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ABSTRACT

Predicting the Remaining Useful Life (RUL) of industrial equipment is a cornerstone of predictive mainte-
nance strategies aimed at minimizing downtime and optimizing maintenance costs. This study conducts a 
comparative evaluation of two prominent survival analysis techniques the Cox Proportional Hazards (Cox PH) 
model and the Weibull model for RUL prediction in industrial machinery. We analyzed the AI4I 2020 Predictive 
Maintenance Dataset using a robust analytical framework incorporating Kaplan-Meier survival curves, log-
rank tests, and multivariate survival modeling. Our methodology involved detailed data preprocessing, mod-
el validation through the concordance index (C-index) and Akaike Information Criterion (AIC), and the iden-
tification of significant predictors of failure. The results demonstrated that the Cox PH model outperforms 
the Weibull model in terms of flexibility, predictive accuracy, and the ability to handle multiple covariates. 
This work highlights the strengths and limitations of both models and emphasizes the superior applicability 
of the Cox PH model for complex industrial datasets. These findings offer actionable insights for developing 
more reliable, data-driven maintenance strategies in Industry 4.0 environments.

Keywords: Remaining Useful Life (RUL); Predictive Maintenance; Reliability; Cox Proportional Hazards Mod-
el; Weibull Model; Survival Analysis.

RESUMEN

Predecir la Vida Útil Restante (RUL) del equipamiento industrial es un pilar fundamental de las estrategias 
de mantenimiento predictivo orientadas a minimizar el tiempo de inactividad y optimizar los costos de man-
tenimiento. Este estudio realiza una evaluación comparativa de dos técnicas destacadas de análisis de su-
pervivencia: el modelo de Riesgos Proporcionales de Cox (Cox PH) y el modelo de Weibull, para la predicción 
del RUL en maquinaria industrial. Analizamos el conjunto de datos AI4I 2020 de Mantenimiento Predictivo 
utilizando un marco analítico sólido que incorpora curvas de supervivencia de Kaplan-Meier, pruebas log-rank 
y modelado de supervivencia multivariante. Nuestra metodología incluyó un detallado preprocesamiento de 
datos, validación de modelos mediante el índice de concordancia (C-index) y el Criterio de Información de 
Akaike (AIC), así como la identificación de predictores significativos de fallo. Los resultados demostraron que 
el modelo Cox PH supera al modelo de Weibull en términos de flexibilidad, precisión predictiva y capacidad 
para manejar múltiples covariables. Este trabajo destaca las fortalezas y limitaciones de ambos modelos y 
enfatiza la superior aplicabilidad del modelo Cox PH para conjuntos de datos industriales complejos. Estos 
hallazgos ofrecen perspectivas prácticas para desarrollar estrategias de mantenimiento más fiables y basa-
das en datos en entornos de la Industria 4.0.
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INTRODUCTION 
In modern industrial environments, predictive maintenance has become essential to ensure equipment 

reliability, reduce unexpected downtimes, and optimize operational efficiency.(1) A key component of this 
strategy is the accurate estimation of the Remaining Useful Life (RUL) of machines. By anticipating when 
a failure is likely to occur, industries can plan timely interventions, thus avoiding unnecessary repairs and 
minimizing production losses.(2)

Survival analysis offers a powerful statistical framework for modeling time-to-event data, especially when 
equipment failures do not occur at fixed intervals and observations may be censored.(3) Among the most 
widely used survival models are the Cox Proportional Hazards (Cox PH) model and the Weibull model. These 
two approaches differ in assumptions and applicability: the Cox PH model is semi-parametric and capable of 
incorporating multiple covariates without assuming a specific baseline hazard,(4) while the Weibull model is 
fully parametric and provides a predefined structure for the failure rate over time.(5)

The prediction of Remaining Useful Life (RUL) employs various approaches, including physics-based, 
statistical, data-driven, and hybrid models. Physics-based models, though highly interpretable, require expert 
knowledge and are limited to specific failure mechanisms. Statistical methods like the Cox Proportional Hazards 
model and the Weibull distribution are widely used in reliability engineering for handling censored data and 
estimating failure probabilities under diverse conditions, as noted by Liu et al.(6) and Gao et al.(7) Meanwhile, 
data-driven techniques, increasingly favored due to abundant sensor data and computational power, encompass 
machine learning and deep learning models, offering high accuracy for complex, high-dimensional datasets 
despite lower interpretability.

