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ABSTRACT

This research presents RIFD-LZW, a new hybrid lossy image compression algorithm designed for both color and 
grayscale images across varying resolutions. The method integrates the Rounding the Intensity and Dividing 
(RIFD) technique with Lempel-Ziv-Welch (LZW) encoding to enhance compression efficiency while preserving 
high image quality. The RIFD stage reduces data redundancy through intensity quantization and scaling, while 
LZW applies efficient lossless dictionary-based encoding to the transformed data. Comprehensive experiments 
were conducted on four benchmark datasets EPFL, Kodak, Waterloo, and HQ-50K to evaluate the performance 
of the proposed method. The results demonstrate that RIFD-LZW consistently outperforms traditional RIFD, 
LZW, and standard compression algorithms including JPEG2000, JPEG-LS, and RIFD-Huffman. On average, RIFD-
LZW achieved a compression efficiency of 7,51 Bits Per Pixel (BPP) for color datasets, representing a 49,93 % 
improvement over RIFD and 62,49 % over LZW. For grayscale images, RIFD-LZW attained an average BPP of 
1,92, significantly outperforming RIFD (5,00) and LZW (4,74), with an improvement exceeding 59 %. The RIFD-
LZW algorithm delivers high visual quality despite being lossy, achieving average PSNR values 38,36 dB with 
minimal visible distortion. It effectively reduces file sizes while preserving acceptable image quality, making it 
well-suited for applications that require efficient compression with good visual retention.

Keywords: Lossy Image Compression; RIFD-LZW; Lempel-Ziv-Welch (LZW); Image Quality; Bits Per Pixel (BPP); 
PSNR.

RESUMEN

Esta investigación presenta RIFD-LZW, un nuevo algoritmo híbrido de compresión de imágenes con pérdida, 
diseñado para imágenes en color y en escala de grises con distintas resoluciones. El método integra la técnica 
de Redondeo de Intensidad y División (RIFD) con la codificación Lempel-Ziv-Welch (LZW), con el fin de mejorar 
la eficiencia de compresión mientras se preserva una alta calidad visual. La etapa RIFD reduce la redundancia de 
datos mediante cuantificación de intensidad y escalado, mientras que LZW aplica una codificación sin pérdida 
basada en diccionario de manera eficiente sobre los datos transformados.Se llevaron a cabo experimentos 
exhaustivos en cuatro conjuntos de datos de referencia: EPFL, Kodak, Waterloo y HQ-50K, para evaluar el 
rendimiento del método propuesto. Los resultados demuestran que RIFD-LZW supera de manera consistente a 
los métodos tradicionales como RIFD, LZW y algoritmos estándar de compresión, incluidos JPEG2000, JPEG-LS 
y RIFD-Huffman. En promedio, RIFD-LZW logró una eficiencia de compresión de 7,51 bits por píxel (BPP) en 
conjuntos de datos a color, representando una mejora del 49,93 % sobre RIFD y del 62,49 % sobre LZW. Para 
imágenes en escala de grises, RIFD-LZW alcanzó un BPP promedio de 1,92, superando significativamente a RIFD 
(5,00) y a LZW (4,74), con una mejora superior al 59 %. El algoritmo RIFD-LZW proporciona alta calidad visual 
a pesar de ser con pérdida, alcanzando valores promedio de PSNR de 38,36 dB con distorsión visible mínima. 
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Reduce de manera efectiva el tamaño de los archivos mientras preserva una calidad de imagen aceptable, lo 
que lo hace adecuado para aplicaciones que requieren compresión eficiente con buena retención visual. 

Palabras clave: Compresión de Imágenes con Pérdida; RIFD-LZW; Lempel-Ziv-Welch (LZW); Calidad de 
Imagen; Bits por Píxel (BPP); PSNR.

INTRODUCTION
The rapid proliferation of digital imagery across domains such as photography, medical imaging, and remote 

sensing has created a growing need for efficient image compression techniques to manage the storage and 
transmission of high-resolution images. Traditional lossless methods preserve image quality but often deliver 
limited compression efficiency, while lossy methods achieve higher compression by allowing some loss of visual 
information. This study presents a hybrid compression approach, RIFD-LZW, which combines Rounding and 
Intensity-Frequency Division (RIFD) with Lempel-Ziv-Welch (LZW) encoding. The proposed method effectively 
reduces redundancy and enhances compression performance while maintaining visually acceptable image 
quality.(1,2)

Background and Motivation
The exponential growth of image data has created an increasing demand for effective compression 

techniques. High-resolution images, while offering excellent visual quality, consume substantial bandwidth and 
storage space.(3) In domains where maintaining image integrity is essential such as medical imaging and satellite 
observation, traditional lossy methods often fall short. This highlights the need for advanced lossy compression 
techniques that can significantly reduce file size while preserving high visual quality. The motivation behind this 
work stems from the necessity to develop a method that achieves higher compression ratios than conventional 
techniques without compromising perceptual image quality.(4)

The Importance of Lossy Image Compression
Lossy image compression techniques aim to significantly reduce file sizes by allowing a controlled loss of 

image data, striking a balance between compression efficiency and acceptable visual quality. Unlike lossless 
methods that preserve every bit of the original data, lossy approaches discard less perceptually important 
information, enabling much higher compression ratios. This is particularly valuable in applications such as 
online image sharing, multimedia storage, and certain types of medical imaging where perfect reconstruction 
is not essential, but high visual quality is still required. By strategically reducing data, lossy compression 
can achieve substantial savings in storage and bandwidth without severely affecting the image’s usability or 
perceptual appearance.(5,6) 

