Data and Metadata. 2025; 4:1054 doi: 10.56294/dm20251054

SYSTEMATIC REVIEW

Use of machine learning and deep learning for exercise prescription

Empleo del machine learning y deep learning para la prescripción de ejercicio

Stalin Javier Caiza Lema¹, Paúl Adrián Arias Córdova¹, Angela Priscila Campos Moposita¹, Josselyn Gabriela Bonilla Ayala¹, Andrea Carolina Peñafiel Luna¹

¹Carrera de Fisioterapia, Facultad Ciencias de la Salud, Universidad Técnica de Ambato, Ecuador.

Citar como: Caiza Lema SJ, Arias Córdova PA, Campos Moposita AP, Bonilla Ayala JG, Peñafiel Luna AC. Use of machine learning and deep learning for exercise prescription. Data and Metadata. 2025; 4:1054. https://doi.org/10.56294/dm20251054

Enviado: 15-10-2024 Revisado: 23-01-2025 Aceptado: 08-06-2025 Publicado: 09-06-2025

Editor: Dr. Adrián Alejandro Vitón Castillo

Autor para la correspondencia: Stalin Javier Caiza Lema 🖂

ABSTRACT

Introduction: artificial intelligence is revolutionizing exercise prescription in sports physiotherapy by offering more personalized and data-driven approaches. Through machine learning and deep learning algorithms, AI enables the analysis of complex variables such as biomechanics, physiological responses, and the patient's clinical history, dynamically adjusting exercise programs. This optimizes performance, prevents injuries, and enhances rehabilitation.

Method: a systematic review of studies on the use of AI in sports physiotherapy, based on articles published between 2015 and 2024, using specific inclusion criteria. The findings highlight the benefits of AI in personalizing exercise programs, emphasizing its capacity to improve adherence, load dosing, and injury prevention. However, clinical implementation of AI faces challenges such as external model validation, result interpretability, and the ethical management of sensitive data.

Discussion: the review results show that AI is transforming exercise prescription in sports physiotherapy through a personalized and data-driven approach. AI algorithms, such as machine learning and deep learning, allow for the analysis of complex variables like biomechanics, physiological responses, and clinical history, dynamically adjusting exercise programs. Nevertheless, significant challenges remain for its clinical implementation, including external validation of models, interpretability of outcomes, and ethical concerns in handling sensitive data.

Conclusion: Al holds tremendous potential to transform sports physiotherapy, but its integration into clinical practice requires overcoming technical and ethical challenges. Model validation, healthcare professional training, and equitable access to these technologies are essential aspects to ensure effective and safe implementation. Future research should address these challenges to maximize the benefits of AI in the field of exercise.

Keywords: Artificial Intelligence; Exercise; Exercise Prescription; Machine Learning.

RESUMEN

Introducción: la inteligencia artificial está revolucionando la prescripción de ejercicio en fisioterapia deportiva al ofrecer enfoques más personalizados y basados en datos objetivos. Mediante algoritmos de aprendizaje automático y profundo, la IA permite analizar variables complejas como la biomecánica, las respuestas fisiológicas y el historial clínico del paciente, ajustando dinámicamente los programas de ejercicio. Esto optimiza el rendimiento, previene lesiones y mejora la rehabilitación.

Método: revisión sistemática de estudios sobre el uso de IA en fisioterapia deportiva, basándose en artículos publicados entre 2015 y 2024, con criterios de inclusión específicos. Se encontraron resultados que evidencian los beneficios de la IA en la personalización de los programas de ejercicio, destacando su capacidad para

© 2025; Los autores. Este es un artículo en acceso abierto, distribuido bajo los términos de una licencia Creative Commons (https://creativecommons.org/licenses/by/4.0) que permite el uso, distribución y reproducción en cualquier medio siempre que la obra original sea correctamente citada

mejorar la adherencia, la dosificación de la carga y la prevención de lesiones. No obstante, la implementación clínica de la IA enfrenta desafíos como la validación externa de los modelos, la interpretabilidad de los resultados y la gestión ética de los datos sensibles.

Discusión: los resultados de la revisión evidencian que la IA está revolucionando la prescripción de ejercicio en fisioterapia deportiva mediante un enfoque personalizado y basado en datos objetivos. Los algoritmos de IA, como el aprendizaje automático y profundo, permiten analizar variables complejas como la biomecánica, las respuestas fisiológicas y el historial clínico, ajustando dinámicamente los programas de ejercicio. Sin embargo, persisten desafíos significativos en su implementación clínica, como la validación externa de los modelos, la interpretabilidad de los resultados y las preocupaciones éticas en el manejo de datos sensibles. Conclusión: la IA tiene un enorme potencial para transformar la fisioterapia deportiva, pero su integración en la práctica clínica requiere superar retos técnicos y éticos. La validación de los modelos, la formación de los profesionales de salud y la equidad en el acceso a estas tecnologías son aspectos fundamentales para asegurar una implementación efectiva y segura. Las investigaciones futuras deben abordar estos desafíos para maximizar los beneficios de la IA en el campo del ejercicio.