This study aims to apply both models to the AI4I 2020 Predictive Maintenance Dataset, which contains real-
world-inspired sensor data and machine failures. Our goal is to compare their effectiveness in predicting RUL, 
interpreting key predictors, and validating the results through established statistical metrics.

The main contributions of this paper are as follows:
We present a comparative study of the Cox PH and Weibull models for RUL prediction in an industrial 

context. We integrate Kaplan-Meier (KM) survival curves and the log-rank test to assess group-based survival 
behavior.(8) We include a detailed data preprocessing pipeline and a robust validation framework using the 
Concordance Index (C-index) and the Akaike Information Criterion (AIC).(9) We identify significant covariates 
affecting machine failure and provide insights for maintenance strategy planning.(10) The remainder of the 
paper is structured as follows: Section 2 provides a review of relevant literature; Section 3 describes the 
theoretical background of survival models; Section 4 details the methodology including data preprocessing, 
feature selection, and validation; Section 5 presents the results and model comparisons; Section 6 discusses 
the findings; and Section 7 concludes the study and outlines future directions.

LITERATURE REVIEW
Recent research by (6,11) has demonstrated the integration of deep learning with survival models for improved 

RUL estimation. Xu et al. proposed a federated learning architecture combining adaptive sampling and ensemble 
strategies for aircraft engine RUL prediction, offering both data privacy and generalization performance. 
Similarly, Zhang et al.(12) presented a Wiener process-based degradation model enhanced with external condition 
variables, showing that hybrid models can capture both observable and latent factors affecting degradation.

Hybrid approaches aim to combine the strengths of physics-based and data-driven methods. For instance, 
Zhang et al.(13) developed a hybrid framework combining Weibull-based degradation modeling with machine 
learning, balancing interpretability and predictive power. Such models are especially useful in industrial settings 
where partial knowledge of the failure mechanism exists alongside rich sensor data.

Reliability-centered maintenance (RCM) approaches also emphasize the strategic integration of reliability 
principles into predictive maintenance. As Smith et al.(14) suggested, embedding RCM in predictive frameworks 
leads to significant improvements in uptime and resource allocation.

Despite the increasing interest in AI-based methods, traditional statistical models like Cox PH remain highly 
relevant. They provide interpretable hazard ratios, allow the inclusion of multiple covariates,(15) and perform 
well in scenarios with censored data an aspect often overlooked by black-box machine learning models.

In summary, although deep learning models are advancing rapidly, survival analysis models remain essential 
tools thanks to their interpretability and proven reliability in industrial applications. Nevertheless, there is a 
notable lack of studies directly comparing the Cox Proportional Hazards (Cox PH) model and the Weibull model 
on real-world industrial data, particularly those that simultaneously address model validation, the influence of 
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predictive features, and the interpretability of failure mechanisms. To address this gap, the present study aims 
to conduct a comprehensive and rigorous evaluation of both models using the AI4I 2020 Predictive Maintenance 
Dataset, with the general objective of determining their relative strengths and suitability for predicting the 
Remaining Useful Life (RUL) of industrial equipment.

THEORICAL BACKGROUND 
Cox Proportional Hazards Model

The Cox Proportional Hazards model is a semi-parametric method that estimates how covariates affect the 
hazard of failure without specifying the baseline hazard function. Its hazard function is:

ℎ(𝑡𝑡|𝑥𝑥) = ℎ0(𝑡𝑡) ∗ 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽1 𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + ⋯ + 𝛽𝛽𝑝𝑝𝑋𝑋𝑝𝑝) 
 

𝑓𝑓(𝑡𝑡; 𝜆𝜆, 𝛽𝛽) = β
λ  (𝑡𝑡

𝜆𝜆)
𝛽𝛽−1

exp [− (𝑡𝑡
𝜆𝜆)

𝛽𝛽
] 

 

𝑆𝑆(𝑡𝑡) = ∏  
𝑡𝑡𝑡𝑡≤𝑡𝑡

(1 − ⅆⅈ
𝑛𝑛𝑖𝑖

) 

 

𝐿𝐿𝐿𝐿𝐿𝐿 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
∑ (𝑂𝑂𝑖𝑖 − 𝐸𝐸𝑖𝑖)2

𝑖𝑖
∑ 𝑉𝑉𝑖𝑖𝐼𝐼

 

 

where h0(t) is the baseline hazard and exp(β) gives hazard ratios, offering interpretable measures of risk

Weibull Model
The Weibull model is a parametric survival model used in reliability engineering, assuming failure times 

follow a Weibull distribution. Its density function is:ℎ(𝑡𝑡|𝑥𝑥) = ℎ0(𝑡𝑡) ∗ 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽1 𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + ⋯ + 𝛽𝛽𝑝𝑝𝑋𝑋𝑝𝑝) 
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The shape parameter β\betaβ indicates decreasing (<1), constant (=1), or increasing (>1) hazard rates.

