dependencies among the tasks. An edge connecting Task A to Task B, for example, signifies that Task B
depends on Task A and cannot begin until Task A is completed.(35,36) Consider a workflow W where there are n
number of tasks; T is a set of all tasks defined as T={T1, T2, T3,…..,Tn}.

Figure 1. Steps of scheduling scientific tasks from DAG file to available Cloud virtual resources in WorkflowSim

https://doi.org/10.56294/dm20251000

 5 Hameed S, et al

https://doi.org/10.56294/dm20251000

https://doi.org/10.56294/dm20251000

Tasks are connected through edges Ei=(Ti,Tj) t, where E={E1, E2, E3,…….,Ee}. Each task T constitutes the
list of tasks in a workflow with a list of dependencies that are predecessor to T denoted as pred(T), and a list
of successor tasks that are dependent on the T itself defined as succ(T). However, workflow entry tasks are
described as the list of tasks with pred(T)= ∅ while workflow exit tasks are tasks with succ(T)=∅. The length of
the specified workflow W determines the number of tasks T, and the user-cloud service agreement determines
the length of the resources list. The processes for scheduling scientific workflow on available cloud resources
are shown in figure 1. The tasks list is created from the DAG file and then mapped to the available resources by
the Cloud Scheduler following scheduling optimization.

Makespan
Makespan is the total amount of time needed to complete all of the tasks in a specific workflow. In the case

of workflow G=(T,E), where T is a sequence or collection of dependent or independent tasks represented by
the notation T={T1, T2, T3,….., Tn}, where n is the number of tasks in a workflow. E is a set that describes the
relationships or dependencies between each task in the workflow. The complete execution time CÊ for a given
task Ti is then calculated as the sum of execution time for Ê(Ti) detailed as follow:

CÊ𝑇𝑇𝑇𝑇 = (∑ Ê𝑛𝑛
𝑖𝑖=1 (𝑇𝑇𝑖𝑖) (1)

µ = 𝑚𝑚𝑚𝑚𝑚𝑚(CÊⱯ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) (2)

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = Ê(𝑇𝑇𝑖𝑖𝑖𝑖) ∗ γj (3)

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (4)

Š(𝑇𝑇𝑖𝑖) = ∑ 𝑂𝑂𝑂𝑂𝑗𝑗𝑛𝑛
𝑗𝑗=1 (5)

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (Š(𝑇𝑇𝑖𝑖)/ 𝑆𝑆𝑆𝑆𝑚𝑚𝑗𝑗) ∗ Ɠ𝑗𝑗 (6)

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (7)

ᵬ(𝑇𝑇𝑖𝑖) = ∑ 𝐼𝐼𝐼𝐼𝑗𝑗𝑛𝑛
𝑗𝑗=1 (8)

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (ᵬ(𝑇𝑇𝑖𝑖)/ 𝐵𝐵𝐵𝐵𝑚𝑚𝑗𝑗) ∗ ₿𝑗𝑗 (9)

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (10)

𝐹𝐹 = { 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(µ(𝑺𝑺))
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑺𝑺)) (11)

𝐹𝐹 = (𝑤𝑤1 ∗ µ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑤𝑤2 ∗ Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 (12)

𝑋𝑋𝑐𝑐⃗⃗⃗⃗ = 𝜎𝜎𝑐𝑐⃗⃗ ⃗ × √𝑅𝑅 × cos𝜃𝜃 (13)

𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + (𝑎𝑎𝑐𝑐 ∗ (𝜎𝜎𝑐𝑐 − 𝑋𝑋𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ⊕ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (14)

𝑎𝑎𝑐𝑐 =
∑ √(𝜎𝜎𝑐𝑐⃗⃗⃗⃗ −𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗)
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛 (15)

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ~ 𝑢𝑢 = 𝑡𝑡−λ (1 < λ ≤ 3) (16)

Δ𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛹𝛹 (
√∑ (𝜎𝜎𝐸𝐸− 𝜎𝜎𝑖𝑖

𝑁𝑁)2𝐷𝐷
𝑖𝑖

𝑑𝑑) (17)

Where Ê refers to the required time for the completion of the mapped task Ti to resource VMj; hence,
Ê=length(Ti)/(PPvmj*PEj), where PPvmj is the capability or processing power of VMj (MIPS) and PEj is the
number of available processing cores for resource VMj. Therefore, Makespan µ for workflow is the maximum
running time:

CÊ𝑇𝑇𝑇𝑇 = (∑ Ê𝑛𝑛
𝑖𝑖=1 (𝑇𝑇𝑖𝑖) (1)

µ = 𝑚𝑚𝑚𝑚𝑚𝑚(CÊⱯ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) (2)

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = Ê(𝑇𝑇𝑖𝑖𝑖𝑖) ∗ γj (3)

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (4)

Š(𝑇𝑇𝑖𝑖) = ∑ 𝑂𝑂𝑂𝑂𝑗𝑗𝑛𝑛
𝑗𝑗=1 (5)

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (Š(𝑇𝑇𝑖𝑖)/ 𝑆𝑆𝑆𝑆𝑚𝑚𝑗𝑗) ∗ Ɠ𝑗𝑗 (6)

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (7)

ᵬ(𝑇𝑇𝑖𝑖) = ∑ 𝐼𝐼𝐼𝐼𝑗𝑗𝑛𝑛
𝑗𝑗=1 (8)

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (ᵬ(𝑇𝑇𝑖𝑖)/ 𝐵𝐵𝐵𝐵𝑚𝑚𝑗𝑗) ∗ ₿𝑗𝑗 (9)

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (10)

𝐹𝐹 = { 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(µ(𝑺𝑺))
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑺𝑺)) (11)

𝐹𝐹 = (𝑤𝑤1 ∗ µ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑤𝑤2 ∗ Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 (12)

𝑋𝑋𝑐𝑐⃗⃗⃗⃗ = 𝜎𝜎𝑐𝑐⃗⃗ ⃗ × √𝑅𝑅 × cos𝜃𝜃 (13)

𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + (𝑎𝑎𝑐𝑐 ∗ (𝜎𝜎𝑐𝑐 − 𝑋𝑋𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ⊕ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (14)

𝑎𝑎𝑐𝑐 =
∑ √(𝜎𝜎𝑐𝑐⃗⃗⃗⃗ −𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗)
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛 (15)

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ~ 𝑢𝑢 = 𝑡𝑡−λ (1 < λ ≤ 3) (16)

Δ𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛹𝛹 (
√∑ (𝜎𝜎𝐸𝐸− 𝜎𝜎𝑖𝑖

𝑁𝑁)2𝐷𝐷
𝑖𝑖

𝑑𝑑) (17)

Processing Cost
The processing cost of each virtual machine VM is predetermined and charged on pay-per-use basis for a

specific processing period. The time unit cost γj defined for resource VMj is multiplied by the execution time
of task T Ê(Ti) mapped on that resource. Hence, the processing cost for task Ti mapped to resource VMj is:

CÊ𝑇𝑇𝑇𝑇 = (∑ Ê𝑛𝑛
𝑖𝑖=1 (𝑇𝑇𝑖𝑖) (1)

µ = 𝑚𝑚𝑚𝑚𝑚𝑚(CÊⱯ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) (2)

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = Ê(𝑇𝑇𝑖𝑖𝑖𝑖) ∗ γj (3)

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (4)

Š(𝑇𝑇𝑖𝑖) = ∑ 𝑂𝑂𝑂𝑂𝑗𝑗𝑛𝑛
𝑗𝑗=1 (5)

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (Š(𝑇𝑇𝑖𝑖)/ 𝑆𝑆𝑆𝑆𝑚𝑚𝑗𝑗) ∗ Ɠ𝑗𝑗 (6)

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (7)

ᵬ(𝑇𝑇𝑖𝑖) = ∑ 𝐼𝐼𝐼𝐼𝑗𝑗𝑛𝑛
𝑗𝑗=1 (8)

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (ᵬ(𝑇𝑇𝑖𝑖)/ 𝐵𝐵𝐵𝐵𝑚𝑚𝑗𝑗) ∗ ₿𝑗𝑗 (9)

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (10)

𝐹𝐹 = { 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(µ(𝑺𝑺))
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑺𝑺)) (11)

𝐹𝐹 = (𝑤𝑤1 ∗ µ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑤𝑤2 ∗ Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 (12)

𝑋𝑋𝑐𝑐⃗⃗⃗⃗ = 𝜎𝜎𝑐𝑐⃗⃗ ⃗ × √𝑅𝑅 × cos𝜃𝜃 (13)

𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + (𝑎𝑎𝑐𝑐 ∗ (𝜎𝜎𝑐𝑐 − 𝑋𝑋𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ⊕ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (14)

𝑎𝑎𝑐𝑐 =
∑ √(𝜎𝜎𝑐𝑐⃗⃗⃗⃗ −𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗)
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛 (15)

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ~ 𝑢𝑢 = 𝑡𝑡−λ (1 < λ ≤ 3) (16)

Δ𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛹𝛹 (
√∑ (𝜎𝜎𝐸𝐸− 𝜎𝜎𝑖𝑖

𝑁𝑁)2𝐷𝐷
𝑖𝑖

𝑑𝑑) (17)

For a workflow comprised of n number of tasks, the processing cost can be determined as follows:

CÊ𝑇𝑇𝑇𝑇 = (∑ Ê𝑛𝑛
𝑖𝑖=1 (𝑇𝑇𝑖𝑖) (1)

µ = 𝑚𝑚𝑚𝑚𝑚𝑚(CÊⱯ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) (2)

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = Ê(𝑇𝑇𝑖𝑖𝑖𝑖) ∗ γj (3)

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (4)

Š(𝑇𝑇𝑖𝑖) = ∑ 𝑂𝑂𝑂𝑂𝑗𝑗𝑛𝑛
𝑗𝑗=1 (5)

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (Š(𝑇𝑇𝑖𝑖)/ 𝑆𝑆𝑆𝑆𝑚𝑚𝑗𝑗) ∗ Ɠ𝑗𝑗 (6)

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (7)

ᵬ(𝑇𝑇𝑖𝑖) = ∑ 𝐼𝐼𝐼𝐼𝑗𝑗𝑛𝑛
𝑗𝑗=1 (8)

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (ᵬ(𝑇𝑇𝑖𝑖)/ 𝐵𝐵𝐵𝐵𝑚𝑚𝑗𝑗) ∗ ₿𝑗𝑗 (9)

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (10)

𝐹𝐹 = { 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(µ(𝑺𝑺))
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑺𝑺)) (11)

𝐹𝐹 = (𝑤𝑤1 ∗ µ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑤𝑤2 ∗ Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 (12)

𝑋𝑋𝑐𝑐⃗⃗⃗⃗ = 𝜎𝜎𝑐𝑐⃗⃗ ⃗ × √𝑅𝑅 × cos𝜃𝜃 (13)

𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + (𝑎𝑎𝑐𝑐 ∗ (𝜎𝜎𝑐𝑐 − 𝑋𝑋𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ⊕ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (14)

𝑎𝑎𝑐𝑐 =
∑ √(𝜎𝜎𝑐𝑐⃗⃗⃗⃗ −𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗)
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛 (15)

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ~ 𝑢𝑢 = 𝑡𝑡−λ (1 < λ ≤ 3) (16)

Δ𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛹𝛹 (
√∑ (𝜎𝜎𝐸𝐸− 𝜎𝜎𝑖𝑖

𝑁𝑁)2𝐷𝐷
𝑖𝑖

𝑑𝑑) (17)