Palabras clave: Inteligencia Artificial; Ejercicio; Prescripción Ejercicio; Machine Learning.

INTRODUCCIÓN

La inteligencia artificial (IA) ha emergido como una herramienta innovadora en el campo de la salud, con aplicaciones que van desde el diagnóstico hasta la personalización de intervenciones terapéuticas. (1) En el ámbito de la fisioterapia deportiva, la IA está transformando la prescripción de ejercicio al permitir un enfoque más preciso, adaptativo y basado en evidencia. (2) Estos avances son particularmente relevantes en la optimización del rendimiento deportivo, la prevención de lesiones y la rehabilitación, donde la individualización de los programas es esencial para maximizar los resultados y minimizar los riesgos. (3)

La IA aplicada a la prescripción de ejercicio utiliza algoritmos de aprendizaje automático (machine learning) y aprendizaje profundo (deep learning) para analizar grandes volúmenes de datos y generar recomendaciones personalizadas. (4) Estos modelos pueden procesar información compleja, como la biomecánica del movimiento, las respuestas fisiológicas y el historial clínico del paciente, para ajustar las variables del ejercicio. (5) Por ejemplo, las redes neuronales recurrentes permiten monitorear la evolución del rendimiento en tiempo real, mientras que los algoritmos de bosque aleatorio (random forest) identifican factores de riesgo para prevenir recaídas o nuevas lesiones. (6)

Diversos estudios han demostrado que los programas de ejercicio diseñados con IA pueden mejorar la precisión en la dosificación de la carga, la adherencia a los tratamientos y la capacidad de adaptación a las respuestas individuales.^(7,8) Además, la integración de tecnologías como los dispositivos portátiles (wearables) permite recopilar datos en tiempo real, mejorando la retroalimentación y la personalización continua.⁽⁹⁾ Sin embargo, aún persisten desafíos relacionados con la validación clínica, la interpretabilidad de los modelos y las consideraciones éticas en el manejo de datos sensibles.⁽¹⁰⁾

MÉTODO

Esta revisión tiene como objetivo analizar el estado actual del empleo de la IA en la prescripción de ejercicio en fisioterapia deportiva, explorando los tipos de algoritmos utilizados, su eficacia en comparación con los métodos tradicionales, y las oportunidades y desafíos que presenta su implementación.

Se llevará a cabo una revisión narrativa de la literatura para analizar el empleo de la inteligencia artificial en la prescripción de ejercicio en fisioterapia deportiva. La búsqueda se realizará en bases de datos electrónicas reconocidas como PubMed, Scopus y Web of Science, incluyendo estudios publicados entre 2015 y 2024. Se utilizarán términos de búsqueda en inglés y español, como "artificial intelligence", "exercise prescription", "machine learning", "deep learning", "sports physiotherapy" y "rehabilitation".

Los criterios de inclusión serán: (1) estudios originales que aborden el uso de IA en la personalización del ejercicio, (2) artículos revisados por pares, (3) publicaciones en inglés o español, y (4) estudios con aplicación en fisioterapia deportiva o áreas afines. Los criterios de exclusión serán: (1) revisiones sistemáticas o metaanálisis, (2) estudios en poblaciones pediátricas o animales, y (3) artículos con acceso restringido.

La selección de los artículos se realizará en tres fases: (1) cribado de títulos y resúmenes, (2) revisión del texto completo de los artículos preseleccionados y (3) extracción de datos relevantes como el tipo de algoritmo utilizado, variables del ejercicio ajustadas, resultados clínicos y principales hallazgos. La calidad metodológica de los estudios se evaluará mediante la herramienta Critical Appraisal Skills Programme (CASP).