Kaplan-Meier Estimator
The Kaplan-Meier estimator is a non-parametric method for estimating survival probabilities from time-to-

event data, especially useful with censored observations. The survival function is calculated as:

ℎ(𝑡𝑡|𝑥𝑥) = ℎ0(𝑡𝑡) ∗ 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽1 𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + ⋯ + 𝛽𝛽𝑝𝑝𝑋𝑋𝑝𝑝) 
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where is the number of failures at time  and  the number at risk. It’s widely used for visualizing survival 
curves.

Log-Rank Test
The log-rank test is a non-parametric method for comparing survival curves between groups, testing the null 

hypothesis of no difference in survival. The statistic is:

ℎ(𝑡𝑡|𝑥𝑥) = ℎ0(𝑡𝑡) ∗ 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽1 𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + ⋯ + 𝛽𝛽𝑝𝑝𝑋𝑋𝑝𝑝) 
 

𝑓𝑓(𝑡𝑡; 𝜆𝜆, 𝛽𝛽) = β
λ  (𝑡𝑡

𝜆𝜆)
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Where Oi and Ei are the observed and expected events in group i, and Vi is the variance. A significant result 

indicates differences in survival distributions

METHOD
Dataset Overview

This study is an applied, quantitative research project based on secondary data analysis. Applied research 
focuses on solving practical problems using scientific methods, while quantitative research relies on numerical 
data and statistical techniques. The study employs survival analysis, a statistical approach used to examine 
the time until the occurrence of a specific event, in this case, machine failure. In this context, the variable 
(Tool wear [min]) serves as the time variable, representing the duration until failure, and the binary variable 
“Machine failure” acts as the event indicator, identifying whether a failure has occurred (1) or not (0). The 
research utilizes the AI4I 2020 Predictive Maintenance Dataset, which contains 10,000 records and 14 variables 
describing operational conditions of industrial equipment, including air and process temperatures, rotational 
speed, torque, tool wear, machine failure events, and failure types. Additionally, machines are categorized into 
three types L, M, and H enabling subgroup analysis to explore potential differences in failure behavior across 
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machine types.

Key Parameters
The AI4I 2020 Predictive Maintenance Dataset includes several critical variables essential for modeling 

machine failures and predicting Remaining Useful Life (RUL). The most relevant concepts and parameters for 
this study are summarized below:

•	 UDI (Unique Identifier): A unique code assigned to each data record, used for accurate referencing 
and tracking within the dataset.

•	 Product ID and Type: Identify the specific machine type or product category being manufactured. 
These variables enable differentiation between machines and analysis of failure patterns across different 
product lines.

•	 Air Temperature [K]: The ambient temperature surrounding the machine, measured in Kelvin. 
Environmental conditions like temperature can significantly influence machine performance and the 
likelihood of failure.

•	 Process Temperature [K]: Reflects the internal temperature during machine operation. Elevated 
process temperatures may signal abnormal conditions or emerging faults.

•	 Rotational Speed [rpm]: Indicates how fast machine components rotate, measured in revolutions 
per minute. Higher speeds generally accelerate wear and increase the risk of mechanical failures.

•	 Torque [Nm]: Measures the twisting force applied to machine components in Newton-meters. 
Excessive torque can cause mechanical stress, leading to premature wear or failure.

•	 Tool Wear [min]: Represents the cumulative operational time of cutting or machining tools, 
measured in minutes. Tool wear is a crucial indicator of degradation and serves as the time variable in 
survival analysis for RUL prediction.

•	 Machine Failure: A binary variable where 1 indicates the occurrence of a failure event, and 0 
indicates normal operation. This serves as the event indicator in survival analysis models and is the 
primary target variable for predictive maintenance applications.