Current Methods and Their Constraints
Many image compression algorithms have been created, but their ability to find a balance between compression 

and quality has varied. Huffman and LZW encoding are used by lossless approaches like Graphics Interchange 
Format (GIF) and Portable Network Graphics (PNG) to retain all of the original image information, however they 
frequently produce moderate compression ratios. Although lossy techniques, such as Joint Photographic Experts 
Group (JPEG), significantly reduce file size, they can also generate observable artifacts, especially at higher 
compression levels. Despite their best efforts, hybrid techniques such as RIFD-Huffman are unable to preserve 
a high degree of compression without compromising visual quality. These drawbacks emphasize the need for an 
approach that improves compression effectiveness without sacrificing image quality.(7)

Introduction to RIFD-LZW: An Innovative Method
The RIFD-LZW algorithm integrates the RIFD approach with LZW encoding to form a hybrid solution that 

advances the performance of existing lossy compression techniques. In this method, RIFD reduces image 
redundancy by rounding and dividing pixel intensities, while LZW efficiently encodes the resulting data 
patterns. This combination enables the preservation of high visual quality, with distortions that are generally 
imperceptible under typical viewing conditions. By leveraging the strengths of both techniques, RIFD-LZW 
achieves superior compression ratios compared to the standalone RIFD or LZW algorithms.

Paper Contributions and Structure
This paper advances the science of image compression in multiple ways. Initially, it presents the hybrid 

algorithm RIFD-LZW, which outperforms previous methods in compression performance. Second, it provides a 
thorough analysis of the algorithm’s performance on datasets, showing how well it compresses images in both 

Data and Metadata. 2025; 4:1055  2 

https://doi.org/10.56294/dm20251055 ISSN: 2953-4917

https://doi.org/10.56294/dm20251055


color and grayscale. The research concludes by highlighting the tiny distortion created by the method and 
demonstrating how it produces large gains in compression ratio while being unnoticeable to human observers. 
The remainder of this paper is structured as follows: Section 2 discusses previous research related to the topic. 
Section 3 elaborates on the RIFD-LZW methodology. Section 4 showcases the experimental findings, while 
Section 5 wraps up the study and suggests potential future research directions.

Related work 
A wide range of image compression techniques have been developed to improve storage efficiency and 

transmission speed. Lossless methods, such as Huffman coding, Run-Length Encoding (RLE), and Lempel-Ziv-
Welch (LZW), ensure perfect reconstruction of the original image without any loss of quality. In contrast, 
lossy and hybrid techniques such as JPEG and RIFD-Huffman introduce controlled degradation in image quality 
to achieve higher compression rates. This section reviews both categories of techniques and identifies the 
limitations they present, particularly in achieving efficient compression without sacrificing image integrity or 
performance. These limitations form the basis for the development of the proposed RIFD-LZW algorithm, which 
aims to address these gaps through an improved near-lossless approach. (8,9)

Huffman Coding
One of the first and most used lossless compression methods is Huffman coding. It functions by allocating 

variable-length codes to symbols according to their occurrence; shorter codes are assigned to symbols that 
occur more frequently. Huffman coding works well for lossless compression, but its primary drawback lies in 
its inability to adapt to local variations within the image. When symbol frequencies are rather stable, which is 
frequently not the case with complex images, this technique performs best. Furthermore, it fails to take spatial 
redundancy between pixels into account, which results in less-than-ideal compression ratios for large, complex 
images. Consequently, its application in image compression has been restricted to areas where statistical 
consistency is required.(8,10,11)

Run Length Encoding (RLE)
Another straightforward but powerful lossless technique is RLE, which works especially well for images with 

large areas of constant color, like graphics or icons. RLE reduces data size by storing repeated values as a single 
value and a counter. In certain situations, this can result in a large file size reduction. With higher detail or 
more complex images, when runs of repeated values are rare, RLE’s performance decreases quickly. RLE’s main 
drawback is its poor performance on natural images where pixel values vary a lot.(12) Because of this, it is less 
applicable in the majority of real-world situations and is better suited for specific image types like binary or 
synthetic images.(13)

Lempel-Ziv-Welch (LZW)
A popular lossless compression method is LZW, particularly for images in the GIF and Tagged Image File 

Format (TIFF).(14) In order to accomplish compression, it replaces lengthy data sequences with shorter codes 
and creates a dictionary of previously encountered sequences. When faced with situations with recurring data 
patterns, LZW performs better than Huffman and RLE in terms of compression ratios. Though the dictionary 
grows larger and less effective when there is little repetition in the pixel values, it continues to have trouble 
with images that contain high-frequency features or noise. The fact that LZW does not automatically take 
advantage of spatial redundancy in images is another factor that reduces its efficacy. This restriction has led 
to the frequent use of LZW with other methods, including hybrid approaches or predictive coding, to enhance 
performance on natural images. Even with these advancements, utilizing LZW alone is still insufficient to 
provide effective lossless compression.(15,16)