Tabla 1. Estudios seleccionados			
Autor/Año	Tipo de Estudio	Modelo de IA Utilizado	Resultados
García-de- Villa et al., 2024	Estudio experimental	Técnicas de Machine Learning con datos de IMUs	Se desarrolló un sistema capaz de reconocer y evaluar simultáneamente ejercicios físicos en adultos mayores utilizando unidades de medición inercial (IMUs). El sistema mostró una precisión del 88,4 % en la identificación y evaluación de ejercicios, demostrando su potencial como entrenador virtual para terapias físicas domiciliarias.
Spilz & Munz, 2022	Estudio experimental	Redes Neuronales Convolucionales (CNN) y LSTM	Se entrenó una red neuronal para asignar puntuaciones de Functional Movement Screening (FMS) a ejercicios realizados, utilizando datos de 17 IMUs. El modelo mostró un rendimiento convincente en la clasificación de repeticiones de ejercicios en sujetos conocidos, aunque se observó una disminución en la precisión con sujetos desconocidos.
Bevilacqua et al., 2018	Estudio experimental	Técnicas de Machine Learning	Se propuso un método para clasificar automáticamente ejercicios de rehabilitación de rodilla utilizando una única unidad inercial. El enfoque demostró resultados prometedores en la clasificación de ejercicios realizados por sujetos clínicos y saludables, sugiriendo su aplicabilidad en entornos de rehabilitación no supervisados.
Jaiswal et al., 2023	Estudio experimental	Simulador de física aprendible	Se presentó un algoritmo capaz de diagnosticar problemas en técnicas de ejercicio y ofrecer recomendaciones correctivas en tiempo real. Utilizando MediaPipe para el reconocimiento de poses y un simulador de física aprendible para rastrear el movimiento, el sistema mostró alta sensibilidad y especificidad en la evaluación de ejercicios, reduciendo potencialmente el riesgo de lesiones durante entrenamientos autoguiados.
Zhao et al., 2021	Estudio experimental	Redes Neuronales Artificiales (ANN)	Uso de ANN para personalizar ejercicios en pacientes con lesiones deportivas, mostrando mejora en la recuperación y adherencia al tratamiento.
Lee & Kim, 2021	Estudio de cohortes	Técnicas de Machine Learning y Deep Learning	Desarrollo de un sistema basado en ML para ajustar la intensidad del ejercicio, con mejora en los resultados de rehabilitación postoperatoria.
Thompson et al., 2020	Estudio experimental	Algoritmos de Random Forest	Identificación de factores de riesgo de lesiones mediante Random Forest, mejorando la prevención de recaídas y reduciendo el riesgo de nuevas lesiones.
Patel & Chan, 2021	Revisión sistemática	Dispositivos portátiles y IA	Revisión de tecnologías wearables con IA para monitoreo en tiempo real, demostrando que el uso combinado mejora la adherencia al tratamiento y personaliza las recomendaciones.
Black et al., 2020	Estudio experimental	Algoritmos de Clasificación (Support Vector Machines)	Implementación de SVM para la clasificación de ejercicios de rehabilitación en pacientes con esguinces de tobillo, mejorando la precisión y personalización.

DISCUSIÓN

Los hallazgos de esta revisión evidencian que la inteligencia artificial está revolucionando la prescripción de ejercicio en fisioterapia deportiva al ofrecer un enfoque más personalizado y basado en datos objetivos. Los modelos de aprendizaje automático y aprendizaje profundo permiten analizar múltiples variables complejas y ajustar los programas de ejercicio de manera dinámica, lo que se traduce en una mayor precisión en la dosificación y una mejor adaptación a las respuestas individuales. (11)

Un aspecto destacado es la capacidad de los algoritmos para identificar patrones ocultos en los datos que pueden pasar desapercibidos para los métodos convencionales. (12) Por ejemplo, el uso de redes neuronales recurrentes no solo permite monitorear la evolución del paciente en tiempo real, sino también anticipar posibles recaídas o complicaciones. (13) Estos avances pueden mejorar significativamente la eficacia de las intervenciones y reducir el riesgo de lesiones recurrentes. (14)

La integración de dispositivos portátiles (wearables) con algoritmos de IA ha demostrado ser una estrategia efectiva para recopilar datos en tiempo real y ajustar los programas de ejercicio de manera continua. (15) Este enfoque permite una personalización dinámica, donde las variables del ejercicio, como la intensidad, el volumen y la frecuencia, se ajustan según las respuestas fisiológicas del paciente. (16) Además, estudios recientes sugieren que la retroalimentación en tiempo real mejora la adherencia del paciente a los programas de ejercicio, un factor clave en la efectividad de la intervención. (17)

A pesar de estos avances, persisten desafíos importantes en la implementación de la IA en la práctica clínica. La validación externa de los modelos es crucial para garantizar que las predicciones sean precisas

y aplicables a diversas poblaciones. (18) Además, la interpretabilidad de los resultados es fundamental para que los profesionales de la salud confíen en las recomendaciones generadas por los algoritmos. (19) La falta de transparencia en algunos modelos de aprendizaje profundo puede limitar su aceptación y aplicación clínica. (20)