Storage Cost
This is defined as costs associated with the storage of data relevant to the currently executed task Ti on

resource VMj. The set of output files generated from task Ti in the workflow environment is defined in the
workflow XML file under the tag “output; therefore, output (Ti)={OF1, OF2, OF3,……OFn}. The storage required
for task Ti is then derived from the sum of the output file sizes of all task such that:

CÊ𝑇𝑇𝑇𝑇 = (∑ Ê𝑛𝑛
𝑖𝑖=1 (𝑇𝑇𝑖𝑖) (1)

µ = 𝑚𝑚𝑚𝑚𝑚𝑚(CÊⱯ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) (2)

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = Ê(𝑇𝑇𝑖𝑖𝑖𝑖) ∗ γj (3)

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (4)

Š(𝑇𝑇𝑖𝑖) = ∑ 𝑂𝑂𝑂𝑂𝑗𝑗𝑛𝑛
𝑗𝑗=1 (5)

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (Š(𝑇𝑇𝑖𝑖)/ 𝑆𝑆𝑆𝑆𝑚𝑚𝑗𝑗) ∗ Ɠ𝑗𝑗 (6)

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (7)

ᵬ(𝑇𝑇𝑖𝑖) = ∑ 𝐼𝐼𝐼𝐼𝑗𝑗𝑛𝑛
𝑗𝑗=1 (8)

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (ᵬ(𝑇𝑇𝑖𝑖)/ 𝐵𝐵𝐵𝐵𝑚𝑚𝑗𝑗) ∗ ₿𝑗𝑗 (9)

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (10)

𝐹𝐹 = { 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(µ(𝑺𝑺))
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑺𝑺)) (11)

𝐹𝐹 = (𝑤𝑤1 ∗ µ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑤𝑤2 ∗ Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 (12)

𝑋𝑋𝑐𝑐⃗⃗⃗⃗ = 𝜎𝜎𝑐𝑐⃗⃗ ⃗ × √𝑅𝑅 × cos𝜃𝜃 (13)

𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + (𝑎𝑎𝑐𝑐 ∗ (𝜎𝜎𝑐𝑐 − 𝑋𝑋𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ⊕ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (14)

𝑎𝑎𝑐𝑐 =
∑ √(𝜎𝜎𝑐𝑐⃗⃗⃗⃗ −𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗)
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛 (15)

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ~ 𝑢𝑢 = 𝑡𝑡−λ (1 < λ ≤ 3) (16)

Δ𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛹𝛹 (
√∑ (𝜎𝜎𝐸𝐸− 𝜎𝜎𝑖𝑖

𝑁𝑁)2𝐷𝐷
𝑖𝑖

𝑑𝑑) (17)

Where OFj refers to the jth output file for task Ti; the related storage cost for task Ti is then given as:

CÊ𝑇𝑇𝑇𝑇 = (∑ Ê𝑛𝑛
𝑖𝑖=1 (𝑇𝑇𝑖𝑖) (1)

µ = 𝑚𝑚𝑚𝑚𝑚𝑚(CÊⱯ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) (2)

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = Ê(𝑇𝑇𝑖𝑖𝑖𝑖) ∗ γj (3)

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (4)

Š(𝑇𝑇𝑖𝑖) = ∑ 𝑂𝑂𝑂𝑂𝑗𝑗𝑛𝑛
𝑗𝑗=1 (5)

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (Š(𝑇𝑇𝑖𝑖)/ 𝑆𝑆𝑆𝑆𝑚𝑚𝑗𝑗) ∗ Ɠ𝑗𝑗 (6)

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (7)

ᵬ(𝑇𝑇𝑖𝑖) = ∑ 𝐼𝐼𝐼𝐼𝑗𝑗𝑛𝑛
𝑗𝑗=1 (8)

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (ᵬ(𝑇𝑇𝑖𝑖)/ 𝐵𝐵𝐵𝐵𝑚𝑚𝑗𝑗) ∗ ₿𝑗𝑗 (9)

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (10)

𝐹𝐹 = { 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(µ(𝑺𝑺))
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑺𝑺)) (11)

𝐹𝐹 = (𝑤𝑤1 ∗ µ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑤𝑤2 ∗ Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 (12)

𝑋𝑋𝑐𝑐⃗⃗⃗⃗ = 𝜎𝜎𝑐𝑐⃗⃗ ⃗ × √𝑅𝑅 × cos𝜃𝜃 (13)

𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + (𝑎𝑎𝑐𝑐 ∗ (𝜎𝜎𝑐𝑐 − 𝑋𝑋𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ⊕ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (14)

𝑎𝑎𝑐𝑐 =
∑ √(𝜎𝜎𝑐𝑐⃗⃗⃗⃗ −𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗)
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛 (15)

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ~ 𝑢𝑢 = 𝑡𝑡−λ (1 < λ ≤ 3) (16)

Δ𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛹𝛹 (
√∑ (𝜎𝜎𝐸𝐸− 𝜎𝜎𝑖𝑖

𝑁𝑁)2𝐷𝐷
𝑖𝑖

𝑑𝑑) (17)

Where Svmj refers to the total available storage for resource VMj, while Gj is the related storage cost of
VMj. The task has no storage cost if output (Ti)= ∅. Equation 7 represents the total storage cost for n number
of tasks executed in a workflow.

CÊ𝑇𝑇𝑇𝑇 = (∑ Ê𝑛𝑛
𝑖𝑖=1 (𝑇𝑇𝑖𝑖) (1)

µ = 𝑚𝑚𝑚𝑚𝑚𝑚(CÊⱯ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) (2)

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = Ê(𝑇𝑇𝑖𝑖𝑖𝑖) ∗ γj (3)

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (4)

Š(𝑇𝑇𝑖𝑖) = ∑ 𝑂𝑂𝑂𝑂𝑗𝑗𝑛𝑛
𝑗𝑗=1 (5)

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (Š(𝑇𝑇𝑖𝑖)/ 𝑆𝑆𝑆𝑆𝑚𝑚𝑗𝑗) ∗ Ɠ𝑗𝑗 (6)

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (7)

ᵬ(𝑇𝑇𝑖𝑖) = ∑ 𝐼𝐼𝐼𝐼𝑗𝑗𝑛𝑛
𝑗𝑗=1 (8)

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (ᵬ(𝑇𝑇𝑖𝑖)/ 𝐵𝐵𝐵𝐵𝑚𝑚𝑗𝑗) ∗ ₿𝑗𝑗 (9)

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (10)

𝐹𝐹 = { 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(µ(𝑺𝑺))
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑺𝑺)) (11)

𝐹𝐹 = (𝑤𝑤1 ∗ µ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑤𝑤2 ∗ Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 (12)

𝑋𝑋𝑐𝑐⃗⃗⃗⃗ = 𝜎𝜎𝑐𝑐⃗⃗ ⃗ × √𝑅𝑅 × cos𝜃𝜃 (13)

𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + (𝑎𝑎𝑐𝑐 ∗ (𝜎𝜎𝑐𝑐 − 𝑋𝑋𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ⊕ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (14)

𝑎𝑎𝑐𝑐 =
∑ √(𝜎𝜎𝑐𝑐⃗⃗⃗⃗ −𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗)
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛 (15)

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ~ 𝑢𝑢 = 𝑡𝑡−λ (1 < λ ≤ 3) (16)

Δ𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛹𝛹 (
√∑ (𝜎𝜎𝐸𝐸− 𝜎𝜎𝑖𝑖

𝑁𝑁)2𝐷𝐷
𝑖𝑖

𝑑𝑑) (17)

Bandwidth Cost
In workflow environment, the amount of bandwidth needed for task Ti is determined by the number of input

files it has, which is defined as input input (Ti)={IF1, IF2, IF3,……IFn }. The needed bandwidth for task Ti is then
computed using equation 8 based on the sum of all task’s input file sizes because these tasks may or may not
require data transfer across the cloud infrastructure.

Data and Metadata. 2025; 4:1000 6

(6)

https://doi.org/10.56294/dm20251000

CÊ𝑇𝑇𝑇𝑇 = (∑ Ê𝑛𝑛
𝑖𝑖=1 (𝑇𝑇𝑖𝑖) (1)

µ = 𝑚𝑚𝑚𝑚𝑚𝑚(CÊⱯ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) (2)

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = Ê(𝑇𝑇𝑖𝑖𝑖𝑖) ∗ γj (3)

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (4)

Š(𝑇𝑇𝑖𝑖) = ∑ 𝑂𝑂𝑂𝑂𝑗𝑗𝑛𝑛
𝑗𝑗=1 (5)

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (Š(𝑇𝑇𝑖𝑖)/ 𝑆𝑆𝑆𝑆𝑚𝑚𝑗𝑗) ∗ Ɠ𝑗𝑗 (6)

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (7)

ᵬ(𝑇𝑇𝑖𝑖) = ∑ 𝐼𝐼𝐼𝐼𝑗𝑗𝑛𝑛
𝑗𝑗=1 (8)

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (ᵬ(𝑇𝑇𝑖𝑖)/ 𝐵𝐵𝐵𝐵𝑚𝑚𝑗𝑗) ∗ ₿𝑗𝑗 (9)

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (10)

𝐹𝐹 = { 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(µ(𝑺𝑺))
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑺𝑺)) (11)

𝐹𝐹 = (𝑤𝑤1 ∗ µ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑤𝑤2 ∗ Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 (12)

𝑋𝑋𝑐𝑐⃗⃗⃗⃗ = 𝜎𝜎𝑐𝑐⃗⃗ ⃗ × √𝑅𝑅 × cos𝜃𝜃 (13)

𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + (𝑎𝑎𝑐𝑐 ∗ (𝜎𝜎𝑐𝑐 − 𝑋𝑋𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ⊕ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (14)

𝑎𝑎𝑐𝑐 =
∑ √(𝜎𝜎𝑐𝑐⃗⃗⃗⃗ −𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗)
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛 (15)

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ~ 𝑢𝑢 = 𝑡𝑡−λ (1 < λ ≤ 3) (16)

Δ𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛹𝛹 (
√∑ (𝜎𝜎𝐸𝐸− 𝜎𝜎𝑖𝑖

𝑁𝑁)2𝐷𝐷
𝑖𝑖

𝑑𝑑) (17)

Where, IFj = jth input file for Ti. The associated bandwidth cost for Ti is determined using equation 9:

CÊ𝑇𝑇𝑇𝑇 = (∑ Ê𝑛𝑛
𝑖𝑖=1 (𝑇𝑇𝑖𝑖) (1)

µ = 𝑚𝑚𝑚𝑚𝑚𝑚(CÊⱯ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) (2)

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = Ê(𝑇𝑇𝑖𝑖𝑖𝑖) ∗ γj (3)

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (4)

Š(𝑇𝑇𝑖𝑖) = ∑ 𝑂𝑂𝑂𝑂𝑗𝑗𝑛𝑛
𝑗𝑗=1 (5)

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (Š(𝑇𝑇𝑖𝑖)/ 𝑆𝑆𝑆𝑆𝑚𝑚𝑗𝑗) ∗ Ɠ𝑗𝑗 (6)

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (7)

ᵬ(𝑇𝑇𝑖𝑖) = ∑ 𝐼𝐼𝐼𝐼𝑗𝑗𝑛𝑛
𝑗𝑗=1 (8)