Burrows-Wheeler Transform (BWT)
By making use of its ability to restructure pixel values into more compressible patterns, the BWT, which 

was initially created for text compression, has been modified for lossless image compression. To increase 
compression efficiency, BWT has been applied in several works in conjunction with entropy coding strategies 
such as Move-to-Front (MTF), Huffman coding, and RLE. Since BWT is essentially made for 1D sequences, 
applying it to 2D image data is difficult since it lacks intrinsic spatial locality. While converting 2D images into 
linear data streams is a common subject of research, the resulting compression ratios are frequently not as good 
as they could be when using specialized image compression techniques like JPEG-LS or JPEG 2000. The main 
area of missing demand is how to efficiently modify BWT to preserve the structural integrity of 2D images while 
attaining competitive compression performance, especially for color images with a high resolution. To close 
this gap, more investigation is required; perhaps using hybrid strategies or cutting-edge transformations.(17,18,19)
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Top of Form
Joint Photographic Experts Group (JPEG) Family

A highly prevalent standard in use today for lossy image compression is the JPEG family, especially JPEG and 
JPEG 2000. JPEG is very good at reaching high compression ratios because it combines quantization with the 
Discrete Cosine Transform (DCT) to minimize image data while maintaining some amount of information. Wavelet 
transforms are used in JPEG 2000, an upgrade over JPEG that offers both lossless and lossy compression choices 
and enhanced quality at higher compression rates. However, the main drawback of JPEG is the observable 
abnormalities such as blocking and ringing effects. that show up at high compression settings. Some of these 
problems are mitigated by JPEG 2000, although at the expense of more processing complexity. Both approaches 
have difficulty balancing file size and image quality while achieving near-lossless compression, especially for 
applications that demand minimal distortion.(20,21,22)

Lossless Image Compression Using the Column Subtraction Technique (LICA-CS)
The LICA-CS is a cutting-edge method that makes use of a column subtraction technique to provide effective 

lossless compression. The image’s matrix is transformed, the values of successive columns are subtracted, 
and the resulting differences are then encoded. This is how the method operates. Because column subtraction 
minimizes redundancy and increases data compression, this method works especially well for images where 
adjacent columns have comparable pixel values. LICA-CS has some significant drawbacks in spite of its potential. 
It works best on images with smooth transitions or little variation between columns; images with noise or 
high-frequency details cause it to function much less efficiently. Furthermore, the technique does not take 
advantage of spatial correlations other than column similarities, which means that it could be improved for 
compressing images with intricate patterns or textures. Therefore, even though LICA-CS offers a novel method 
of lossless image compression, its applicability is still limited, requiring additional research and improvement 
for a wider range of image types.(12)

Rounding the Intensity Followed by Dividing (RIFD)
This method is a relatively new approach that performs well in lossy image compression by reducing the value 

of intensity levels and then dividing the image into smaller segments. This reduces duplication and increases 
compressibility; it works best when combined with entropy coding methods such as Huffman or LZW. When 
RIFD is used to achieve modest compression, it is especially good at reducing visual distortion. However, RIFD’s 
overall compression ratio is limited since it cannot handle the encoding of these shorter segments as effectively 
as some other approaches can. Hybrid approaches like RIFD-LZW, which combine RIFD’s redundancy reduction 
with more effective encoding algorithms like LZW, have been developed to enhance its performance.(23,24,25)

The Proposed Hybrid Methods Using RIFD and LZW (RIFD-LZW)
Hybrid compression algorithms that combine LZW with preprocessing techniques like RIFD aim to overcome 

the limitations of each individual method. By using RIFD to reduce spatial and informational redundancy 
and LZW to perform efficient encoding, these hybrid approaches achieve improved compression ratios while 
maintaining acceptable visual quality. The RIFD-LZW algorithm, for example, leverages the strengths of both 
techniques to deliver notable performance gains over standalone methods. The key advantage of such hybrid 
lossy techniques lies in their ability to balance compression efficiency with perceptual image quality. However, 
further research is needed to explore optimal configurations and refinements that enhance their applicability 
across a broader range of image types.

There are many different lossless and lossy compression methods available, but each one has a limit when 
it comes to achieving a trade-off concerning compression ratio and image quality. Although more sophisticated 
algorithms have been made possible by the use of traditional methods like Huffman, RLE, and LZW, they are 
still insufficient for effectively compressing high-detail or natural images. Hybrid approaches, like RIFD-LZW, 
combine more effective encoding techniques with redundant reduction preprocessing procedures to mitigate 
some of these drawbacks. To achieve an ideal balance between maximum distortion reduction and compression 
efficiency, more research and development of these techniques are still required. A start in this direction is 
the suggested RIFD-LZW algorithm, which provides a promising answer to the problems encountered by current 
methods.

The Proposed RIFD-LZW Algorithm
Overview of the Proposed Algorithm

The RIFD-LZW algorithm is a lossy image compression technique designed to efficiently handle both color 
and grayscale images. By combining RIFD with LZW encoding, it forms a hybrid approach that significantly 
reduces image size while introducing only minimal distortion. This integration enables the algorithm to achieve 
high compression ratios without substantially compromising visual quality. A detailed flowchart, presented in 
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figure 1, illustrates the step-by-step compression and decompression processes of the RIFD-LZW algorithm, 
providing a clear and comprehensive understanding of its operational methodology.