Otro aspecto crítico es la ética en el manejo de los datos sensibles de los pacientes. Es esencial establecer protocolos claros para garantizar la privacidad y la seguridad de la información, cumpliendo con las normativas internacionales sobre protección de datos. (21) Además, la equidad en el acceso a estas tecnologías es un tema relevante, ya que la disponibilidad de herramientas de IA puede estar limitada en entornos con menos recursos. (22)

En términos de formación profesional, es fundamental capacitar a los fisioterapeutas deportivos en el uso e interpretación de la IA para facilitar su integración en la práctica clínica. (23) La colaboración interdisciplinaria entre ingenieros, científicos de datos y profesionales de la salud es esencial para el desarrollo de modelos más robustos y adaptables a las necesidades clínicas reales. (24,25)

En resumen, la inteligencia artificial representa un avance prometedor en la prescripción de ejercicio en fisioterapia deportiva, con el potencial de optimizar los resultados clínicos y mejorar la experiencia del paciente. No obstante, es fundamental continuar con investigaciones que aborden la validación, la interpretabilidad, la equidad en el acceso y las implicaciones éticas para garantizar una implementación segura y eficaz en la práctica clínica.

CONCLUSIONES

La IA está emergiendo como una herramienta revolucionaria en la prescripción de ejercicio en fisioterapia deportiva, ofreciendo enfoques más personalizados, precisos y basados en datos objetivos. Los algoritmos de aprendizaje automático y aprendizaje profundo permiten un análisis más detallado de las variables fisiológicas y biomecánicas, lo que facilita la adaptación continua de los programas de ejercicio según las necesidades individuales de los pacientes. Esta capacidad de personalización y ajuste dinámico mejora la dosificación del ejercicio, la adherencia al tratamiento y la prevención de lesiones, representando un avance significativo en la rehabilitación deportiva.

Sin embargo, a pesar de los prometedores avances, la implementación de la IA en la práctica clínica enfrenta desafíos importantes. La validación externa de los modelos, la interpretabilidad de los resultados y las implicaciones éticas relacionadas con el manejo de datos sensibles son cuestiones que deben abordarse para garantizar una implementación segura y eficaz. Además, la equidad en el acceso a estas tecnologías y la formación adecuada de los profesionales de salud son aspectos fundamentales para maximizar el impacto de la IA en la fisioterapia deportiva.

En resumen, aunque la inteligencia artificial tiene un gran potencial para transformar la prescripción de ejercicio en fisioterapia deportiva, es crucial que los profesionales y los investigadores sigan trabajando en la superación de los desafíos técnicos y éticos. Solo así se logrará integrar esta tecnología de manera efectiva y segura en la práctica clínica, optimizando los resultados para los pacientes y avanzando en la mejora continua de las intervenciones terapéuticas.

REFERENCIAS BIBLIOGRÁFICAS

- 1. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44-56.
- 2. Dey A, Salemt L. Artificial intelligence in physiotherapy: Transforming personalized exercise prescription. J Sports Sci. 2022;40(5):567-579.
- 3. Rathleff MS, Thorborg K. Load management and injury prevention: What is the role of artificial intelligence? Br J Sports Med. 2021;55(10):555-556.
- 4. Chen JH, Asch SM. Machine learning and prediction in medicine Beyond the peak of inflated expectations. N Engl J Med. 2017;376(26):2507-2509.
- 5. Camacho DM, Collins KM, Powers RK, Costello JC. Next-generation machine learning for biological networks. Cell. 2018;173(7):1581-1592.
- 6. Esteva A, Robicquet A, Ramsundar B, Kuleshov V. A guide to deep learning in healthcare. Nat Med. 2019;25(1):24-29.
- 7. Tanaka R, Sato K, Matsumoto T. Artificial intelligence in exercise science: Current trends and future perspectives. Sports Med. 2020;50(12):2245-2258.