Failure Types: Categorize the specific nature of failures observed in the machines:
•	 Heat Dissipation Failure (HDF): Caused by inadequate heat removal, leading to overheating and 

potential damage to components like motors or bearings.
•	 Power Failure (PF): Results from fluctuations or interruptions in the power supply, potentially 

causing system shutdowns or damage to electrical parts.
•	 Overstrain Failure (OF): Occurs when machines operate beyond their designed capacity, resulting 

in excessive stress and potential breakdowns.
•	 Random Failure (RF): Unpredictable failures with no clear root cause, possibly linked to material 

defects, environmental changes, or operational errors.
•	 Tool Wear Failure (TWF): Progressive deterioration of tools due to friction, heat, and repeated use, 

ultimately leading to functional failures.

These parameters are essential for understanding the operational conditions, degradation processes, and 
failure mechanisms of the industrial equipment. 

Data Preprocessing  
A robust data preprocessing pipeline was implemented to ensure data quality:

•	 Missing Values: The dataset had no missing entries. However, we verified consistency by scanning 
for null values and applying imputation techniques when necessary.

•	 Outlier Detection: We employed interquartile range (IQR)-based filtering and visual methods 
(boxplots and scatter plots) to identify and treat outliers, especially in sensor readings (e.g., extreme 
torque or speed values).

•	 Censoring: As is typical in industrial settings, some observations were right-censored—i.e., 
machines that had not yet failed at the end of the observation period. These were appropriately handled 
by both the Cox and Weibull models.

•	 Feature Encoding: The categorical variable ‘Type’ (L, M, H) was encoded using one-hot encoding 
for compatibility with survival models.

•	 Normalization: Continuous variables (temperatures, torque, speed) were scaled using standard 
normalization to ensure numerical stability during model fitting.

Feature Selection and Multicollinearity
To avoid overfitting and reduce redundancy, we performed feature selection using the following steps:
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•	 Correlation Matrix: Pearson correlation analysis was applied to assess collinearity between numeric 
variables.

•	 Variance Inflation Factor (VIF): VIF scores were calculated, and features with VIF > 5 were evaluated 
for potential exclusion.

•	 Domain Knowledge: Variables such as air temperature, torque, and tool wear were retained based 
on their known influence on mechanical degradation.

Model Development
Two survival analysis models were developed and trained:

•	 Cox Proportional Hazards (Cox PH): A semi-parametric model that estimates the impact of 
covariates on the hazard rate. Model fitting was done using partial likelihood estimation.

•	 Weibull Model: A fully parametric model where scale (λ) and shape (β) parameters were estimated 
using maximum likelihood estimation (MLE).

•	 We also used Kaplan-Meier estimators to generate survival curves for each machine type and the 
log-rank test to assess statistical differences between group survival distributions.

A pair plot analysis confirmed expected physical behavior: torque and rotational speed are inversely related, 
and tool wear appears evenly distributed.

Figure 1 present the heatmap of the correlation matrix visualizes the relationships between dataset features, 
with correlations ranging from -1 to 1. Key observations include: Strong Positive Correlation: A 0,88 correlation 
between Air temperature and Process temperature suggests they increase together, indicating environmental 
impact on machinery.

Strong Negative Correlation: A -0,88 correlation between Rotational speed and Torque reflects the principle 
that higher speeds require lower torque, confirming expected mechanical behavior.

Moderate Positive Correlations with Machine Failure: Machine failure shows moderate correlations with 
Heat Dissipation Failure (0,58) and Power Failure (0,52), highlighting these as significant contributors to overall 
failure.

Figure 1. Correlation Matrix Heatmap

Workflow charter
The complete RUL prediction pipeline is shown in figure 2. It starts with data acquisition, followed by 

preprocessing, exploratory analysis, feature selection, and parallel modeling using Cox PH and Weibull. 
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Validation and comparison metrics guide model interpretation and deployment.

Figure 2. prediction methodology workflow chart

Model Validation Strategy
To evaluate model robustness and generalizability, we employed a stratified 5-fold cross-validation strategy 

on the training data. Performance was assessed using:
•	 Concordance Index (C-index): To measure the rank correlation between predicted and observed 

survival times.
•	 Akaike Information Criterion (AIC): To compare model fit quality.
•	 Residual Plots and Schoenfeld Tests: To assess the proportional hazards assumption for the Cox 

model.
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The dataset was split into 70 % training and 30 % testing sets, maintaining the event distribution across sets. 
Validation metrics were computed on both training and testing partitions to assess overfitting.