Figure 1. Rifd-lzw image compression & decompression flowchart

First, regulated quantization via intensity rounding is applied by the RIFD process to simplify the image data 
before compressing the source image. To minimize complexity and enhance the encoding phase effectiveness 
that follows, the intensities are divided by 10 for the 8-bit depth images or by 1000 for the 16-bit depth 
images. Repetitive patterns in the altered image are successfully captured and encoded by the LZW algorithm, 
which then uses a lossless dictionary-based technique to compress the rounded and divided data. With its 
versatility across several image formats and resolutions, the RIFD-LZW algorithm’s adaptability makes it a 
highly acceptable choice for a diverse set of applications. It can process images of various quality levels, 
from low-resolution to high-resolution, guaranteeing efficient compression while preserving visual integrity. For 
situations when high compression efficiency is required without noticeable loss of image quality, the RIFD-LZW 
algorithm is a potential option because of its low distortion and compatibility with common image formats.

RIFD-LZW Encoding 
To attain effective compression ratios while preserving the highest level of image quality preservation, the 

RIFD-LZW algorithm combines together lossy and lossless image compression techniques that operate in two 
primary phases. In the first phase, two essential operations are performed by using the RIFD approach. The 
lone lossy element within the algorithm is the rounding function. RIFD simplifies the image data by rounding 
each pixel intensity to the closest multiple of 10. This is followed by a factor of 10 values scaling down using 
the division function to further process the rounded image. This process helps to further facilitate efficient 
compression in the next phase by reducing the image’s numerical range and complexity. The algorithm’s second 
phase uses LZW coding, a well-known lossless compression method. This stage involves encoding the image data 
which has been prepped by RIFD into a compressed bitstream using LZW. As it processes the input, LZW creates 
a dictionary of data patterns. Within the modified image data, it locates and recognizes repeated sequences, 
giving these sequences shorter codes. This dictionary-based method effectively reduces the amount of data 
by capturing and compressing recurring patterns in the image. Notably, during this procedure, LZW does not 
result in any further data loss. This guarantees that the data reduction is accomplished without sacrificing 
the integrity of the image because the resulting compressed bitstream keeps all the information required to 
precisely recreate the image.

RIFD-LZW Decoding
The following procedures are involved in the RIFD-LZW algorithm’s decoding phase, which reconstructs the 

image from the compressed bitstream: 
1.	 LZW Decompression: the compressed bit stream is loaded into the LZW decompression module to 

start the process. Here, the encoding process is essentially reversed because the LZW algorithm decodes 
the bitstream to rebuild the quantized image data.

2.	 Inverse Scaling: the first thing to do after recovering the image data is to undo the scaling that was 
done during RIFD compression. To return the pixel intensities to their roughly original range, this entails 
multiplying the pixel values by 10.
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3.	 Image Reconstruction: the image data is arranged to rebuild the entire image after scaling. In this 
step, the data will be arranged according to its original structure, and the image format and layout will 
be precisely restored. 

With the use of these procedures, the RIFD-LZW decoding stage can recreate the image with unnoticeable 
distortion, nearly matching the original input. As a result, the algorithm strikes a balance between effective 
compression and maintaining visual quality.

The RIFD-LZW algorithm successfully combines lossy and lossless compression methods to reduce data by 
significant amounts. The first RIFD stage lowers the complexity of the image and prepares it for the next 
LZW compression. This method guarantees considerable compression ratios with no noticeable distortion and 
image quality preservation. The RIFD-LZW approach provides a reliable and effective solution for compressing 
both color and grayscale images, optimizing efficiency while introducing minimal distortion that remains 
imperceptible to the human eye by achieving a balance between data reduction and visual fidelity.

Experiments 
Comprehensive experiments were conducted to assess how well the RIFD-LZW algorithm performs. This 

section describes the datasets that were used, the standard comparison methods employed, and the conclusions 
gained after analyzing these datasets.

About the Datasets  
The implementation was evaluated using the following datasets and table 1, 2, 3 and 4 provides more 

information regarding each image resolution and type.
•	 Kodak: the Kodak Group provides this benchmark dataset, which is widely used in image processing 

and compression research. It consists of twenty-four colored medium-resolution (768 × 512) images, 
covering a diverse range of subjects and environments.(26)

•	 Waterloo: established by the University of Waterloo, this dataset is widely used to evaluate various 
imaging methods. It consists of three subsets: the color dataset covering eight large images, Grayscale 
dataset 1 covering twelve medium images, and Grayscale dataset 2 covering twelve small images. This 
structured variety allows for a comprehensive evaluation across different compression settings.(27)

•	 EPFL: provided by the École Polytechnique Fédérale de Lausanne (EPFL), this dataset includes ten 
color, high-resolution images with resolution ranges from (1280 × 1506) to (1280 × 1600), making it ideal 
for assessing compression performance on complex, high-detail visuals. These high-resolution images 
are particularly useful for evaluating fine textures, intricate patterns, and color fidelity under different 
compression techniques.(28)

•	 HQ-50K: the dataset is a large-scale collection of 50,000 high-quality images designed for 
benchmarking image compression techniques. It encompasses a diverse range of images with rich texture 
details and semantic diversity, making it well-suited for evaluating the performance of restoration 
algorithms across various visual characteristics. The high-resolution nature of the dataset ensures that 
fine details and subtle variations in color and structure are preserved, allowing for a comprehensive 
analysis of restoration efficiency and visual fidelity. Additionally, a subset of 12 selected test images 
is provided, spanning various semantic categories and frequency ranges, facilitating detailed and fine-
grained performance comparison and analysis.(29) 

Experiments Setup
The algorithm was implemented in MATLAB and tested on a computer system with an Intel Core i7-10510U 

processor (1,80 GHz, up to 2,30 GHz), 8 GB of RAM, and go on Windows 11.