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (ᵬ(𝑇𝑇𝑖𝑖)/ 𝐵𝐵𝐵𝐵𝑚𝑚𝑗𝑗) ∗ ₿𝑗𝑗 (9)

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (10)

𝐹𝐹 = { 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(µ(𝑺𝑺))
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑺𝑺)) (11)

𝐹𝐹 = (𝑤𝑤1 ∗ µ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑤𝑤2 ∗ Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 (12)

𝑋𝑋𝑐𝑐⃗⃗⃗⃗ = 𝜎𝜎𝑐𝑐⃗⃗ ⃗ × √𝑅𝑅 × cos𝜃𝜃 (13)

𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + (𝑎𝑎𝑐𝑐 ∗ (𝜎𝜎𝑐𝑐 − 𝑋𝑋𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ⊕ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (14)

𝑎𝑎𝑐𝑐 =
∑ √(𝜎𝜎𝑐𝑐⃗⃗⃗⃗ −𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗)
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛 (15)

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ~ 𝑢𝑢 = 𝑡𝑡−λ (1 < λ ≤ 3) (16)

Δ𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛹𝛹 (
√∑ (𝜎𝜎𝐸𝐸− 𝜎𝜎𝑖𝑖

𝑁𝑁)2𝐷𝐷
𝑖𝑖

𝑑𝑑) (17)

Where Bvmj = the available bandwidth for resource VMj, ₿j is the bandwidth cost of VMj. For a workflow
with n number of tasks, the total bandwidth cost can be written as:

CÊ𝑇𝑇𝑇𝑇 = (∑ Ê𝑛𝑛
𝑖𝑖=1 (𝑇𝑇𝑖𝑖) (1)

µ = 𝑚𝑚𝑚𝑚𝑚𝑚(CÊⱯ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) (2)

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = Ê(𝑇𝑇𝑖𝑖𝑖𝑖) ∗ γj (3)

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (4)

Š(𝑇𝑇𝑖𝑖) = ∑ 𝑂𝑂𝑂𝑂𝑗𝑗𝑛𝑛
𝑗𝑗=1 (5)

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (Š(𝑇𝑇𝑖𝑖)/ 𝑆𝑆𝑆𝑆𝑚𝑚𝑗𝑗) ∗ Ɠ𝑗𝑗 (6)

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (7)

ᵬ(𝑇𝑇𝑖𝑖) = ∑ 𝐼𝐼𝐼𝐼𝑗𝑗𝑛𝑛
𝑗𝑗=1 (8)

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (ᵬ(𝑇𝑇𝑖𝑖)/ 𝐵𝐵𝐵𝐵𝑚𝑚𝑗𝑗) ∗ ₿𝑗𝑗 (9)

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (10)

𝐹𝐹 = { 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(µ(𝑺𝑺))
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑺𝑺)) (11)

𝐹𝐹 = (𝑤𝑤1 ∗ µ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑤𝑤2 ∗ Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 (12)

𝑋𝑋𝑐𝑐⃗⃗⃗⃗ = 𝜎𝜎𝑐𝑐⃗⃗ ⃗ × √𝑅𝑅 × cos𝜃𝜃 (13)

𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + (𝑎𝑎𝑐𝑐 ∗ (𝜎𝜎𝑐𝑐 − 𝑋𝑋𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ⊕ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (14)

𝑎𝑎𝑐𝑐 =
∑ √(𝜎𝜎𝑐𝑐⃗⃗⃗⃗ −𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗)
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛 (15)

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ~ 𝑢𝑢 = 𝑡𝑡−λ (1 < λ ≤ 3) (16)

Δ𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛹𝛹 (
√∑ (𝜎𝜎𝐸𝐸− 𝜎𝜎𝑖𝑖

𝑁𝑁)2𝐷𝐷
𝑖𝑖

𝑑𝑑) (17)

Problem Formulation
Task scheduling optimization in a workflow environment primarily aims at determining the optimal task

scheduling solution S in a manner that efficiently maps {(Ti, VMj)┤| Ti ∈W, VMj∈Dk, i, j, k≤n, m, z} a given
workflow W with n number of tasks T={T1, T2, T3,……,Tn} to a heterogeneous array of m resources C={VM1,
VM2, VM3,……,VMm } from z number of data centers while maintaining several SLA parameters and satisfying
user-defined objectives. The optimal solution S in this study is evaluated using three main parameters which
are Makespan, data costs (storage and bandwidth), and processing cost. The objective function proposed in this
work is further refined as follows:

CÊ𝑇𝑇𝑇𝑇 = (∑ Ê𝑛𝑛
𝑖𝑖=1 (𝑇𝑇𝑖𝑖) (1)

µ = 𝑚𝑚𝑚𝑚𝑚𝑚(CÊⱯ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) (2)

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = Ê(𝑇𝑇𝑖𝑖𝑖𝑖) ∗ γj (3)

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (4)

Š(𝑇𝑇𝑖𝑖) = ∑ 𝑂𝑂𝑂𝑂𝑗𝑗𝑛𝑛
𝑗𝑗=1 (5)

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (Š(𝑇𝑇𝑖𝑖)/ 𝑆𝑆𝑆𝑆𝑚𝑚𝑗𝑗) ∗ Ɠ𝑗𝑗 (6)

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (7)

ᵬ(𝑇𝑇𝑖𝑖) = ∑ 𝐼𝐼𝐼𝐼𝑗𝑗𝑛𝑛
𝑗𝑗=1 (8)

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (ᵬ(𝑇𝑇𝑖𝑖)/ 𝐵𝐵𝐵𝐵𝑚𝑚𝑗𝑗) ∗ ₿𝑗𝑗 (9)

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (10)

𝐹𝐹 = { 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(µ(𝑺𝑺))
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑺𝑺)) (11)

𝐹𝐹 = (𝑤𝑤1 ∗ µ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑤𝑤2 ∗ Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 (12)

𝑋𝑋𝑐𝑐⃗⃗⃗⃗ = 𝜎𝜎𝑐𝑐⃗⃗ ⃗ × √𝑅𝑅 × cos𝜃𝜃 (13)

𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + (𝑎𝑎𝑐𝑐 ∗ (𝜎𝜎𝑐𝑐 − 𝑋𝑋𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ⊕ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (14)

𝑎𝑎𝑐𝑐 =
∑ √(𝜎𝜎𝑐𝑐⃗⃗⃗⃗ −𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗)
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛 (15)

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ~ 𝑢𝑢 = 𝑡𝑡−λ (1 < λ ≤ 3) (16)

Δ𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛹𝛹 (
√∑ (𝜎𝜎𝐸𝐸− 𝜎𝜎𝑖𝑖

𝑁𝑁)2𝐷𝐷
𝑖𝑖

𝑑𝑑) (17)

	
Weights are commonly used in optimization fitness functions to determine the relative importance of different

objectives or criteria. Depending on user preference and workflow characteristics including task dependencies,
topology, number of tasks, and data costs, weight values can be adjusted accordingly. In addition, the weights
technique provides a way to resolve conflicting objectives. For example, it can be used to balance the trade-
off between processing cost and execution time minimization. The optimization fitness function that has been
suggested is expressed using equation 2, 4, 7, and 10 as follows:

CÊ𝑇𝑇𝑇𝑇 = (∑ Ê𝑛𝑛
𝑖𝑖=1 (𝑇𝑇𝑖𝑖) (1)

µ = 𝑚𝑚𝑚𝑚𝑚𝑚(CÊⱯ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) (2)

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = Ê(𝑇𝑇𝑖𝑖𝑖𝑖) ∗ γj (3)

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (4)

Š(𝑇𝑇𝑖𝑖) = ∑ 𝑂𝑂𝑂𝑂𝑗𝑗𝑛𝑛
𝑗𝑗=1 (5)

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (Š(𝑇𝑇𝑖𝑖)/ 𝑆𝑆𝑆𝑆𝑚𝑚𝑗𝑗) ∗ Ɠ𝑗𝑗 (6)

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (7)

ᵬ(𝑇𝑇𝑖𝑖) = ∑ 𝐼𝐼𝐼𝐼𝑗𝑗𝑛𝑛
𝑗𝑗=1 (8)

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (ᵬ(𝑇𝑇𝑖𝑖)/ 𝐵𝐵𝐵𝐵𝑚𝑚𝑗𝑗) ∗ ₿𝑗𝑗 (9)

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (10)

𝐹𝐹 = { 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(µ(𝑺𝑺))
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑺𝑺)) (11)

𝐹𝐹 = (𝑤𝑤1 ∗ µ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑤𝑤2 ∗ Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 (12)

𝑋𝑋𝑐𝑐⃗⃗⃗⃗ = 𝜎𝜎𝑐𝑐⃗⃗ ⃗ × √𝑅𝑅 × cos𝜃𝜃 (13)

𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + (𝑎𝑎𝑐𝑐 ∗ (𝜎𝜎𝑐𝑐 − 𝑋𝑋𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ⊕ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (14)

𝑎𝑎𝑐𝑐 =
∑ √(𝜎𝜎𝑐𝑐⃗⃗⃗⃗ −𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗)
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛 (15)

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ~ 𝑢𝑢 = 𝑡𝑡−λ (1 < λ ≤ 3) (16)

Δ𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛹𝛹 (
√∑ (𝜎𝜎𝐸𝐸− 𝜎𝜎𝑖𝑖

𝑁𝑁)2𝐷𝐷
𝑖𝑖

𝑑𝑑) (17)

Where µworkflow and ⱯCostworkflow are the entire workflow’s Makespan and overall cost (ƿCost, ŠCost, ᵬCost); wi
is the optimization weight whereby w1+w2= 1 and wi∈[0,1].

Nomadic People OptimizeR (NPO)
The Nomadic People Optimizer is a parameter-free large-scale optimization algorithm; inspired by the social

and foraging habits of desert nomads. In NPO, the clan leader σc is the best solution within the clan, whereas σE
indicates the global best solution among all clans. A group of families(x), led by σ, is called a Clan(c). A variable
called Direction Ψ is utilized to guide Normal Leaders σN in the direction of the Best Leader σE.(37) Clan head σ is
responsible of finding suitable places for families to live when they are sent out to find new locations. He then
directs the redistributing of the clan’s families in a semicircular pattern around his tent. Given a family(i,j) (x),
where j is the number of families in the clan ci, the following formula is used to get the distribution of families
around leader σci:

CÊ𝑇𝑇𝑇𝑇 = (∑ Ê𝑛𝑛
𝑖𝑖=1 (𝑇𝑇𝑖𝑖) (1)

µ = 𝑚𝑚𝑚𝑚𝑚𝑚(CÊⱯ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) (2)

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = Ê(𝑇𝑇𝑖𝑖𝑖𝑖) ∗ γj (3)

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (4)

Š(𝑇𝑇𝑖𝑖) = ∑ 𝑂𝑂𝑂𝑂𝑗𝑗𝑛𝑛
𝑗𝑗=1 (5)

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (Š(𝑇𝑇𝑖𝑖)/ 𝑆𝑆𝑆𝑆𝑚𝑚𝑗𝑗) ∗ Ɠ𝑗𝑗 (6)

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (7)

ᵬ(𝑇𝑇𝑖𝑖) = ∑ 𝐼𝐼𝐼𝐼𝑗𝑗𝑛𝑛
𝑗𝑗=1 (8)

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (ᵬ(𝑇𝑇𝑖𝑖)/ 𝐵𝐵𝐵𝐵𝑚𝑚𝑗𝑗) ∗ ₿𝑗𝑗 (9)