Exploratory Data Analysis (EDA)
An initial correlation matrix heatmap revealed strong dependencies between variables:

•	 Air temperature and Process temperature: strong positive correlation (ρ = 0,88)
•	 Rotational speed and Torque: strong negative correlation (ρ = -0,88)
•	 Machine failure moderately correlated with Heat Dissipation Failure (ρ = 0,58) and Power Failure 

(ρ = 0,52)

RESULTS
The Kaplan-Meier estimator was used to generate survival curves for each machine type. Next, the log-

rank test was applied to compare survival distributions between the machine types and to determine whether 
significant differences in failure rates actually exist (16,17) Both Cox PH and Weibull models were fitted to the 
data. Covariates in the Cox PH model included air and process temperature, rotational speed, torque, and tool 
wear, thus allowing estimation of how the effect of these variables influences the hazard for machine failure.(18)

For the Weibull model, shape and scale parameters are determined by the method of maximum likelihood. 
The process enables the model to account for different failure behaviors of the Machinery.  The process may 
have some deviation from the normal procedures, which may be related to the scope of the research.

Figure 3. Pair plot of selected Features

Figure 3 present the pair plot reveals the distributions and relationships between Tool wear, Process 
temperature, Torque, and Rotational speed. Histograms show that Tool wear is uniformly distributed and 
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Process temperature has a normal distribution centered around 310°C, indicating stable operations. 
A strong inverse relationship exists between Torque and Rotational speed, reflecting fundamental mechanical 

principles. However, Tool wear lacks strong linear relationships with other variables, suggesting it may be 
influenced by complex interactions. These insights highlight the need for advanced modeling techniques like 
Cox and Weibull models to capture non-linear effects and improve RUL predictions.

Torque and Rotational Speed: Torque displays a bell-shaped distribution, while Rotational speed shows a 
peak around 1500 RPM, indicating that most machines operate within specific, optimized ranges for these 
variables.

Kaplan-Meier Survival Curves
Kaplan-Meier curves were generated for the three machine types (L, M, H). Key findings:

•	 Type L showed the highest survival probability throughout the observed tool wear duration.
•	 Type M experienced the fastest degradation, with the steepest drop in survival probability.
•	 Type H had intermediate performance.

As Tool Wear exceeds 200 minutes, both the Kaplan-Meier survival curves and the Cumulative Distribution 
Function (CDF) curves figure 4 reveal critical differences in the failure behaviors of the different component 
types (M, L, and H). 

The Kaplan-Meier curves show that after 200 minutes, the survival probabilities start to diverge, with Type 
L showing the highest likelihood of survival, followed by Type H, and then Type M, which declines more rapidly. 
Simultaneously, the CDF curves indicate that Type L components experience a steep rise in failure probability 
after 200 minutes, suggesting that these components are more prone to fail earlier compared to Types M and H, 
with Type H showing the slowest accumulation of failures. By 250 minutes, both sets of curves converge towards 
a survival probability near zero and a CDF probability of one, indicating that nearly all components have failed 
by this point regardless of type, marking the end-of-life for these components.

Figure 4. Kaplan Meier Survival and Cumulative Distribution Function curves by type  

Log-Rank Test
The Log-Rank test was performed to compare the survival distributions of machine components under three 

different operational conditions, labeled as Types M, L, and H. The results revealed varying degrees of statistical 
significance between the groups. 

When comparing Type M and Type L, the p-value was 0,0501, which is just above the conventional threshold 
of 0,05. 

This suggests that there is no statistically significant difference in the survival distributions between these 
two types, although the result is borderline and may warrant further investigation. 

The comparison between Type M and Type H yielded a p-value of 0,1046, indicating no significant difference 
in their survival times, implying that components under these two conditions exhibit similar failure behaviors. 
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However, the comparison between Type L and   Type H showed a p-value of 0,0057, which is well below 0,05, 
indicating a statistically significant difference in their survival distributions. 

This suggests that the operational conditions or inherent characteristics of Type L and Type H components 
lead to different failure rates, with Type L and Type H components experiencing significantly different patterns 
of reliability and failure.