Experimental Metrics 
Compression Size BPP and Saving Percentage

The compressed images size was first determined in Bits-Per-Pixel (BPP). Equation (1) was used to calculate 
these ratios, where the size of the compressed image, represented as s in bytes, includes the three independently 
compressed components (RGB). The original image contains n pixels. The compression performance is calculated 
by dividing the compressed image size by the total number of pixels. A lower BPP value signifies more effective 
compression.(24,30)

𝐵𝐵𝐵𝐵𝐵𝐵 = 8 × 𝑠𝑠
𝑛𝑛        (1) 

 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑥𝑥100       (2) 

 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑀𝑀∗𝑁𝑁  ∑ ∑   [𝐼𝐼(𝑖𝑖, 𝑗𝑗) −   [𝐾𝐾(𝑖𝑖, 𝑗𝑗)]2]𝑁𝑁

𝑗𝑗=1

𝑀𝑀

𝑖𝑖=1
      (3) 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 10 x log10(  𝑀𝑀𝑀𝑀𝑀𝑀2

MSE  )       (4) 
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The saving percentage is computed using Equation (2), as obtained from(24).

𝐵𝐵𝐵𝐵𝐵𝐵 = 8 × 𝑠𝑠
𝑛𝑛        (1) 

 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑥𝑥100       (2) 

 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑀𝑀∗𝑁𝑁  ∑ ∑   [𝐼𝐼(𝑖𝑖, 𝑗𝑗) −   [𝐾𝐾(𝑖𝑖, 𝑗𝑗)]2]𝑁𝑁
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For the purpose of full-reference objective quality assessment, basic statistical error measurements are 
essential, such as:

Mean Squared Error (MSE) The Mean Squared Error (MSE), as outlined in equation (3), is one of the most 
straightforward and widely used techniques for evaluating image quality. In this equation, M and N represent 
the pixel coordinates (image dimensions), I(i,j) denote the pixel value at position (i,j) in the original image, and 
K(i,j) corresponds to the pixel value at the same position in the compressed or reconstructed image. The output 
is a single scalar value that quantifies the average squared difference between the original and reconstructed 
images, with lower values indicating higher visual similarity.(31)
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Peak Signal-to-Noise Ratio (PSNR) As defined in equation (4), it is a widely used metric for assessing the 
quality of compressed images in full-reference evaluations. Measured in decibels (dB), it is derived from 
the MSE, where a higher PSNR value signifies better image quality preservation and lower distortion. In this 
equation, MAX is the maximum possible pixel value of the image (e.g., 255 for 8-bit images), MSE is the Mean 
Squared Error between the original and the compressed/reconstructed image. A higher PSNR value indicates 
greater similarity between the original and reconstructed images, minimizing visual information loss.(30,31)
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Experimental Results 

Extensive evaluations were conducted to assess the performance of the RIFD-LZW algorithm, demonstrating 
significant improvements in compression efficiency, as quantified by (BPP), and in reconstructed image quality, 
as measured by (PSNR). Table 1, 2, 3 and 4 presents the resulting data after running the algorithm on different 
datasets including the EPFL, Kodak, Waterloo, and HQ-50K datasets respectively. The tables showcases the 
results for RIFD and LZW individually, as well as the hybrid RIFD-LZW algorithm, providing a clear comparison of 
these methods. This structured presentation facilitates a more straightforward analysis of their performance in 
the following sections, allowing for a detailed examination of the benefits and trade-offs associated with each 
approach. The inclusion of multiple benchmark datasets ensures a comprehensive evaluation of the algorithm’s 
effectiveness in enhancing compression efficiency across diverse image types.

Table 1. Comparison of compression efficiency (bpp) and image quality (psnr) between the proposed 
rifd-lzw and traditional rifd and lzw using the epfl dataset

EPFL Dataset

# Image Type Dimensions
BPP PSNR (dB)

RIFD LZW RIFD-
LZW RIFD LZW RIFD-

LZW

1 bike_orig BMP 1280 x 1600 15,00 22,07 8,52 58,41 - 39

2 cafe_orig BMP 1280 x 1600 15,00 22,38 10,87 59,08 - 39,59

3 p01_orig BMP 1280 x 1600 15,00 20,84 7,29 58,34 - 38,83

4 p04_orig BMP 1280 x 1510 15,00 19,81 6,71 57,85 - 38,54

5 p06_orig BMP 1280 x 1600 15,00 18,47 5,93 58,40 - 38,98

6 p10_orig BMP 1280 x 1600 15,00 18,34 5,62 58,24 - 38,73

7 p14_orig BMP 1280 x 1600 15,00 18,95 6,31 58,48 - 38,95

8 p22_orig BMP 1280 x 1506 15,00 19,61 6,09 57,98 - 38,96

9 p30_orig BMP 1280 x 1600 15,00 16,25 5,59 59,96 - 40,14

10 woman_orig BMP 1280 x 1600 15,00 21,71 8,00 58,36 - 38,95
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Table 2. Comparison of compression efficiency (bpp) and image quality (psnr) between the proposed 
rifd-lzw and traditional rifd and lzw using the kodak dataset