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (10)

𝐹𝐹 = { 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(µ(𝑺𝑺))
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑺𝑺)) (11)

𝐹𝐹 = (𝑤𝑤1 ∗ µ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑤𝑤2 ∗ Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 (12)

𝑋𝑋𝑐𝑐⃗⃗⃗⃗ = 𝜎𝜎𝑐𝑐⃗⃗ ⃗ × √𝑅𝑅 × cos𝜃𝜃 (13)

𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + (𝑎𝑎𝑐𝑐 ∗ (𝜎𝜎𝑐𝑐 − 𝑋𝑋𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ⊕ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (14)

𝑎𝑎𝑐𝑐 =
∑ √(𝜎𝜎𝑐𝑐⃗⃗⃗⃗ −𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗)
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛 (15)

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ~ 𝑢𝑢 = 𝑡𝑡−λ (1 < λ ≤ 3) (16)

Δ𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛹𝛹 (
√∑ (𝜎𝜎𝐸𝐸− 𝜎𝜎𝑖𝑖

𝑁𝑁)2𝐷𝐷
𝑖𝑖

𝑑𝑑) (17)

Figure 2. NPO semicircle distribution of families(x) around Best Leader σE, Sheikh

https://doi.org/10.56294/dm20251000

 7 Hameed S, et al

https://doi.org/10.56294/dm20251000

https://doi.org/10.56294/dm20251000

The global search and exploration process begins when family(i,j) (x) is distributed around each of their
leaders σci. Families within each clan then actively and independently search for a better position that is away
from the existing local best solution σ. Every family is guided via a distinct search space based on the following
Levy flight formula):(37)

CÊ𝑇𝑇𝑇𝑇 = (∑ Ê𝑛𝑛
𝑖𝑖=1 (𝑇𝑇𝑖𝑖) (1)

µ = 𝑚𝑚𝑚𝑚𝑚𝑚(CÊⱯ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) (2)

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = Ê(𝑇𝑇𝑖𝑖𝑖𝑖) ∗ γj (3)

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (4)

Š(𝑇𝑇𝑖𝑖) = ∑ 𝑂𝑂𝑂𝑂𝑗𝑗𝑛𝑛
𝑗𝑗=1 (5)

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (Š(𝑇𝑇𝑖𝑖)/ 𝑆𝑆𝑆𝑆𝑚𝑚𝑗𝑗) ∗ Ɠ𝑗𝑗 (6)

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (7)

ᵬ(𝑇𝑇𝑖𝑖) = ∑ 𝐼𝐼𝐼𝐼𝑗𝑗𝑛𝑛
𝑗𝑗=1 (8)

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (ᵬ(𝑇𝑇𝑖𝑖)/ 𝐵𝐵𝐵𝐵𝑚𝑚𝑗𝑗) ∗ ₿𝑗𝑗 (9)

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (10)

𝐹𝐹 = { 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(µ(𝑺𝑺))
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑺𝑺)) (11)

𝐹𝐹 = (𝑤𝑤1 ∗ µ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑤𝑤2 ∗ Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 (12)

𝑋𝑋𝑐𝑐⃗⃗⃗⃗ = 𝜎𝜎𝑐𝑐⃗⃗ ⃗ × √𝑅𝑅 × cos𝜃𝜃 (13)

𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + (𝑎𝑎𝑐𝑐 ∗ (𝜎𝜎𝑐𝑐 − 𝑋𝑋𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ⊕ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (14)

𝑎𝑎𝑐𝑐 =
∑ √(𝜎𝜎𝑐𝑐⃗⃗⃗⃗ −𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗)
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛 (15)

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ~ 𝑢𝑢 = 𝑡𝑡−λ (1 < λ ≤ 3) (16)

Δ𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛹𝛹 (
√∑ (𝜎𝜎𝐸𝐸− 𝜎𝜎𝑖𝑖

𝑁𝑁)2𝐷𝐷
𝑖𝑖

𝑑𝑑) (17)

Where, Xi
new and Xi

old are the positions (new and old) of the current family, respectively; ac represent the
area currently occupied by families within a clan; it is determined as the average distance between families
and their respective leader σc as:

CÊ𝑇𝑇𝑇𝑇 = (∑ Ê𝑛𝑛
𝑖𝑖=1 (𝑇𝑇𝑖𝑖) (1)

µ = 𝑚𝑚𝑚𝑚𝑚𝑚(CÊⱯ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) (2)

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = Ê(𝑇𝑇𝑖𝑖𝑖𝑖) ∗ γj (3)

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (4)

Š(𝑇𝑇𝑖𝑖) = ∑ 𝑂𝑂𝑂𝑂𝑗𝑗𝑛𝑛
𝑗𝑗=1 (5)

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (Š(𝑇𝑇𝑖𝑖)/ 𝑆𝑆𝑆𝑆𝑚𝑚𝑗𝑗) ∗ Ɠ𝑗𝑗 (6)

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (7)

ᵬ(𝑇𝑇𝑖𝑖) = ∑ 𝐼𝐼𝐼𝐼𝑗𝑗𝑛𝑛
𝑗𝑗=1 (8)

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (ᵬ(𝑇𝑇𝑖𝑖)/ 𝐵𝐵𝐵𝐵𝑚𝑚𝑗𝑗) ∗ ₿𝑗𝑗 (9)

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (10)

𝐹𝐹 = { 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(µ(𝑺𝑺))
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑺𝑺)) (11)

𝐹𝐹 = (𝑤𝑤1 ∗ µ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑤𝑤2 ∗ Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 (12)

𝑋𝑋𝑐𝑐⃗⃗⃗⃗ = 𝜎𝜎𝑐𝑐⃗⃗ ⃗ × √𝑅𝑅 × cos𝜃𝜃 (13)

𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + (𝑎𝑎𝑐𝑐 ∗ (𝜎𝜎𝑐𝑐 − 𝑋𝑋𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ⊕ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (14)

𝑎𝑎𝑐𝑐 =
∑ √(𝜎𝜎𝑐𝑐⃗⃗⃗⃗ −𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗)
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛 (15)

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ~ 𝑢𝑢 = 𝑡𝑡−λ (1 < λ ≤ 3) (16)

Δ𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛹𝛹 (
√∑ (𝜎𝜎𝐸𝐸− 𝜎𝜎𝑖𝑖

𝑁𝑁)2𝐷𝐷
𝑖𝑖

𝑑𝑑) (17)

This implies that the steps towards exploring the search space are shortened by shorter distances between
families(x) and their leader σc, while steps towards exploring the search space are longer when families(x)
is far from the current local best solution, σc. This adaptive behavior guarantees quick convergence to local
optima and affects the efficiency of NPO exploration. Regarding the search direction specified in equation 14,
random walks with random steps based on levy distribution are produced using the efficient levy flight strategy
(equation 16). Comparing this strategy to other random approaches, its significantly increases steps length
allowed it to travel the search space more reliably. In equation 14, the entry-wise multiplication is indicated
by the product ⊕.

CÊ𝑇𝑇𝑇𝑇 = (∑ Ê𝑛𝑛
𝑖𝑖=1 (𝑇𝑇𝑖𝑖) (1)

µ = 𝑚𝑚𝑚𝑚𝑚𝑚(CÊⱯ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) (2)

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = Ê(𝑇𝑇𝑖𝑖𝑖𝑖) ∗ γj (3)

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (4)

Š(𝑇𝑇𝑖𝑖) = ∑ 𝑂𝑂𝑂𝑂𝑗𝑗𝑛𝑛
𝑗𝑗=1 (5)

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (Š(𝑇𝑇𝑖𝑖)/ 𝑆𝑆𝑆𝑆𝑚𝑚𝑗𝑗) ∗ Ɠ𝑗𝑗 (6)

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (7)

ᵬ(𝑇𝑇𝑖𝑖) = ∑ 𝐼𝐼𝐼𝐼𝑗𝑗𝑛𝑛
𝑗𝑗=1 (8)

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (ᵬ(𝑇𝑇𝑖𝑖)/ 𝐵𝐵𝐵𝐵𝑚𝑚𝑗𝑗) ∗ ₿𝑗𝑗 (9)

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (10)

𝐹𝐹 = { 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(µ(𝑺𝑺))
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑺𝑺)) (11)

𝐹𝐹 = (𝑤𝑤1 ∗ µ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑤𝑤2 ∗ Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 (12)

𝑋𝑋𝑐𝑐⃗⃗⃗⃗ = 𝜎𝜎𝑐𝑐⃗⃗ ⃗ × √𝑅𝑅 × cos𝜃𝜃 (13)

𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + (𝑎𝑎𝑐𝑐 ∗ (𝜎𝜎𝑐𝑐 − 𝑋𝑋𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ⊕ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (14)

𝑎𝑎𝑐𝑐 =
∑ √(𝜎𝜎𝑐𝑐⃗⃗⃗⃗ −𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗)
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛 (15)

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ~ 𝑢𝑢 = 𝑡𝑡−λ (1 < λ ≤ 3) (16)

Δ𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛹𝛹 (
√∑ (𝜎𝜎𝐸𝐸− 𝜎𝜎𝑖𝑖

𝑁𝑁)2𝐷𝐷
𝑖𝑖

𝑑𝑑) (17)

Fitness of each family(i,j) (x) is evaluated after a global search before selecting the best familyj (Xci
Best) from

each clan ci. If the familyj (Xci
Best) is better than a leader σci

N for clan ci, the clan leader is selected between the
best family and the leader of the clan in a manner that familyj (Xci

Best) will become the leader during the next
optimization step. Furthermore, the multi-swarm structure of NPO encourages exploration and exploitation,
not only within families of a single clan but also reaches out to involve the clan leaders through a method called
Meeting Room Approach (MRA), which reduces the likelihood of converging to local minima.(37) The normalized
distribution variance value between each leader and the most influential leader is determined for each leader
using the following expression:

CÊ𝑇𝑇𝑇𝑇 = (∑ Ê𝑛𝑛
𝑖𝑖=1 (𝑇𝑇𝑖𝑖) (1)

µ = 𝑚𝑚𝑚𝑚𝑚𝑚(CÊⱯ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) (2)

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = Ê(𝑇𝑇𝑖𝑖𝑖𝑖) ∗ γj (3)

ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ ƿ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (4)

Š(𝑇𝑇𝑖𝑖) = ∑ 𝑂𝑂𝑂𝑂𝑗𝑗𝑛𝑛
𝑗𝑗=1 (5)

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (Š(𝑇𝑇𝑖𝑖)/ 𝑆𝑆𝑆𝑆𝑚𝑚𝑗𝑗) ∗ Ɠ𝑗𝑗 (6)

Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ Š𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (7)

ᵬ(𝑇𝑇𝑖𝑖) = ∑ 𝐼𝐼𝐼𝐼𝑗𝑗𝑛𝑛
𝑗𝑗=1 (8)

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖) = (ᵬ(𝑇𝑇𝑖𝑖)/ 𝐵𝐵𝐵𝐵𝑚𝑚𝑗𝑗) ∗ ₿𝑗𝑗 (9)

ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = ∑ ᵬ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (10)

𝐹𝐹 = { 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(µ(𝑺𝑺))
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑺𝑺)) (11)

𝐹𝐹 = (𝑤𝑤1 ∗ µ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑤𝑤2 ∗ Ɐ𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 (12)