Table 1. P-values for Pairwise Comparisons Between Machine Types Using the Log-Rank Test

Comparison P-value Interpretation

Type M vs. Type L 0,0501 No statistically significant difference (p-value ≈ 0,05)

Type M vs. Type H 0,1046 No statistically significant difference

Type L vs. Type H 0,0057 Statistically significant difference

Weibull Model Results
The Weibull model is fitted using the time-to-event data, which estimates the scale (λ) and shape (β) 

parameters of the Weibull distribution
The survival function plot using the Weibull model provides important insights into the likelihood that a 

machine component will continue to function over time as it accumulates tool wear
The survival curve estimated by the Weibull model, applied to the tool wear data (Tool Wear), reveals an 

initially high survival probability that decreases exponentially as wear increases. This behavior is typical of the 
Weibull model, where the scale parameter λ is estimated at 639,09 minutes, indicating a typical lifespan before 
a significant failure occurs. The confidence interval for λ, though not explicitly mentioned here, likely reflects 
robustness in the estimation, with very high statistical significance (p < 0,001).

The curve presented in the figure 5 illustrates the survival function estimated by the Weibull model, applied 
to the tool wear data (Tool Wear), expressed in minutes. The survival function shows an initial probability close 
to 1, which gradually decreases as tool wear increases.

This characteristic decline in the Weibull model reflects an increasing risk of failure as wear accumulates. 
The shape parameter β, estimated at 2,09 suggests a rising failure rate, indicating that as tools wear down, 
the risk of failure increases rapidly.

The confidence intervals, represented by the shaded areas around the curve, reflect the uncertainty of the 
estimates. In the early stages of wear, these intervals are relatively narrow, indicating greater certainty in 
survival estimation. However, as wear reaches higher levels, the confidence intervals widen, reflecting growing 
uncertainty, likely due to the scarcity of data for high wear values.

Although the Weibull model is known for its flexibility in modeling increasing, decreasing, or constant failure 
rates, the results obtained here suggest that, while it captures the general trend of component survival, it 
may under or overestimate the survival probability in certain specific wear ranges. The median survival time, 
estimated at around 536,29 minutes, provides a clear indication of when 50 % of the components are likely 
to fail. This observation highlights the need to consider the model’s limitations, particularly for long-term 
forecasts, and potentially compare it to non-parametric methods like Kaplan-Meier to ensure the robustness of 
conclusions. These results offer a deep understanding of component survival behavior but also call for caution 
when interpreting survival predictions for high wear values.

Figure 5. Survival Function and CDF using Weibull Model
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Figure 6. Weibull Survival Curve Vs Kaplan Meier Curve

The figure 6 compares two different approaches to estimating tool lifespan: the Weibull model and the 
Kaplan-Meier estimator. The blue curve represents the Weibull model, which shows a gradual decrease in 
survival probability as tool wear increases. In contrast, the orange Kaplan-Meier curve steps down at various 
points, reflecting actual tool failures observed in the data.

Initially, both curves show similar high survival probabilities, indicating tools rarely fail early in their life. 
Beyond 200 minutes, the Kaplan-Meier curve drops sharply, reflecting a sudden rise in failure risk, while the 
Weibull curve declines more gradually, suggesting a slower increase in risk. The Kaplan-Meier confidence 
intervals widen after 200 minutes due to fewer tools remaining, indicating greater uncertainty, whereas the 
Weibull intervals remain narrower, driven by model assumptions rather than data. Overall, Kaplan-Meier closely 
tracks actual data but loses reliability over time, while the Weibull model offers smoother predictions that may 
oversimplify reality. Combining both methods can provide a more comprehensive understanding of tool lifespan 
and reliability.

Cox PH Model Results

Table 2. Cox PH Estimates: Coefficients, Hazard Ratios, and Statistical Significance

Covariate Coefficient (log(HR)) Hazard Ratio (HR) p-value 95 % Confidence 
Interval (log(HR))

Air Temp 0,4882 1,629 1,79e-17 (0,376- 0,601)

Process Temp -0,4938 0,610 1,78e-10 (-0,645- -0,342)

Rot Speed 0,0080 1,008 6,32e-123 (0,007-0,009)

Torque 0,2000 1,221 2,24e-168 (0,186-0,214)

Type (L) 0,5315 1,701 2,07e-02 (0,081- 0,982)

Type (M) 0,2896 1,336 0,239 (-0,192- 0,771)

The Cox proportional hazards model results provide valuable insights into the factors influencing machine 
failure. Air temperature has a significant positive effect on failure, with a hazard ratio of 1,63, indicating that 
as air temperature increases, the likelihood of machine failure rises significantly (p < 0,001). 

Process temperature, on the other hand, has a protective effect, as it is negatively associated with failure 
(HR = 0,61, p < 0,001), meaning higher process temperatures reduce the risk of failure. Rotational speed and 
torque are also statistically significant, though their effects differ. Rotational speed has a minor positive effect 
on failure (HR = 1,008, p < 0,001) while torque strongly increases the hazard of failure (HR = 1,22, p < 0,001). 