Kodak Dataset

# Image Type Dimensions
BPP PSNR (dB)

RIFD LZW RI-
FD-LZW RIFD LZW RI-

FD-LZW

1 kodim01 PNG 768 x 512 15 24,75 10,37 51,21 - 38,88

2 kodim02 PNG 768 x 512 15 18,27 5,82 51,11 - 38,85

3 kodim03 PNG 768 x 512 15 19,27 5,80 51,10 - 38,90

4 kodim04 PNG 768 x 512 15 21,10 6,71 51,25 - 38,87

5 kodim05 PNG 768 x 512 15 24,91 10,38 51,23 - 38,91

6 kodim06 PNG 768 x 512 15 23,60 9,63 51,47 - 39,13

7 kodim07 PNG 768 x 512 15 20,11 6,31 51,19 - 38,85

8 kodim08 PNG 768 x 512 15 25,30 10,55 51,34 - 39,04

9 kodim09 PNG 768 x 512 15 20,56 6,28 51,09 - 38,90

10 kodim10 PNG 768 x 512 15 20,81 6,48 51,26 - 40,28

11 kodim11 PNG 768 x 512 15 21,92 8,09 50,90 - 38,63

12 kodim12 PNG 768 x 512 15 20,55 6,49 51,36 - 39,02

13 kodim13 PNG 768 x 512 15 26,71 12,03 51,35 - 38,95

14 kodim14 PNG 768 x 512 15 24,56 9,86 51,21 - 38,88

15 kodim15 PNG 768 x 512 15 19,73 6,12 51,36 - 39,01

16 kodim16 PNG 768 x 512 15 22,12 7,66 51,15 - 38,91

17 kodim17 PNG 768 x 512 15 21,23 6,89 51,21 - 38,97

18 kodim18 PNG 768 x 512 15 23,41 9,10 51,17 - 38,90

19 kodim19 PNG 768 x 512 15 22,68 7,87 51,22 - 38,86

20 kodim20 PNG 768 x 512 15 15,75 5,72 52,97 - 40,68

21 kodim21 PNG 768 x 512 15 22,59 8,58 51,19 - 38,93

22 kodim22 PNG 768 x 512 15 22,34 7,66 51,26 - 38,88

23 kodim23 PNG 768 x 512 15 19,28 5,51 51,29 - 38,90

24 kodim24 PNG 768 x 512 15 21,95 8,32 51,40 - 39,10

Table 3. Comparison of compression efficiency (bpp) and image quality (psnr) between the proposed 
rifd-lzw and traditional rifd and lzw using the waterloo dataset

Waterloo Dataset

# Image Type Dimensions

BPP PSNR (dB)

RIFD LZW RI-
FD-LZW RIFD LZW RI-

FD-LZW

1 clegg. TIF 814 x 880 15 14,46 6,83 54,16 - 39,45

2 frymire TIF 1118 x 1105 15 5,81 4,12 58,81 - 42,02

3 lena3 TIF 512 x 512 15 21,60 7,28 49,42 - 38,81

4 monarch TIF 768 x 512 15 20,25 6,25 51,02 - 38,82

5 peppers3 TIF 512 x 512 15 20,93 6,98 49,53 - 39,00

6 sail TIF 768 x 512 15 24,76 10,22 51,19 - 38,91

7 serrano TIF 629 x 794 15 6,27 4,11 52,54 - 40,36

8 tulips TIF 768 x 512 15 21,92 7,28 51,13 - 38,96
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Table 4. Comparison of compression efficiency (bpp) and image quality (psnr) between the proposed 
rifd-lzw and traditional rifd and lzw using the hq-50k dataset

HQ-50K Dataset 

# Image Type Dimensions
BPP PSNR (dB)

RIFD LZW RI-
FD-LZW RIFD LZW RI-

FD-LZW

1
Natural_

View
JPG

2100 x 3500 15,00 16,91 6,14 63,99 - 38,85

2
maple_cho-

colate
JPG

1334 x 2000 15,00 20,96 8,09 59,50 - 38,83

3 HOFFMAN-2 JPG 1360 x 2040 15,00 22,57 9,69 59,66 - 38,93

4
traintrail_

spain
JPG

1366 x 2048 15,00 24,49 9,75 59,81 - 38,93

5
Traditio-
nal_sofa

JPG
1333 x 2000 15,00 20,37 7,39 59,48 - 38,94

6 1583 JFIF 1403 x 2000 15,00 25,54 10,35 59,68 - 38,83

7 lion_king JPG 1920 x 1080 15,00 21,54 8,61 58,49 - 38,89

8 thumb JPG 1440 x 1920 15,00 14,55 5,14 59,63 - 38,86

9 leopard JPG 1920 x 1200 15,00 22,79 9,51 59,43 - 39,10

10 holiday_19 JPG 1676 x 2000 15,00 20,64 7,81 60,58 - 38,84

11 Camel_1 JPG 1600 x 1300 15,00 23,22 9,50 58,31 - 38,85

12 bears JPG 1065 x 1600 15,00 23,80 9,96 57,69 - 38,90

Comparison of Compression Sizes Among RIFD, LZW, and the Proposed Algorithm
The proposed algorithm efficiency was evaluated via comparing its compressed file sizes against two widely 

used methods, RIFD and LZW. The primary emphasis was on analyzing the compressed image size in relation 
to the original file size, determined in (BPP). While LZW typically results in larger compressed file sizes, RIFD 
significantly reduces file size due to its compression approach. By combining elements of both techniques, the 
proposed RIFD-LZW hybrid algorithm achieved a more efficient compression, reducing file sizes beyond what 
either RIFD or LZW could achieve individually. To quantify this efficiency, the compression performance of each 
method was measured in terms of (BPP), calculated using Equation (1). across four benchmark datasets: Waterloo, 
Kodak, EPFL, and HQ-50K. Table 5 summarizes the average BPP results, with the best values highlighted in bold. 
Among the evaluated methods, RIFD-LZW demonstrated the highest compression performance, achieving an 
average BPP of 7,51, effectively minimizing file sizes compared to both RIFD and LZW. 