𝑋𝑋𝑐𝑐⃗⃗⃗⃗ = 𝜎𝜎𝑐𝑐⃗⃗ ⃗ × √𝑅𝑅 × cos𝜃𝜃 (13)

𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + (𝑎𝑎𝑐𝑐 ∗ (𝜎𝜎𝑐𝑐 − 𝑋𝑋𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ⊕ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (14)

𝑎𝑎𝑐𝑐 =
∑ √(𝜎𝜎𝑐𝑐⃗⃗⃗⃗ −𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗)
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛 (15)

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ~ 𝑢𝑢 = 𝑡𝑡−λ (1 < λ ≤ 3) (16)

Δ𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛹𝛹 (
√∑ (𝜎𝜎𝐸𝐸− 𝜎𝜎𝑖𝑖

𝑁𝑁)2𝐷𝐷
𝑖𝑖

𝑑𝑑) (17)

Where σE is the current best leader’s position in the meeting room, σi
N is the ith normal leader’s current

position in the meeting room, while d is the problem’s solution dimension. Then, the direction variable Ψ is
determined using the following relation:

𝛹𝛹 = { 1 if 𝑓𝑓(𝜎𝜎𝐸𝐸) ≥ 0
−1 otherwise (18)

𝜎𝜎𝑐𝑐
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ = 𝜎𝜎𝑐𝑐𝑁𝑁⃗⃗⃗⃗ ⃗ + Δ𝑃𝑃𝑃𝑃𝑃𝑃 (𝜎𝜎𝐸𝐸 − 𝜎𝜎𝑐𝑐

𝑁𝑁) ∗ 𝐼𝐼𝐼𝐼𝑡𝑡 (19)

𝑋𝑋𝑖𝑖
𝑡𝑡+1 = {𝑋𝑋𝑖𝑖

𝑡𝑡 + 𝑟𝑟1 × sin(𝑟𝑟2) × | 𝑟𝑟3 𝑃𝑃𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑖𝑖

𝑡𝑡|, 𝑖𝑖𝑖𝑖 𝑟𝑟4 < 0,5
𝑋𝑋𝑖𝑖

𝑡𝑡+ 𝑟𝑟1 × cos(𝑟𝑟2) × | 𝑟𝑟3 𝑃𝑃𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑖𝑖

𝑡𝑡|, 𝑖𝑖𝑖𝑖 𝑟𝑟4 ≥ 0,5 (20)

𝑣𝑣𝑖𝑖+1
𝑐𝑐 = {𝑣𝑣𝑖𝑖

𝑐𝑐 + 𝑟𝑟1 × sin(𝑟𝑟2) × 𝑟𝑟3 × 𝑣𝑣𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 , 𝑖𝑖𝑖𝑖 𝑟𝑟4 < 0,5

𝑣𝑣𝑖𝑖
𝑐𝑐 + 𝑟𝑟1 × cos(𝑟𝑟2) × 𝑟𝑟3 × 𝑣𝑣𝑖𝑖

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, 𝑖𝑖𝑖𝑖 𝑟𝑟4 ≥ 0,5
 (21)

Hence, the position of the leaders is updated as follows:
		

𝛹𝛹 = { 1 if 𝑓𝑓(𝜎𝜎𝐸𝐸) ≥ 0
−1 otherwise (18)

𝜎𝜎𝑐𝑐
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ = 𝜎𝜎𝑐𝑐𝑁𝑁⃗⃗⃗⃗ ⃗ + Δ𝑃𝑃𝑃𝑃𝑃𝑃 (𝜎𝜎𝐸𝐸 − 𝜎𝜎𝑐𝑐

𝑁𝑁) ∗ 𝐼𝐼𝐼𝐼𝑡𝑡 (19)

𝑋𝑋𝑖𝑖
𝑡𝑡+1 = {𝑋𝑋𝑖𝑖

𝑡𝑡 + 𝑟𝑟1 × sin(𝑟𝑟2) × | 𝑟𝑟3 𝑃𝑃𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑖𝑖

𝑡𝑡|, 𝑖𝑖𝑖𝑖 𝑟𝑟4 < 0,5
𝑋𝑋𝑖𝑖

𝑡𝑡+ 𝑟𝑟1 × cos(𝑟𝑟2) × | 𝑟𝑟3 𝑃𝑃𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑖𝑖

𝑡𝑡|, 𝑖𝑖𝑖𝑖 𝑟𝑟4 ≥ 0,5 (20)

𝑣𝑣𝑖𝑖+1
𝑐𝑐 = {𝑣𝑣𝑖𝑖

𝑐𝑐 + 𝑟𝑟1 × sin(𝑟𝑟2) × 𝑟𝑟3 × 𝑣𝑣𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 , 𝑖𝑖𝑖𝑖 𝑟𝑟4 < 0,5

𝑣𝑣𝑖𝑖
𝑐𝑐 + 𝑟𝑟1 × cos(𝑟𝑟2) × 𝑟𝑟3 × 𝑣𝑣𝑖𝑖

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, 𝑖𝑖𝑖𝑖 𝑟𝑟4 ≥ 0,5
 (21)

Where IT is the current optimization iteration while t is the total number of iterations. If the fitness value
is higher than the prior position, the newly derived position is retained; if not, the leader returns to its old
position. Compared to conventional single swarm methods, this exploration balance offers more efficiency by
improving convergence rates and speed.(37) The colored circles within each clan, as shown in figure 3, indicate
the optimal local solution, or σN.

Data and Metadata. 2025; 4:1000 8

https://doi.org/10.56294/dm20251000

Figure 3. NPO Meeting Room Approach (MRA)

Enhanced Nomadic People Optimizer
The limitations of the Nomadic People Optimizer algorithm were identified through conducting a series of

trail-and-error experiments, by varying the numbers of swarms (clans) in the population and number family(x)
in each clan ci, such as (5, 20), (10, 10), (20, 5). The findings led to the potential proposed improvements of
NPO algorithm. Two enhanced versions of NPO are presented in this study, detailed as follow:

Current Limitations
From the limitations identified in table 1 of the reviewed literatures, scheduling large and extra-large

workflows faces several challenges where the selection of appropriate scheduling optimization technique must
satisfy several criteria when applied for large-scale workflows. First and for most, the number of optimization
iterations and population size must be carefully selected; high numbers would lead to computational overhead.
Second, while heuristic and statistic resource mapping present several advantages in optimization of extensive
workflows scheduling as reviewed in section 2; such methods often result in suboptimal performance due to the
limited exploration of alternative solutions for large and dynamic solution space.

Further still, while useful for small workflows, heuristic methods also suffer from bias and premature
convergence. This is evident in several of the reviewed literatures where such issues are avoided as such
heuristic methods were only used in initial or sub-initial phase of the proposed scheduling technique. Moreover,
a recurring theme across reviewed literatures is the significant computational overhead and resource demands
associated with the proposed approaches that was overlooked when working with large-scale workflows.

Methods, such as weight vector and heuristic initialization, statistic resource mapping, DAG splitting, and
shift-based density estimation, are computationally demanding and can substantially increase when applied
to extensively large workflows. Large number of VMs and high performing virtual resources as per reviewed in
several work limits the assessment and performance generalizability of the proposed methods when adopted
for large-scale workflows.

When scheduling large-scale workflows, scalability is paramount. As workflows scale up, the complexity of
the optimization problem at hand increase exponentially. Efficient scalable scheduling algorithm in this context
entails reduced computational complexity, strong exploration-exploitation of search space, and less dependent
on the characteristics of workflow at hand.

Efficient large-scale workflow task scheduling algorithm should efficiently allocate tasks to available cloud
resource independently of workflow characteristics, less prone to local minima through strong exploration-
exploitation, and can performed with acceptable computational complexity.

Proposed Hybrid Sine-Cosine Meeting Room (QNPO)
Given the strong exploration-exploitation of NPO, fast convergence, enhanced search space exploration,

and less computational resource requirements, NPO satisfy most of the reviewed challenges in the previous
section. However, and from evaluation assessment of multiple extra-large workflows, NPO performance can be
furtherly enhanced. Sine-Cosine is a novel population-based optimization algorithm (SCA) proposed by Seyedali
Mirjalili that leverage the exploration-exploitation of search space using sine and cosine functions.(38)

Movements of solutions in population are dictated by the dual sine-cosine functions and four adaptive
variables help SCA to avoid local optima and converged quickly to global optimum solution. The exploration and
exploitation behavior of SCA is explained through the following two equations:(38)

https://doi.org/10.56294/dm20251000

 9 Hameed S, et al

https://doi.org/10.56294/dm20251000

https://doi.org/10.56294/dm20251000

𝛹𝛹 = { 1 if 𝑓𝑓(𝜎𝜎𝐸𝐸) ≥ 0
−1 otherwise (18)

𝜎𝜎𝑐𝑐
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ = 𝜎𝜎𝑐𝑐𝑁𝑁⃗⃗⃗⃗ ⃗ + Δ𝑃𝑃𝑃𝑃𝑃𝑃 (𝜎𝜎𝐸𝐸 − 𝜎𝜎𝑐𝑐

𝑁𝑁) ∗ 𝐼𝐼𝐼𝐼𝑡𝑡 (19)

𝑋𝑋𝑖𝑖
𝑡𝑡+1 = {𝑋𝑋𝑖𝑖

𝑡𝑡 + 𝑟𝑟1 × sin(𝑟𝑟2) × | 𝑟𝑟3 𝑃𝑃𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑖𝑖

𝑡𝑡|, 𝑖𝑖𝑖𝑖 𝑟𝑟4 < 0,5
𝑋𝑋𝑖𝑖

𝑡𝑡+ 𝑟𝑟1 × cos(𝑟𝑟2) × | 𝑟𝑟3 𝑃𝑃𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑖𝑖

𝑡𝑡|, 𝑖𝑖𝑖𝑖 𝑟𝑟4 ≥ 0,5 (20)

𝑣𝑣𝑖𝑖+1
𝑐𝑐 = {𝑣𝑣𝑖𝑖

𝑐𝑐 + 𝑟𝑟1 × sin(𝑟𝑟2) × 𝑟𝑟3 × 𝑣𝑣𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 , 𝑖𝑖𝑖𝑖 𝑟𝑟4 < 0,5

𝑣𝑣𝑖𝑖
𝑐𝑐 + 𝑟𝑟1 × cos(𝑟𝑟2) × 𝑟𝑟3 × 𝑣𝑣𝑖𝑖

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, 𝑖𝑖𝑖𝑖 𝑟𝑟4 ≥ 0,5
 (21)

Where, Xi
t+1 is the updated position, Xi

t is the current position, and Pi
t is the global optimal solution. To

further understand the SCA exploitation-exploration of search space, figure 4 shows how the solution is derived
between two solutions in the search space.(38) Given the four primary parameters in equation 20, the value
of r1 determines the region of the next position, which could either fall between the current and destination
solution or outside.

The value of r2 sets the magnitude or length of movement toward or outward the destination solution. The
parameter r3 is a stochastic weight while r4 is a random value used to equally alternate between sine and
cosine functions. The details and equations of each of the parameters are defined by Bharathi et al.(38).

Figure 4. Illustration of Sine and Cosine and their effect on the exploration and exploitation of the next position

In comparison to other optimization algorithm, SCA was selected due to several reasons. First, the underlying
sine-cosine exploration-exploitation functions align with NPO semicircle distribution of families(x) around clan’s
leader σN, see equation 13. As such, prevents solution conflicts and search interruption towards global optimal
solution. Second, SCA requires less computational cost compared to many optimization algorithms.