Regarding machine types, Type L machines have a 70 % higher risk of failure compared to the reference 
group (HR = 1,70 | p = 0,02), while Type M machines show no significant impact (p = 0,239), suggesting that 
machine type M does not significantly influence failure risk.

The significant covariates in this model highlight the need for careful management of air temperature, 
process temperature, torque, and rotational speed to reduce machine failure risks
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Figure 7. Coefficients du Modèle de Cox

The figure 7 illustrates the coefficients from the Cox Proportional Hazards Model, depicting the influence of 
various covariates on the likelihood of machine failure. Each point represents the log-hazard ratio (HR) for a 
given factor, with horizontal bars indicating 95 % confidence intervals.

Type L (Type[T.L]), it shows the largest positive effect on failure risk, with a significantly higher hazard 
compared to the baseline group (Type H), as indicated by its position far to the right of zero and a confidence 
interval that does not cross zero. This suggests that machines of Type L are much more likely to fail. 

In contrast, Type M (Type [T.M]) shows no statistically significant effect on failure risk, with its confidence 
interval crossing zero, meaning it doesn’t strongly affect machine longevity compared to Type H.

Air temperature (Air_temp) also has a notable positive impact on the risk of failure, with a narrow confidence 
interval demonstrating high confidence in the estimate. This indicates that as air temperature rises, so does the 
likelihood of machine failure. Torque shows a similar effect, with a positive coefficient and confidence interval 
that remains above zero, indicating that higher torque increases the risk of failure as well.

On the other hand, Process temperature (Process_temp) has a protective effect, as seen by its negative 
coefficient. The confidence interval doesn’t cross zero, confirming that higher process temperatures significantly 
reduce the failure risk. 

Finally, Rotational Speed (Rot_speed), although showing a very small positive effect on failure, remains 
statistically significant, suggesting that increased speed slightly increases the failure risk, though its influence 
is minor compared to the other variables.

The graph highlights that air temperature, torque, and process temperature are key drivers of machine 
failure, with air temperature and torque increasing the risk, while process temperature reduces it. Machine 
Type L is shown to be more prone to failure, whereas Type M appears to have no significant effect.

The Cox model identified the following covariates as statistically significant:

Table 3. Covariates statistically significant

Covariate Hazard Ratio (HR) p-value Interpretation

Air Temperature 1,63 < 0,001 Higher air temp increases failure risk

Process Temp 0,61 < 0,001 Protective effect

Rot. Speed 1,008 < 0,001 Small positive effect

Torque 1,22 < 0,001 Strong positive effect

Type L 1,70 0,0207 Higher risk compared to Type H

Type M 1,34 0,239 Not significant

Model Validation and Performance Indicators
To compare the performance of the Cox Proportional Hazards model and the Weibull model for predicting 

the Remaining Useful Life (RUL), we implemented a rigorous evaluation approach based on three key indicators: 
the Concordance Index (C-index), the Akaike Information Criterion (AIC), and the median predicted RUL. These 
metrics assess both the accuracy, robustness, and goodness-of-fit of the models.
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C-index Calculation:
The C-index measures the model’s ability to correctly rank pairs of observations based on their predicted 

failure times. A C-index of 1 denotes perfect concordance, while a value of 0,5 corresponds to random ranking.
The C-index was computed using the concordance_index function from the Python lifelines library.
Right-censored pairs were appropriately accounted for in the evaluation.
C-index of 0,9148 for the Cox model (excellent predictive ability), compared to 0,639 for the Weibull model, 

indicating moderate performance.

AIC Calculation:
The Akaike Information Criterion (AIC) evaluates the trade-off between model fit and complexity, based 

on the maximized log-likelihood of the model. For the Cox model, the AIC was derived using the Breslow 
approximation to handle censored observations. For the Weibull model, AIC was calculated based on maximum 
likelihood estimates under the assumption of a fixed parametric form.

Median RUL Estimation:
The median RUL corresponds to the time at which the survival probability reaches 0,5.
For the Weibull model, the median RUL is constant and computed using the scale (λ) and shape (β) parameters 

(Median RUL= λ.(ln(2) )^(1/β)),this yields a fixed median RUL of 500,03 minutes. For the Cox model, due to 
its semi-parametric nature, the RUL estimation is individualized based on the covariates of each observation. 
Personalized survival functions were generated to predict the RUL for each unit.

