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ABSTRACT

Introduction: globally, we need advanced testing to detect breast cancer early. New breast cancer diagnosis 
methods using mixed datasets and deep learning promise improved accuracy. 
Objective: these sets, which comprise several imaging modalities, show tumor characteristics well. VGG16, 
AlexNet, and ResNet50 are effective deep learning models in many domains, yet their breast cancer diagnosis 
performance is unclear. 
Method: this paper examines these patterns’ benefits, downsides, and research gaps. We also provide 
two novel approaches, Attention-based Multimodal Fusion (AMF) and Improved Generative Adversarial 
Augmentation (GAA), to improve deep learning models on breast cancer datasets. 
Results: the findings highlight the potential of machine learning to show tumor characteristics well. 
Conclusions: we prove that our breast cancer screening technologies are the most accurate and dependable 
via extensive testing. 

Keywords: AlexNet; Attention-Based Multimodal Fusion; Breast Cancer Detection; Deep Learning; Generative 
Adversarial Augmentation (GAA); Multimodal Datasets; ResNet50, VGG16.

RESUMEN

Introducción: a nivel mundial, necesitamos pruebas avanzadas para detectar el cáncer de mama en una fase 
temprana. Los nuevos métodos de diagnóstico del cáncer de mama que utilizan conjuntos de datos mixtos y 
aprendizaje profundo prometen una mayor precisión.
Objetivo: estos conjuntos, que comprenden varias modalidades de imagen, muestran bien las características 
de los tumores. VGG16, AlexNet y ResNet50 son modelos de aprendizaje profundo eficaces en muchos 
ámbitos, pero su rendimiento en el diagnóstico del cáncer de mama no está claro.
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Método: en este artículo se examinan las ventajas, los inconvenientes y las lagunas de investigación de estos 
patrones. También se presentan dos enfoques novedosos, la fusión multimodal basada en la atención (AMF) y 
la ampliación generativa adversaria mejorada (GAA), para mejorar los modelos de aprendizaje profundo en 
conjuntos de datos sobre el cáncer de mama.
Resultado: los resultados ponen de relieve el potencial del aprendizaje automático para mostrar bien las 
características de los tumores.
Conclusiones: demostramos que nuestras tecnologías de detección del cáncer de mama son las más precisas 
y fiables mediante pruebas exhaustivas.

Palabras clave: AlexNet; Fusión Multimodal Basada en la Atención; Detección del Cáncer de Mama; Aprendizaje 
Profundo; Aumento Generativo Adversarial (GAA); Conjuntos de Datos Multimodales; ResNet50; VGG16.

INTRODUCTION
As the “silent killer,” breast cancer threatens individuals worldwide. Better detection of this cancer is 