Therefore, this study proposes Quick Nomadic People Optimizer (QNPO) with hybrid Sine-Cosine Meeting
Room Approach. SCA can enhance leaders’ search for better solutions without negatively effecting the search
direction and distribution of families in each individual clan. The introduction of SCA at this stage also permit
adaptive evaluation, the periodic reset and re-evaluation of meeting room serves as the interface between the
search for global optimal solution as well as local optimal solution in each clan. Improved solutions in SCA-MRA
are then refined and exploited in semicircle distribution and family search, see equation 13 and equation 14
respectively. Then, for every vi

c in σc
N, SCA sine-cosine dual functions can be rewritten as follow:

𝛹𝛹 = { 1 if 𝑓𝑓(𝜎𝜎𝐸𝐸) ≥ 0
−1 otherwise (18)

𝜎𝜎𝑐𝑐
𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ = 𝜎𝜎𝑐𝑐𝑁𝑁⃗⃗⃗⃗ ⃗ + Δ𝑃𝑃𝑃𝑃𝑃𝑃 (𝜎𝜎𝐸𝐸 − 𝜎𝜎𝑐𝑐

𝑁𝑁) ∗ 𝐼𝐼𝐼𝐼𝑡𝑡 (19)

𝑋𝑋𝑖𝑖
𝑡𝑡+1 = {𝑋𝑋𝑖𝑖

𝑡𝑡 + 𝑟𝑟1 × sin(𝑟𝑟2) × | 𝑟𝑟3 𝑃𝑃𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑖𝑖

𝑡𝑡|, 𝑖𝑖𝑖𝑖 𝑟𝑟4 < 0,5
𝑋𝑋𝑖𝑖

𝑡𝑡+ 𝑟𝑟1 × cos(𝑟𝑟2) × | 𝑟𝑟3 𝑃𝑃𝑖𝑖
𝑡𝑡 − 𝑋𝑋𝑖𝑖

𝑡𝑡|, 𝑖𝑖𝑖𝑖 𝑟𝑟4 ≥ 0,5 (20)

𝑣𝑣𝑖𝑖+1
𝑐𝑐 = {𝑣𝑣𝑖𝑖

𝑐𝑐 + 𝑟𝑟1 × sin(𝑟𝑟2) × 𝑟𝑟3 × 𝑣𝑣𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 , 𝑖𝑖𝑖𝑖 𝑟𝑟4 < 0,5

𝑣𝑣𝑖𝑖
𝑐𝑐 + 𝑟𝑟1 × cos(𝑟𝑟2) × 𝑟𝑟3 × 𝑣𝑣𝑖𝑖

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, 𝑖𝑖𝑖𝑖 𝑟𝑟4 ≥ 0,5
 (21)

In general, if moving normal leader σc

N (t) towards best leader σE (t) in meeting room didn’t improve
σc

N (t) solution, then move σc
N (t) using sine-cosine approach towards global best leader ever σE. Based on

meeting room approach illustrated in equation 19, and SCA dual sine-cosine functions given in equation 21, the
pseudocode of SCA-MRA can be detailed as follow (proposed improvement is highlighted in red):

Algorithm: enhanced Meeting Room Approach (SCA-MRA) in QNPO
1 Input: all Leaders σ
2 Output: best Leader Ever σE, Updated Positions for all Normal Leaders
3 Procedure:
4	 Determine the best leader ever as σE
5	 Determine the value of the direction variable Ψ via equation 18
6	 Calculate via ΔPos equation 17
7	 For each normal leader σc

N
8		 Move towards the best leader ever σE, via equation 19

Data and Metadata. 2025; 4:1000 10

https://doi.org/10.56294/dm20251000

9		 Calculate the fitness value for σc
new using the objective function

10		 If: the fitness σc
new is better than the previous σc

N, Then keep it
11		 Else:
12			 Generate r4
13			 If: r4 < 0,5:
14			 For each vi

c in σc
N:

Update r1, r2, r3 values
Apply sine function from equation 21 and generate σc

new

			 End For
15			 Else:
16			 For each vi

c in σc
N:

				 Update r1, r2, r3 values
Apply cosine function from equation 21 and generate σc

new

			 End For
17			 Calculate the fitness value for σc

new using the objective function
18			 If: the fitness of σc

new is better than the previous σc
N fitness, then keep it

19		 End For
20	 Return Best Leader Ever and other updates

Scientific Workflows
Current Limitations

The suggested algorithms’ scheduling enhancements are tested and verified on a variety of workflows in a
pre-configured cloud environment. With this approach, several test scenarios can be explored and a thorough
assessment of the algorithms can be obtained before their implementation in real-world cloud environment.
The Pegasus Workflow Generator is used to create scientific workflows from diverse scientific domains that
are available at the Pegasus Workflow Gallery. These workflows are uniquely structured and range in size from
small to large. The table below details only the large scientific workflows used in workflow task scheduling
optimization literatures.(39,40)

Table 2. Scientific workflow datasets

Dataset Name Domain/Type Number of Tasks

Montage Astronomy/Data-intensive 1000

CyberShake Earthquake science/Data and memory
intensive

1000

Epigenomics Bioinformatics/CPU-intensive 997

Inspiral (LIGO) Physics/CPU-intensive 1000

Sipht Bioinformatics/CPU-intensive 1000

In extra-large workflows, the number of tasks can extend into thousands. With limited availability of such
workflows, several research―including the reviewed articles―practically generate these workflows. However,
random tasks generation (i.e. independent tasks, see table 1: results in misleading performance evaluations
due to lack of consistency and control over generated tasks, in addition to limiting real-world applicability
and comparison to other scientific work.(23,24,34) On the other hand, studies such as(41,42) used Pegasus Workflow
Generator to engineer study-specific workflows.(43)

With structure customization, complex tasks relationship and dependencies, varied tasks required resources
(such as length, memory, and bandwidth), and tasks resources constraints, workflows that mimic real-world
applications can be created. While effective, such approach requires prerequisites such as design analysis of
problem at hand, workflow design (tasks dependencies, data flow, and resources allocation) which requires
strong background in systems architecture and cloud computing, and last, technical programming and tool
expertise.

Further still, the work of Arabnejad et al.(43), Wang et al.(44), and Li et al.(30) adopted merging approach of
several workflows to generate realistic synthetic “bag-of-tasks” from known scientific workflows respectively.
However, these studies did not consider the composition of more realistic heterogeneous workflows, and second,
the number of tasks in proposed synthetic workflows did exceed 4000 tasks. Reflecting on the increasing
complexity and scale of real-world cloud scenarios, such workflows can lead to suboptimal scheduling
assessment, and consequently, weak scheduling algorithms’ design.(45,46,47,48,49)

https://doi.org/10.56294/dm20251000

 11 Hameed S, et al

https://doi.org/10.56294/dm20251000

https://doi.org/10.56294/dm20251000

Proposed Synthetic Workflows
The synthetic workflows presented in this study are composed from either the same workflow type, i.e.

domain (table 2), single, or hybrid; heterogeneous, and with task length from ~3000-10000. The synthetic
workflows are presented in the form: TE-W-n (table 3), where W is the first letter of original workflows names,
n is the number of merged workflows, and E stands for extra-large workflow while T stands for type (S-Single,
H-Hybrid). For instance, the name HE-EIS-3 means that this synthetic workflow is Hybrid, Extra-Large, and
composed from three datasets, Epigenomics, Inspiral, and Sipht respectively. All synthetic extra-large workflows
are composed from large workflows and added during the simulation to WorkflowSim using the parameter
daxPaths according to their specific composition order detailed in table 3.

Table 3. The composition of extra-large and hybrid extra-large synthetic workflows

Workflow Name Composition Number of Tasks

Montage_1000 [SE-M-3, SE-M-5] 3000, 5000

CyberShake_1000 [SE-C-3, SE-C-5] 3000, 5000

Epigenomics_997 [SE-E-3, SE-E-5] 2991, 4985

Inspiral_1000 [SE-I-3, SE-I-5] 3000, 5000

Sipht_1000 [SE-S-3, SE-S-5] 3000, 5000

Epigenomics_997, Inspiral_1000, Montage_1000 [HE-EIM-3, HE-EIM-6] 3997, 5994

Inspiral_1000, Sipht_1000, CyberShake_1000 [HE-ISC-3, HE-ISC-6] 3000, 6000

Epigenomics_997, Inspiral_1000, Sipht_1000,
Montage_1000, CyberShake_1000

[HE-EISMC-5, HE-EISMC-10] 4997, 9994

RESULTS AND DISCUSSION
Simulation Environment

WorkflowSim, is an open-source simulator built on CloudSim with additional capabilities like workflow
modeling using Directed Acyclic Graphs (DAGs), was used to implement the suggested cloud infrastructure
and algorithms.(46,47) A computer system equipped with an AMD Ryzen 7-4800U processor and 16,0 GB of system
memory was used to implement all the simulations in this study. Table 4 details simulation environment
configurations.

The configuration of the simulation environment is crucial in assessing how well scheduling algorithms
perform. Performance evaluation is therefore influenced by wrongly configured hardware resources, such as
an erroneous CPU speed or an unsuitable distribution of virtual machines among cloud data centers. This can
result in inaccurate evaluations of the algorithms’ capacity for exploration and exploitation. The adopted
configuration and pricing model in this study matches the pricing structure of Amazon LightSail.(50,51,52,53,54)

Table 4. WorkflowSim cloud infrastructure configurations

Object Configuration Pricing in USD$

Number of VMs 18

Slow VMs VMs: 6, vCPU: 1000-1700 MIPS, vCores:
1, vMemory: 512-1024 MB, vBandwidth:
1024-2048 Mb/s, vStorage: 1024-2048 MB

vCPU: 0,13-0,23. vMemory: 0,1-0,12,
vBandwidth: 0,06-0,1, vStorage:
0,03-0,05

Balanced VMs VMs: 6, vCPU: 1100-2500 MIPS, vCores:
2, vMemory: 512-2048 MB, vBandwidth:
1024-3000 Mb/s, vStorage: 1024-2048 MB

vCPU: 0,2-0,3, vMemory: 0,1-0,15,
vBandwidth: 0,06-0,1, vStorage:
0,03-0,09

Fast VMs VMs: 6, vCPU: 2500-3000 MIPS, vCores:
4, vMemory: 1024-2500 MB, vBandwidth:
2048-3500, vStorage: 2048-4096 MB

vCPU: 0,4-0,8, vMemory: 0,12-0,15,
vBandwidth:0,13-0,19, vStorage:
0,05-0,12

Test Results of Large Scientific Workflows
First thorough assessment of proposed QNPO efficiency is performed on large scale scientific workflows.

Datasets (CyberShake, Epigenomics, Inspiral, Montage, and Sipht detailed in table2) are commonly used to
evaluate scheduling algorithms performance in cloud computing environment. The fitness value and two primary
evaluation metrics (ⱯCost and Makespan µ) depicted in table 5 and table 6 highlight the evaluation results of
five optimization algorithms-Particle Swarm Algorithm (PSO), Fire Fly Algorithm (FFA), Genetic Algorithm (GA),
NPO, and QNPO. Staring from the first three algorithms, it is evident that PSO consistently outperformed
FFA and GA across all workflows in terms of ⱯCost and µ. PSO relatively showed a balanced performance

Data and Metadata. 2025; 4:1000 12

https://doi.org/10.56294/dm20251000

between evaluation metrics. On the other hand, standard NPO algorithm showed nearly competitive results in
comparison to FFA and GA; but fell behind PSO in terms of both metrics.