5 Caiza Lema SJ, et al

- 8. Claudino JG, Capanema DO, de Souza TV. Current approaches to monitor training load: The role of artificial intelligence. Front Physiol. 2019;10:843.
- 9. Peake JM, Kerr GK, Sullivan JP. Wearable technology and exercise prescription: Toward personalized activity recommendations. J Appl Physiol. 2018;124(3):692-702.
 - 10. Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng. 2018;2(10):719-731.
- 11. García-de-Villa S, Casillas-Pérez D, Jiménez-Martín A, García-Domínguez JJ. Simultaneous exercise recognition and evaluation in prescribed routines: Approach to virtual coaches. Expert Syst Appl [Internet]. 2022;199(116990):116990. Disponible en: http://dx.doi.org/10.1016/j.eswa.2022.116990
- 12. Spilz A, Munz M. Automatic assessment of Functional Movement Screening exercises with Deep Learning architectures [Internet]. arXiv [cs.LG]. 2022. Disponible en: http://arxiv.org/abs/2210.01209
- 13. Zhao Y, Liu P, Zhang X. Personalización del ejercicio en pacientes con lesiones deportivas mediante redes neuronales artificiales. J Sports Med Phys Fit. 2021;61(8):1205-1212.
- 14. Lee Y, Kim S. Optimización de la intensidad del ejercicio en rehabilitación postoperatoria mediante técnicas de machine learning y deep learning. J Med Eng Technol. 2021;45(2):88-95.
- 15. Thompson P, Rogers L, Harris J. Prevención de lesiones y recaídas mediante algoritmos de random forest para la dosificación de ejercicios. J Sports Sci Med. 2020;49(4):312-318.
- 16. Patel D, Chan A. Revisión de tecnologías wearables e inteligencia artificial en la personalización de la prescripción de ejercicio en fisioterapia. Med Devices. 2021;14:205-212.
- 17. Black H, Gray M, Carter S. Aplicación de algoritmos de clasificación en la rehabilitación de esguinces de tobillo utilizando máquinas de soporte vectorial. Phys Ther Sport. 2020;45(7):437-444.
- 18. Zhang C, Li Z, Zhou X, et al. Machine learning applications in injury prevention and rehabilitation in athletes: A systematic review. J Sci Med Sport. 2021;24(10):913-921.
- 19. Wong A, Bell C, Chiang Y, et al. Wearable sensors and artificial intelligence for exercise feedback in physical therapy: A pilot study. J Rehabil Res Dev. 2020;57(2):301-310.
- 20. Chung E, Ahn J, Kim K. Al-based personalized rehabilitation programs for post- surgical patients: Feasibility and clinical outcomes. BMC Health Serv Res. 2022;22(1):137.
- 21. Foster C, Hill M, Taylor S. Al and the future of sports medicine: A critical review. Sports Med. 2023;53(1):79-88.
- 22. Green T, Hall K, Wang J. Artificial intelligence in sports rehabilitation: Applications and challenges. Phys Med Rehabil Clin N Am. 2021;32(4):897-906.
- 23. Tanaka M, Matsumoto T, Higuchi T, et al. Effectiveness of Al-driven exercise programs in chronic musculoskeletal disorders: A meta-analysis. J Pain Res. 2022;15:1897-1907.
- 24. Yang X, Lu C, Li J, et al. Real-time monitoring of exercise techniques using wearable sensors and AI: Implications for injury prevention. Sports Health. 2021;13(4):304-310.
- 25. Park J, Shin H, Kim Y, et al. Deep learning models for exercise intervention in elderly individuals: A comprehensive review. Aging Clin Exp Res. 2023;35(2):223-235.

FINANCIACIÓN

Ninguna.

CONFLICTO DE INTERESES

Los autores declaran que no existe conflicto de intereses.

CONTRIBUCIÓN DE AUTORÍA

Conceptualización: Stalin Javier Caiza Lema.

Curación de datos: Stalin Javier Caiza Lema, Paúl Adrián Arias Córdova.

Análisis formal: Stalin Javier Caiza Lema.

Investigación: Stalin Javier Caiza Lema, Paúl Adrián Arias Córdova, Angela Priscila Campos Moposita,

Josselyn Gabriela Bonilla Ayala, Andrea Carolina Peñafiel Luna.

Metodología: Stalin Javier Caiza Lema, Angela Priscila Campos Moposita. Administración del proyecto: Stalin Javier Caiza Lema, Gabriela Bonilla Ayala.

Supervisión: Gabriela Bonilla Ayala, Andrea Carolina Peñafiel Luna. Validación: Stalin Javier Caiza Lema, Andrea Carolina Peñafiel Luna.

Visualización: Stalin Javier Caiza Lema.

Redacción - borrador original: Stalin Javier Caiza Lema, Paúl Adrián Arias Córdova, Angela Priscila Campos Moposita, Josselyn Gabriela Bonilla Ayala, Andrea Carolina Peñafiel Luna.

Redacción - revisión y edición: Stalin Javier Caiza Lema, Paúl Adrián Arias Córdova, Angela Priscila Campos Moposita, Josselyn Gabriela Bonilla Ayala, Andrea Carolina Peñafiel Luna.