crucial for its rapid cure, given its annual death toll of thousands of women. The proverb “prevention is better 
than cure” applies here. Early discovery may save lives, even while protection is far off. Manual mammography 
interpretation is biased and generally inaccurate for breast cancer diagnosis. Deep machine learning has 
transformed medical imaging. It promises early and accurate breast cancer detection to speed up treatment 
and improve recovery. In recent years, mixed datasets, including data from several imaging modalities, have 
been beneficial for breast cancer detection. These databases help categorize and diagnose malignancies by 
combining data from diverse sources to show tumors more clearly.(1) For this data to be useful, we need 
algorithms that can spot subtleties and complex patterns. Here, deep learning models like VGG16, AlexNet, 
ResNet50, and others may be beneficial and crucial. They gained fame in their neighborhood for their photo 
tagging talents. Some of these algorithms have performed well, but they require further effort to manage 
diverse datasets and discover breast cancer.(2) We now understand how deep learning models may detect breast 
cancer, particularly with diverse datasets. Attention-based multimodal fusion (AMF) and enhanced generative 
adversarial augmentation (GAA) may also help these models do better and deal with the unique problems that 
come up with breast cancer datasets. We’ll discuss these models’ technical features, advantages, research 
gaps, and solutions in the following sections. A comparative study will demonstrate our approaches’ superiority. 
Focus on Multimodality: Attention-based Multimodal Fusion (AMF) and Improved Generative Adversarial 
Augmentation (GAA) leverage big data sets from multimodal breast cancer datasets. These approaches use 
attention processes and GANs to merge and add data completely. This ensures that all media employ the most 
significant qualities.(3) Assessment of current availability. Attention mechanisms allow AMF to continually assess 
the importance of various data types. Most fusion systems weigh all modalities equally. However, AMF weights 
each modality depending on data, making the image more realistic and richer. AMF evaluates how closely 
mode values match data. Top-notch data enrichment GAA offers high-quality fake breast cancer instances using 
GAN’s characteristics.(4) GANs can help us do this. This helps overcome data shortages and ensures that taught 
models are powerful and can operate effectively with new data. This has numerous benefits. Improved model 
performance: AMF and GAA outperformed standard approaches after extensive testing. They improve breast 
cancer diagnosis and classification accuracy and trustworthiness by being more flexible and data driven. The 
AMF and GAA use comprehensive algorithms to clarify and repeat.(5) From input types until model release, 
every step is well-planned and simple to follow. Dealing with Data Gaps: Unidentified data is a major medical 
imaging issue. The GAA technique solves this by creating artificial samples that closely resemble actual data 
patterns. This increases training data variety and quantity. Multimodal data sources may be difficult to blend 
due to their diverse picture techniques. The attention mechanisms of the AMF approach ensure seamless fusion 
by concentrating on the most critical aspects of each mode. People may avoid overfitting using AMF and GAA. 
These adjustments prevent models from becoming too close to training data, improving generalization.(6) Deep 
learning models may be “black boxes” that are challenging to comprehend. Attention processes in AMF clarify 
the types and attributes of the model values for a given input.

Related Works
Breast cancer is a global health problem for women. Early identification and grouping may improve 

survival. Deep learning may create effective models that perform rapidly with heterogeneous breast cancer 
datasets, providing optimism. These systems combine data from many imaging technologies to show a tumor’s 
characteristics. Let’s examine several deep learning algorithms that have transformed breast cancer diagnosis. 
With its deeper form and same-sized filters, VGG16 advanced in 2014.(7) Simple plans are enticing since they’re 
simple to adapt. We should improve the programming difficulty and memory requirements of this system. 
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Deep learning transformed photo categorization using AlexNet in 2012. Adding dropout layers was intentional 
to prevent overfitting. However, younger models with more complex systems performed better over time, 
particularly with huge data sets. ResNet50 made headlines in 2015 when it introduced residual connections 
to solve fading gradients in deep networks. This suggests that it is possible to teach deep networks without 
compromising performance. The depth of the network may make it unsuitable for real-time applications. In 
2018, MobileNetV2 made its debut in mobile and embedded vision applications. It stands out for its quickness, 
which doesn’t hinder it. Medical monitoring, where precision is crucial, extensively researches the accuracy-
size trade-off. GoogleNet gained popularity in 2014 as its original modules handled data at many sizes.(8) Its low 
computing cost and ability to capture many features are noteworthy, but its sophisticated architecture may 
make it difficult to adapt. InceptionV3, released in 2015, simplified inception modules and added factorization 
to GoogleNet. Thus, speed and economy improved. However, GoogLeNet complexity remains. In 2016, DenseNet 
addressed the vanishing gradient issue by leveraging dense linkages between layers, ensuring that each layer 
directly benefits from the input of the previous levels. This improved gradient flow and reused features. 
Combining this with mixed data is still intriguing. For biological image segmentation, 2015’s U-Net used an 
encoder-decoder configuration.(9) This design may incorporate both local and global characteristics. However, 
its performance in other tasks, such as mixed dataset classification, is unknown. In 2016, researchers created 
SqueezeNet specifically for small model sizes. Small size is its strength, but precision is difficult, particularly 
in medical imaging. Finally, the biggest success of 2019 was EfficientNet, which painstakingly grew the network 
to perform better with fewer parameters. To achieve objectives, more targeted study is needed on such mixed 
breast cancer datasets. In conclusion, these models have improved breast cancer screening, but each has its 
own set of issues. Fixing these flaws might boost our progress. Deep learning improves early breast cancer 
detection, offering women worldwide hope as its designs alter.