Table 5. Best fitness values of five task scheduling optimization algorithms
for large scientific workflows

Dataset PSO FFA GA NPO QNPO

CyberShake 1199 1350 1372 1431 874

Epigenomics 178104 214935 221898 231914 143320

Inspiral 11865 13031 13381 13997 8867

Montage 651 685 693 720 438

Sipht 7095 10031 9271 10078 6441

Table 6. ⱯCost and µ of five task scheduling optimization algorithms for large scientific workflows

Dataset
PSO FFA GA NPO QNPO

ⱯCost µ ⱯCost µ ⱯCost µ ⱯCost µ ⱯCost µ

CyberShake 895 303 940 409 945 426 979 452 712 161

Epigenomics 136700 41403 155451 59484 156720 65177 159415 72499 116962 26358

Inspiral 8963 2902 9306 3724 9236 4144 9496 4501 7224 1642

Montage 464 186 477 208 473 219 485 235 347 91

Sipht 5722 1372 7072 2959 6695 2575 7030 3048 5315 1125

The proposed QNPO with hybrid Sine-Cosine meeting room approach led to significant improvements in
ⱯCost and µ compared to standard NPO. For instance, in CyberShake workflow, QNPO reduced ⱯCost by 27,3
% to 712 USD from NPO’s 979. Similarly, a significant decrease in µ of 64,4 % compared to NPO’s 452 seconds.
Moreover, and for the large data intensive Epigenomics workflow, QNPO reduced ⱯCost by 26,7 %, from 159
415 to 116 962 USD, and µ was reduced by 63,6 %, from 72 499 to 26 358 seconds. The reduction of µ can be
translated to approximately ~12,8 hours reduction in workflow execution time.

Latin Hypercube Sampling provided even greater enhancements to QNPO. Overall assessment of performance
metrics in Table 5 shows that the proposed QNPO considerably outperformed other algorithms with nearly ~10-40
% in terms of ⱯCost and µ. Hybrid SCA-MRA enhanced σc

N to lead and refined families(x) exploration-exploitation
of promising regions which facilitated fast convergence and discovery rate of global optimal solution.

Test Results of Extra-Large and Hybrid Extra-Large Synthetic Scientific Workflows
The second performance assessment of proposed QNPO is measured based on ten extra-large and six

hybrid extra-large proposed synthetic workflows and compared to PSO algorithm, the second-best performing
algorithm from table 6. On one hand, the synthetic complex extra-large workflows allow for scalability efficiency
assessment of how proposed approach can handle the expansion of problem size.

Table 7. Performance evaluation of PSO and QNPO task scheduling algo-
rithms on extra-large synthetic scientific workflows

Dataset
PSO QNPO

ⱯCost µ fitness ⱯCost µ fitness

SE-M-3 1459 578 2038 1042 273 1316

SE-M-5 2451 1020 3471 1856 415 2272

SE-C-3 2884 1164 4048 2066 589 2655

SE-C-5 4883 1941 6825 3612 792 4404

SE-E-3 472049 184366 656416 363755 74070 437825

SE-E-5 800819 300351 1101171 605687 131710 737398

SE-I-3 28794 11696 40490 21389 4760 26149

SE-I-5 48292 19921 68213 36209 7873 44083

SE-S-3 19477 7010 26488 15946 3487 19434

SE-S-5 34601 11521 46123 28589 5532 34122

https://doi.org/10.56294/dm20251000

 13 Hameed S, et al

https://doi.org/10.56294/dm20251000

https://doi.org/10.56294/dm20251000

From the results illustrated in table 8, QNPO showed similar improved task scheduling performance in terms
of ⱯCost and µ in comparison to PSO. Starting with first two CPU-intensive and one Data-intensive 3000 tasks
hybrid workflow, HE-EIM-3, QNPO significantly reduced ⱯCost by 11,7 % from 146 904 USD (PSO) to 129 781 USD,
and 11,7 % µ from 43 620 seconds to 27 378 seconds. When the number of tasks increased to 6000 tasks (four
CPU-intensive and two Data-intensive workflows), QNPO reduced ⱯCost by 20,6 %, saving more than 66 114$ in
scheduling costs, with substantial reduction of µ by 84,3 %, saving ~14,8 hours in execution time.

Table 8. Performance evaluation of PSO and QNPO task scheduling algorithms on
hybrid extra-large synthetic scientific workflows

Dataset
PSO QNPO

ⱯCost µ fitness ⱯCost µ fitness

HE-EIM-3 146904 43620 190524 129781 27378 157160

HE-EIM-6 320386 110956 431342 254272 57429 311701

HE-ISC-3 16927 6104 23031 13247 3141 16389

HE-ISC-6 34768 13352 48120 26653 5788 32441

HE-EISMC-5 161182 51674 212857 130752 32927 163679

HE-EISMC-10 350748 128082 478831 273270 59283 332553

For the second 3000 and 5000 tasks hybrid two CPU-intensive and one Data-intensive workflows, HE-ISC-3
(Inspiral, Sipht, and CyberShake), QNPO outperformed PSO in ⱯCost and µ by 21,7 % and 48,6 %, achieving a
substantial reduction of 3680$ and ~0,8 hours, respectively. Increasing the number of tasks to 6000 for HE-ISC-6
workflow, efficient scaling of QNPO achieved even higher improvements in comparison to HE-ISC-3.

QNPO reduced the ⱯCost by 23,3 %, and µ by 56,7 %. This can be translated in task scheduling optimization to
8115$ in execution cost savings and to ~7,5 hours reduction in execution time. This highlights the strong balance
between scheduling objectives ⱯCost and µ, rendering QNPO to be more suitable for complex, heterogeneous,
extra-large workflows.

Last, the evaluation of hybrid extra-large synthetic workflow—EISMC 5000 and 10 000—was necessary to
further investigate any optimization biases and scalability performance of QNPO. In practical applications of
task scheduling optimizations, cloud systems rarely process homogenous tasks, but rather, a diverse workload
that differ in processing and data requirements.

In other words, EISMC synthetic workflow aimed at creating real-world challenging scenario with multiple CPU
and Data intensive workflows. Moreover, and drawn from the limitations of reviewed literatures, researchers are
encouraged to follow this approach as it ensures accuracy, insightful evaluation and replicability of experiment.
In the HE-EISMC-5 workflow, QNPO in comparison to PSO reduced both ⱯCost and µ from 161 182$ to 130 752$,
and from 51 674 to 32 927 seconds.

A significant savings of 18,9 % and 36,3 %, respectively. Moreover, QNPO consistent performance achieved
more efficient results for HE-EISMC-10 (which consists of 10 000 tasks) with 22,1 % and 53,7 % improvements
for both objectives, ⱯCost and µ. In workflow scheduling optimization, such improvement is translated to
reduction of 77 478$ and ~19,1 hours in execution cost and time.

The consistent improvements observed in QNPO from the three rigorous evaluation scenarios largely
attributed to hybrid SCA-MRA. With minimum computational overhead and strong exploration-exploitation,
the proposed hybridization approach proven to be effective in balancing optimization objectives even for
extra-large complex hybrid workflows. The Sine-Cosine algorithm enhanced clans’ leaders to identify promising
search regions of the hybrid and large solution space.

CONCLUSIONS
Effective task scheduling algorithms of large-scale complex workflows poses several limitations and

challenges surrounding scheduling efficiency, scalability, and adaptability to heterogeneous workflows and cloud
resources. Moreover, computational complexity and weak exploration-exploitation from the several reviewed
articles particularly limit the scheduling efficiency of extra-large and hybrid workflows.

This study proposed enhanced Nomadic People Optimizer (NPO). QNPO consistently achieved a significant
reduction in scheduling optimization objectives, and , measured between 30-60 %. The SCA-MRA significantly
improved the clans’ leaders search granularity and convergence rate of global optimal solution while maintaining
good performance complexity.

BIBLIOGRAPHIC REFERENCES
1.	 Ullah A, Nawi NM, Ouhame S. Recent advancement in VM task allocation system for cloud computing:

Data and Metadata. 2025; 4:1000 14

https://doi.org/10.56294/dm20251000

review from 2015 to2021. Artificial intelligence review. 2022 Mar;55(3):2529-73.

2.	 Agbaegbu J, Arogundade OT, Misra S, Damaševičius R. Ontologies in cloud computing—review and future
directions. Future Internet. 2021 Nov 26;13(12):302.

3.	 Ghandour, O.; El Kafhali, S.; Hanini, M. Computing resources scalability performance analysis in cloud
computing data center. Journal of Grid Computing, 2023, 21, 61.

4.	 Loncar P, Loncar P. Scalable management of heterogeneous cloud resources based on evolution strategies
algorithm. IEEE access. 2022 Jun 24;10:68778-91.

5.	 Nanos I. Cloud Computing Adoption in Public Sector: A Literature Review about Issues, Models and
Influencing Factors. InBalkan Conference on Operational Research 2020 Sep 30 (pp. 243-250). Cham: Springer
International Publishing.

6.	 Ramchand K, Baruwal Chhetri M, Kowalczyk R. Enterprise adoption of cloud computing with application
portfolio profiling and application portfolio assessment. Journal of Cloud Computing. 2021 Jan 6;10(1):1.

7.	 González-San-Martín J, Cruz-Reyes L, Gómez-Santillán C, Fraire-Huacuja H, Rangel-Valdez N, Dorronsoro
B, Quiroz-Castellanos M. A Comprehensive Review of Task Scheduling Problem in Cloud Computing: Recent
Advances and Comparative Analysis. New Horizons for Fuzzy Logic, Neural Networks and Metaheuristics. 2024
May 22:299-313.

8.	 Hosseinzadeh M, Ghafour MY, Hama HK, Vo B, Khoshnevis A. Multi-objective task and workflow scheduling
approaches in cloud computing: a comprehensive review. Journal of Grid Computing. 2020 Sep;18(3):327-56.

9.	 Hosseini Shirvani M. A survey study on task scheduling schemes for workflow executions in cloud computing
environment: classification and challenges. The Journal of Supercomputing. 2024 May;80(7):9384-437.

10.	 Konjaang JK, Xu L. Multi-objective workflow optimization strategy (MOWOS) for cloud computing.
Journal of Cloud Computing. 2021 Jan 28;10(1):11.

11.	 Zhang Z, Xu C, Xu S, Huang L, Zhang J. Towards optimized scheduling and allocation of heterogeneous
resource via graph-enhanced EPSO algorithm. Journal of Cloud Computing. 2024 May 23;13(1):108.

12.	 Prity FS, Gazi MH, Uddin KA. A review of task scheduling in cloud computing based on nature-inspired
optimization algorithm. Cluster computing. 2023 Oct;26(5):3037-67.

13.	 Jalali Khalil Abadi Z, Mansouri N. A comprehensive survey on scheduling algorithms using fuzzy systems
in distributed environments. Artificial Intelligence Review. 2024 Jan;57(1):4.