Table 5. Average compression efficiency (bpp) comparison of the 
proposed rifd-lzw with traditional rifd and lzw

Method
Datasets

EPFL Kodak Waterloo HQ-50K Average

RIFD 15 15 15 15 15

LZW 19,84 21,8 17 21,45 20,02

RIFD-LZW 7,09 7,84 6,63 8,49 7,51

This combination illustrates how LZW and RIFD encoding techniques effectively complement each other 
to achieve more efficient compression. The proposed RIFD-LZW method significantly enhances compression 
performance by leveraging the strengths of both approaches. As shown in table 5, the RIFD-LZW method 
achieves a lower average BPP value of 7,51, compared to 15,00 for RIFD and 20,02 for LZW. Based on Equation 
(2), this corresponds to an average compression efficiency improvement of 49,93 % over RIFD and 62,49 % over 
LZW, indicating substantial gains. These results are further visualized in figure 2, which compares the average 
BPP values across the four datasets for each method. Figure 2. comparison of average (BPP) for the proposed 
RIFD-LZW algorithm vs. traditional RIFD and LZW techniques
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Figure 2. Comparison of average (bpp) for the proposed rifd-lzw algorithm vs. Traditional rifd and lzw techniques

Comparative Analysis of Compression Size: RIFD-LZW vs. Standard Compression Techniques

Table 6. Average compression efficiency (bpp) of the proposed rifd-lzw compared 
to standard compression algorithms

Standard Methods Datasets
Average

No Compression 
Type Method EPFL Kodak Waterloo

A Lossless RCT-JPEG2000 10,84 9,51 11,21 10,52
B Lossless RCT-JPEG LS 10,47 9,57 8,96 9,67
C Lossless RCT-JPEG XR 11,76 10,92 13,32 12,00
D Lossless RCT-Huffman 16,9 15,06 16,55 16,17
E Lossy RIFD-Huffman 9,35 8,72 9 9,02
F Lossy RIFD-LZW 7,9 7,84 6,63 7,51

Figure 3. Average compression efficiency (bpp) of the proposed rifd-lzw algorithm compared to standard compression 
techniques

The effectiveness of the proposed RIFD-LZW method was further evaluated by comparing its performance 
against several widely recognized lossless and lossy compression standards results obtained from (12), including 
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RCT combined with Huffman, JPEG2000, JPEG XR, and JPEG-LS, as well as the RIFD-Huffman approach. 
Compression efficiency, measured in (BPP), was calculated using Equation (1) across three standard color image 
datasets. The comparative results are summarized in table 6, where the best-performing values are highlighted 
in bold. The findings reveal that the proposed RIFD-LZW method (Method #F) consistently outperforms most 
conventional techniques, achieving the lowest average BPP of 7,51, indicating superior compression efficiency. 
This is followed by Method #E (RIFD-Huffman) with an average BPP of 9,02, and Method #B (RCT-JPEG-LS) with 
9,67. 

For visual comparison, figure 3 presents a graphical representation of table 6, highlighting the average BPP 
performance of RIFD-LZW against the other standard methods. 

Image quality compared with original schemes
To evaluate the image quality performance of the proposed method, four color datasets including EPFL, 

Kodak, Waterloo, and HQ-50 were utilized in comparison with RIFD and LZW. The assessment was based on 
Mean Squared Error (MSE) and Peak Signal-to-Noise Ratio (PSNR), as defined in Equation (3) and Equation (4). 
The results, summarized in table 7, indicate that the proposed approach achieves exceptional image quality 
after decompression. The slight distortion observed originates from the RIFD phase. Notably, both the RIFD-
LZW and RIFD algorithms produce comparable levels of distortion. Their average MSE values are 7,41, 8,21, 
8,10, and 8,37 for the Waterloo, Kodak, EPFL, and HQ-50K datasets, respectively. These findings highlight the 
effectiveness of the proposed method in achieving high compression ratios while maintaining superior image 
quality. In contrast, the LZW algorithm, being fully lossless, introduces no distortion.

Table 7. Average mse and psnr for the proposed rifd-lzw compared with original 
methods applying the four image datasets

Dataset
Mse Psnr (db)

Rifd Lzw Rifd-lzw Rifd Lzw Rifd-lzw

Epfl 8,10 0 8,10 39,07 - 39,07

Kodak 8,21 0 8,21 35,97 - 35,97

Waterloo 7,41 0 7,41 39,54 - 39,54

Hq-50k 8,37 0 8,37 38,89 - 38,89

An illustration of the information from table 7 is shown in figure 4. It presents the PSNR values comparison 
between the original RIFD and the suggested RIFD-LZW method. 