Table 4. Performance Summary Table

Metric Cox Model Weibull Model

C-index 0,9148 (Excellent) 0,639 (Moderate)

AIC 4184,44 5915,87

Median RUL (minutes) Variable (individualized) 500,03 (fixed)

Model Type Semi-parametric Parametric

Handles Covariates Yes Limited

DISCUSSION 
Interpretability and Feature Significance

The comparison between the Cox Proportional Hazards (PH) model and the Weibull model using the AI4I 
2020 dataset highlights their distinct strengths and limitations, consistent with prior studies in predictive 
maintenance contexts.(19,20) The Cox PH model excels at identifying significant variables by providing hazard 
ratios, p-values, and likelihood ratio tests, clearly quantifying the impact of covariates such as Air temperature, 
Process temperature, Torque, and Machine type on failure risks. Similar findings have been reported by Susto et 
al.(3), who emphasized the Cox model’s strength in handling multiple covariates and censored data effectively. 
In contrast, the Weibull model primarily describes the overall failure distribution through its shape and scale 
parameters but struggles to isolate specific covariate effects clearly.(21) Consequently, while offering useful 
insights into general system behavior, the Weibull model lacks the flexibility and detailed diagnostics of the Cox 
model, particularly in scenarios with time-varying or numerous covariates.

Thus, the Cox model proves more effective for precisely identifying significant predictors of machine failure, 
whereas the Weibull model is more appropriate for broad analyses or when detailed covariate relationships are 
less critical.(22)

Predictive Accuracy and Robustness
The results clearly demonstrate significant performance differences between the Cox and Weibull models 

for RUL prediction using sensor data from industrial equipment. The Cox model exhibited superior predictive 
accuracy with a C-index of 0,9148, reflecting excellent discriminative capability. This aligns with previous 
studies indicating the strong predictive power of semi-parametric survival models when multiple dynamic 
covariates are present. In contrast, the Weibull model showed a moderate performance (C-index = 0,639), 
limiting its application when covariate effects are prominent or variable over time, a limitation also noted by 
recent literature.(23)

Moreover, the Akaike Information Criterion (AIC), which penalizes model complexity, further validated the 
Cox model’s superior performance (4184,44 vs. 5915,87 for Weibull). This outcome aligns with previous research 
highlighting the Cox model’s balance between goodness-of-fit and simplicity, effectively avoiding overfitting 
despite its semi-parametric structure.(19,23)
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One major advantage of the Cox model identified here is its ability to provide personalized RUL predictions 
dynamically adapted to individual machine conditions, similar to findings by Parri et al.(21) Conversely, the 
Weibull model yields a single median RUL based on a global distribution, potentially overlooking variability 
inherent in complex industrial environments.

However, the Cox model relies heavily on the proportional hazards assumption, which, although validated 
in this study, requires careful assessment and potential adjustments in different scenarios.(24) Despite its 
underperformance in our dataset, the Weibull model remains valuable in simpler or predictable wear-out contexts 
due to its straightforward implementation and interpretability, as noted in recent industrial applications.(22,25)

Model Limitations 
Cox Model while robust and effective, the Cox PH model assumes proportional hazards over time, which 

might not always hold true, and can be sensitive to multicollinearity. Therefore, careful feature selection is 
essential to avoid overfitting.(22)

Weibull Model although straightforward to implement and widely utilized in reliability engineering, the 
Weibull model’s assumption of a fixed distribution shape may lead to underfitting or misleading survival 
estimates, particularly in heterogeneous or noisy operational environments.(23,25)

CONCLUSION 
Our findings show that the Cox Proportional Hazards (Cox PH) model outperforms the Weibull model for 

predicting Remaining Useful Life (RUL), achieving higher accuracy (C-index 0,91 vs. 0,64) and better model 
fit (AIC 4184 vs. 5916). The Cox model effectively handles multiple covariates, censored data, and provides 
individualized predictions, making it well-suited for complex industrial environments shaped by dynamic 
factors.

However, it relies on the proportional hazards assumption, requiring validation for each application. The 
Weibull model, though less accurate here, remains useful for systems with predictable wear-out patterns.

This comparative framework paves the way for future research combining survival models with machine 
learning, where hybrid approaches like neural networks integrated with Cox or Weibull models could improve 
prediction while maintaining interpretability
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