14.	 Nayak J, Naik B, Jena AK, Barik RK, Das H. Nature inspired optimizations in cloud computing: applications
and challenges. Cloud computing for optimization: Foundations, applications, and challenges. 2018:1-26.

15.	 Bacanin N, Stoean C, Zivkovic M, Jovanovic D, Antonijevic M, Mladenovic D. Multi-swarm algorithm for
extreme learning machine optimization. Sensors. 2022 May 31;22(11):4204.

16.	 Zhang Y, Gong DW, Ding ZH. Handling multi-objective optimization problems with a multi-swarm
cooperative particle swarm optimizer. Expert Systems with Applications. 2011 Oct 1;38(11):13933-41.

17.	 Xia X, Tang Y, Wei B, Zhang Y, Gui L, Li X. Dynamic multi-swarm global particle swarm optimization.
Computing. 2020 Jul;102:1587-626.

18.	 Rani S, Suri PK. An efficient and scalable hybrid task scheduling approach for cloud environment.
International Journal of Information Technology. 2020 Dec;12(4):1451-7.

19.	 Khan MS, Santhosh R. Task scheduling in cloud computing using hybrid optimization algorithm. Soft
computing. 2022 Dec;26(23):13069-79.

https://doi.org/10.56294/dm20251000

 15 Hameed S, et al

https://doi.org/10.56294/dm20251000

https://doi.org/10.56294/dm20251000

20.	 Abd Aliwie AN. A Pragmatic Analysis of Wish Strategies Used by Iraqi EFL Learners. Salud, Ciencia y
Tecnología - Serie de Conferencias. 2024 Aug. 12 [cited 2024 Sep. 6];3:.1151. https://conferencias.ageditor.
ar/index.php/sctconf/article/view/1151

21.	 Aliwie, A.N.A., 2024. A Pragmatic Study of Irony in Dickens’ ‘A Tale of Two Cities’. Forum for Linguistic
Studies. 6(6): 147–161. DOI: https://doi.org/10.30564/fls.v6i6.7056

22.	 Abd Aliwie, A.N., 2025. A Pragmatic Analysis of Persuasive Arguments in the 2011–2020 US Presidential
Campaign Speeches. Forum for Linguistic Studies. 7(1): 480–494. DOI: https://doi.org/10.30564/fls.v7i1.7243

23.	 Abd Aliwie, A. N. (2025). Conversational Silence in Harold Pinter’s The Birthday Party: A Pragmatic
Perspective. International Journal of Arabic-English Studies. https://doi.org/10.33806/ijaes.v25i2.860

24.	 Al-Noori, B.S.M. Al-Mosawi, F.R.A.H. (2017). Investigating iraqi efl college students’ attitude towards
using cooperative learning approach in developing reading comprehension skill. Journal of Language Teaching
and Research., 8(6), . 1073–1080. DOI: http://dx.doi.org/10.17507/jltr.0806.07

25.	 Al Mosawi, F. R. A. H. (2018). Finger Family Collection YouTube Videos Nursery Rhymes Impact on Iraqi
EFL Pupils’ Performance in Speaking Skills. Opción: Revista de Ciencias Humanas y Sociales, (17), 452-474. ‏

26.	 Pasdar A, Lee YC, Almi’ani K. Hybrid scheduling for scientific workflows on hybrid clouds. Computer
Networks. 2020 Nov 9;181:107438.

27.	 Qin S, Pi D, Shao Z, Xu Y. Hybrid collaborative multi-objective fruit fly optimization algorithm for
scheduling workflow in cloud environment. Swarm and Evolutionary Computation. 2022 Feb 1;68:101008.

28.	 Hafsi H, Gharsellaoui H, Bouamama S. Genetically-modified multi-objective particle swarm optimization
approach for high-performance computing workflow scheduling. Applied soft computing. 2022 Jun 1;122:108791.

29.	 Mohammadzadeh A, Masdari M. Scientific workflow scheduling in multi-cloud computing using a hybrid
multi-objective optimization algorithm. Journal of Ambient Intelligence and Humanized Computing. 2023
Apr;14(4):3509-29.

30.	 Li H, Wang D, Canizares Abreu JR, Zhao Q, Bonilla Pineda O. PSO+ LOA: hybrid constrained optimization
for scheduling scientific workflows in the cloud. The Journal of Supercomputing. 2021 Nov;77:13139-65.

31.	 Han P, Du C, Chen J, Ling F, Du X. Cost and makespan scheduling of workflows in clouds using list
multiobjective optimization technique. Journal of Systems Architecture. 2021 Jan 1;112:101837.

32.	 Saeedi S, Khorsand R, Bidgoli SG, Ramezanpour M. Improved many-objective particle swarm optimization
algorithm for scientific workflow scheduling in cloud computing. Computers & Industrial Engineering. 2020 Sep
1;147:106649.

33.	 Wu H, Chen X, Song X, Zhang C, Guo H. Scheduling large-scale scientific workflow on virtual machines
with different numbers of vCPUs. The Journal of Supercomputing. 2021 Jan;77:679-710.

34.	 Wu Q, Ishikawa F, Zhu Q, Xia Y, Wen J. Deadline-constrained cost optimization approaches for workflow
scheduling in clouds. IEEE Transactions on Parallel and Distributed Systems. 2017 Aug 3;28(12):3401-12.

35.	 Anwar N, Deng H. A hybrid metaheuristic for multi-objective scientific workflow scheduling in a cloud
environment. Applied sciences. 2018 Mar 31;8(4):538.

36.	 Salih SQ, Alsewari AA. A new algorithm for normal and large-scale optimization problems: Nomadic
People Optimizer. Neural Computing and Applications. 2020 Jul;32(14):10359-86.

37.	 Mirjalili S. SCA: a sine cosine algorithm for solving optimization problems. Knowledge-based systems.
2016 Mar 15;96:120-33.

38.	 Bharathi S, Chervenak A, Deelman E, Mehta G, Su MH, Vahi K. Characterization of scientific workflows.

Data and Metadata. 2025; 4:1000 16

https://doi.org/10.56294/dm20251000
https://conferencias.ageditor.ar/index.php/sctconf/article/view/1151
https://conferencias.ageditor.ar/index.php/sctconf/article/view/1151
https://doi.org/10.30564/fls.v6i6.7056
https://doi.org/10.30564/fls.v7i1.7243
https://doi.org/10.33806/ijaes.v25i2.860
http://dx.doi.org/10.17507/jltr.0806.07

In2008 third workshop on workflows in support of large-scale science 2008 Nov 17 (pp. 1-10). IEEE.

39.	 Deelman E, Vahi K, Juve G, Rynge M, Callaghan S, Maechling PJ, Mayani R, Chen W, Da Silva RF, Livny
M, Wenger K. Pegasus, a workflow management system for science automation. Future Generation Computer
Systems. 2015 May 1;46:17-35.

40.	 Leong CP, Liew CS, Chan CS, Rehman MH. Optimizing workflow task clustering using reinforcement
learning. IEEE Access. 2021 Jul 30;9:110614-26.

41.	 Da Silva RF, Chen W, Juve G, Vahi K, Deelman E. Community resources for enabling research in distributed
scientific workflows. In2014 IEEE 10th international conference on e-science 2014 Oct 20 (Vol. 1, pp. 177-184).
IEEE.

42.	 Pegasus Workflow Generator. https://github.com/pegasus-isi/WorkflowGenerator (accessed on 15
January 2025).

43.	 Arabnejad V, Bubendorfer K, Ng B. Dynamic multi-workflow scheduling: A deadline and cost-aware
approach for commercial clouds. Future Generation Computer Systems. 2019 Nov 1;100:98-108.

44.	 Wang ZJ, Zhan ZH, Yu WJ, Lin Y, Zhang J, Gu TL, Zhang J. Dynamic group learning distributed particle
swarm optimization for large-scale optimization and its application in cloud workflow scheduling. IEEE
transactions on cybernetics. 2019 Sep 17;50(6):2715-29.

45.	 Chen W, Deelman E. Workflowsim: A toolkit for simulating scientific workflows in distributed
environments. In2012 IEEE 8th international conference on E-science 2012 Oct 8 (pp. 1-8). IEEE.

46.	 Calheiros RN, Ranjan R, Beloglazov A, De Rose CA, Buyya R. CloudSim: a toolkit for modeling and
simulation of cloud computing environments and evaluation of resource provisioning algorithms. Software:
Practice and experience. 2011 Jan;41(1):23-50.

47.	 Amazon LightSail Pricing Model. Available online: https://aws.amazon.com/lightsail/pricing/ (accessed
on 15 January 2025).

48.	 Abualigah L, Diabat A. A novel hybrid antlion optimization algorithm for multi-objective task scheduling
problems in cloud computing environments. Cluster Computing. 2021 Mar;24(1):205-23.

49.	 Behera I, Sobhanayak S. HTSA: A novel hybrid task scheduling algorithm for heterogeneous cloud
computing environment. Simulation Modelling Practice and Theory. 2024 Dec 1;137:103014.

50.	 Xia Y, Luo X, Yang W, Jin T, Li J, Xing L, Pan L. Dynamic variable analysis guided adaptive evolutionary
multi-objective scheduling for large-scale workflows in cloud computing. Swarm and Evolutionary Computation.
2024 Oct 1;90:101654.

51.	 Zaki, T.; Zeiträg, Y.; Neves, R.; Figueira, J.R. A Cooperative Coevolutionary Genetic Programming
Hyper-Heuristic for Multi-Objective Makespan and Cost Optimization in Cloud Workflow Scheduling. Computers
& Operations Research 2024, 1–17.

52.	 Mikram H, El Kafhali S, Saadi Y. HEPGA: A new effective hybrid algorithm for scientific workflow
scheduling in cloud computing environment. Simulation modelling practice and theory. 2024 Jan 1; 130:102864.

53.	 Li H, Tian L, Xu G, Abreu JR, Huang S, Chai S, Xia Y. Co-evolutionary and Elite learning-based bi-objective
Poor and Rich Optimization algorithm for scheduling multiple workflows in the cloud. Future Generation
Computer Systems. 2024 Mar 1;152:99-111.

54.	 Wu D, Wang X, Wang X, Huang M, Zeng R, Yang K. Multi-objective optimization-based workflow scheduling
for applications with data locality and deadline constraints in geo-distributed clouds. Future Generation
Computer Systems. 2024 Aug 1;157:485-98.

https://doi.org/10.56294/dm20251000

 17 Hameed S, et al

https://github.com/pegasus-isi/WorkflowGenerator
https://doi.org/10.56294/dm20251000

https://doi.org/10.56294/dm20251000

FINANCING
The authors did not receive financing for the development of this research.

CONFLICT OF INTEREST
The authors declare that there is no conflict of interest.

AUTHORSHIP CONTRIBUTION
Conceptualization: Saif Hameed, Ahmed Fakhfakh, Hend Marouane.
Formal analysis: Saif Hameed, Ahmed Fakhfakh, Hend Marouane.
Research: Saif Hameed.
Methodology: Saif Hameed, Hend Marouane, Sinan Salih.
Software: Saif Hameed, Sinan Salih.
Supervision: Ahmed Fakhfakh, Hend Marouane, Sinan Salih.
Drafting - original draft: Saif Hameed.
Writing - proofreading and editing: Hend Marouane, Sinan Salih.

Data and Metadata. 2025; 4:1000 18

https://doi.org/10.56294/dm20251000