Figure 4. Average (psnr) of the proposed rifd-lzw algorithm in comparison with rifd techniques

Figures 5, 6, 7, 8 and 9 presents sample images before and after reconstruction using the proposed 
algorithm. The reconstructed images exhibit minimal distortion, which is imperceptible to the human eye.
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Figure 5. Examples of original and reconstructed images after applying rifd-lzw on the kodak datasets 

Figure 6. Examples of original and reconstructed images after applying rifd-lzw on the waterloo color datasets 
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Figure 7. Examples of original and reconstructed images after applying rifd-lzw on the waterloo gray datasets 1 and 2 

Figure 8. Examples of original and reconstructed images after applying rifd-lzw on epfl datasets 
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HQ-50K  Dataset  

      
Natural_View Maple_Chocolate HOFFMAN-2 Traintrail_Spain Traditional_Sofa 1583 

      
Reconstructed  Reconstructed  Reconstructed  Reconstructed  Reconstructed  Reconstructed  

      
Lion_king Thumb Leopard Holiday_19 Camel_1 Bears 

      
Reconstructed  Reconstructed  Reconstructed  Reconstructed  Reconstructed  Reconstructed  

 
Figure 9. Examples of original and reconstructed images after applying rifd-lzw on hq-50k datasets

Comparison of Compression Size (BPP) for grayscale images
To evaluate the compression efficiency of the proposed RIFD-LZW algorithm, twelve grayscale images in TIF 

format were selected from the Waterloo dataset (Sets 1 and 2). Compression performance was measured in (BPP) 
using equation (1). The results, presented in table 8, include a comparison with several established lossless and 
lossy compression methods, namely JPEG2000 (J2K), Arithmetic Coding, IWT-HF, JPEG-LS (JLS), 7-Zip as well as 
standalone RIFD and LZW techniques. The findings show that the RIFD-LZW method consistently outperforms 
all other methods, achieving the lowest average BPP of 1,92, compared to 4,74 for LZW and 5,00 for RIFD. This 
represents a 59,51 % improvement over RIFD and a 59,49 % improvement over LZW, confirming the effectiveness 
of integrating RIFD preprocessing with LZW encoding. Moreover, it surpasses traditional compression standards 
such as JPEG-LS (3,36 BPP) and JPEG2000 (3,51 BPP), highlighting the superior performance of the proposed 
approach in compressing grayscale images. 

Figure 10 provides a visual representation of the average compression performance (in BPP) for each method, 
based on the image set listed in table 8. The results clearly illustrate the advantage of the RIFD-LZW hybrid 
method over both standard and individual compression algorithms.

Table 8. Average (BPP) of the proposed RIFD-LZW algorithm compared with standard compression 
techniques using 12 selected waterloo images.

Image J2K Arithmetic IWT-HF JLS 7-Zip RIFD LZW RIFD-LZW

bird 3,13 6,77 2,86 3,47 4,23 5 5,8 1,95

bridge 5,90 7,67 4,90 5,79 6,32 5 9,7 4,26

circles 1,26 1,78 1,33 0,15 0,11 5 0,21 0,21

crosses 1,43 0,19 2,02 0,39 0,18 5 0,22 0,23

slope 1,06 7,52 1,64 1,57 1,69 5 3,7 1,31

squares 0,25 1,08 0,69 0,08 0,05 5 0,13 0,14

boat 4,10 7,12 3,51 4,25 5,29 5 7,08 2,39

goldhill2 4,65 7,48 3,80 4,71 5,60 5 7,72 2,84

lena2 4,02 7,45 3,25 4,24 5,52 5 7,06 2,29

library 5,83 5,84 5,16 5,10 4,25 5 5,8 3,24

mandrill 6,02 7,36 5,04 6,04 6,38 5 9,3 3,97

peppers 4,40 7,57 3,51 4,49 5,54 5 0,21 0,23

Average 3,51 5,65 3,15 3,36 3,77 5 4,74 1,92
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Figure 10. Average (bpp) of the proposed rifd-lzw algorithm in comparison with standard compression techniques

CONCLUSIONS 
This study introduced RIFD-LZW, a new hybrid image compression algorithm that effectively integrates the 

Rounding the Intensity and Dividing (RIFD) technique with Lempel-Ziv-Welch (LZW) encoding. Designed for 
lossy compression, the method achieves a superior balance between compression efficiency and image quality 
across both color and grayscale datasets. By first reducing image redundancy through RIFD and then applying 
the dictionary-based LZW compression, the proposed approach successfully combines the strengths of lossy and 
lossless techniques.

Experimental results on benchmark datasets including EPFL, Kodak, Waterloo, and HQ-50K demonstrated 
that RIFD-LZW consistently outperforms traditional methods such as standalone RIFD, LZW, JPEG2000, JPEG-
LS, and RIFD-Huffman. It achieves significantly lower bits per pixel (BPP) values while maintaining high peak 
signal-to-noise ratio (PSNR), indicating minimal distortion. In grayscale image tests using the Waterloo dataset, 
the algorithm achieved an average BPP of 1,92, surpassing RIFD (5,00) and LZW (4,74), yielding over 59 % 
improvement in compression efficiency. Additionally, on color datasets, RIFD-LZW achieved a file size reduction 
of 73,03 % compared to RIFD-Huffman, as evidenced by performance on the Kodak dataset.

Furthermore, the visual fidelity of reconstructed images verified through PSNR confirms that the minimal 
loss introduced during compression does not compromise perceptual quality. These findings establish RIFD-LZW 
as a highly promising solution for applications requiring efficient, lossy image compression, particularly where 
storage or transmission efficiency must be maximized without noticeable degradation in quality.

Looking forward, future work may focus on optimizing the algorithm for real-time or large-scale applications 
by enhancing its processing speed and adapting it to hardware-accelerated environments. The proposed RIFD-
LZW method lays a robust foundation for further advancements in intelligent and adaptive image compression 
strategies.
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