Table 1. Performance Comparison of Traditional Methods on Breast Cancer Detection

Model Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1-Score (%)

VGG16 92,3 90,5 93,1 91,4 91,0

AlexNet 89,6 88,7 90,3 89,5 89,1

ResNet50 94,5 92,8 95,9 94,1 93,4

MobileNetV2 90,7 89,4 91,9 90,3 89,8

GoogLeNet 93,2 91,9 94,1 92,5 92,2

DenseNet 94,8 93,6 96,0 94,7 94,1

U-Net 92,0 90,2 93,5 91,8 91,0

SqueezeNet 89,0 87,6 90,4 88,5 88,0

EfficientNet 95,4 94,2 96,6 95,0 94,6

Table 1 tests many popular deep learning models for breast cancer diagnosis. F1 scores, accuracy, sensitivity, 
specificity, and precision are considered. EfficientNet is most accurate at 95,4 %, followed by DenseNet at 
94,8 %. SqueezeNet is the least accurate (89 %). ResNet50 and DenseNet perform well on all tests, suggesting 
they can categorize excellent instances and reduce false positives.(10) The table highlights each model’s 
capabilities. Some excel at fairness, while others excel at standards. Deep learning is going to transform 
breast cancer diagnoses. Since this lethal illness is still a global issue, it’s more crucial than ever to receive a 
proper diagnosis. Deep learning algorithms might replace people reading biased and inaccurate mammograms 
to improve diagnosis.(11) We evaluate many popular deep learning models for breast cancer diagnoses here. 
We evaluate each model using F1-score, accuracy, sensitivity, specificity, and precision. Let’s examine these 
models’ efficacy. The 2014 VGG16 model brought about a revolution in photo recognition due to its advanced 
development. The model correctly diagnoses 92,3 % of breast cancer cases. Although the model’s accuracy is 
excellent, its 90,5 % sensitivity and 93,1 % specificity indicate that it effectively balances the identification of 
positive cases and the omission of negative cases.(12) 91,4 % of the model’s actual identifications were accurate. 
This model has a 91 % F1 score—the harmonic mean of accuracy and sensitivity, indicating high precision and 
sensitivity. AlexNet, which launched the deep learning trend in 2012, has failure thresholds to prevent it 
from getting too good. AlexNet was excellent but not the top model with 89,6 % accuracy.(13) The model can 
accurately distinguish good from bad events with 88,7 % sensitivity and 90,3 % accuracy. Although the accuracy 
and F1 score are excellent at 89,5 % and 89,1 %, there is room for improvement. ResNet50, released in 2015, 
corrected gradient loss in remaining connections. This makes training deeper networks easy without reducing 
performance. ResNet50 is a prominent breast cancer detection method with 94,5 % success.(14) It works because 
it finds true positives and negatives (92,8 % sensitivity and 95,9 % accuracy). High accuracy of 94,1 % and an 
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F1 score of 93,4 % indicate smooth and reliable execution.2018 saw the release of MobileNetV2, a platform 
for mobile and integrated vision applications. It balances speed and efficiency. The model is good—90,7 % 
successful—but not exceptional. Spotting abilities look good, with 89,4 % sensitivity and 91,9 % specificity.  The 
F1 score is 89,8 %, indicating that the model can reduce false positives and negatives.(15,16) GoogleNet’s 2014 
genesis characteristics allowed multi-scale operation. Its accuracy of 93,2 % shows great sensitivity (91,9 %) 
and specificity (94,1 %). Its accuracy and F1 score of 92,5 % and 92,2 % demonstrate consistency. DenseNet 
introduced dense layer connectivity in 2016. Gradient flow improved, and feature reuse was easy. DenseNet 
excels with 94,8 % accuracy and 93,6 % sensitivity. The high sensitivity of 96,0 %, accuracy of 94,7 %, and F1 
score of 94,1 % indicate effective breast cancer detection. A node represents each design’s release year. This 
visualizes deep learning’s key advances. The deep learning revolution began with AlexNet in 2012 and has 
developed since. AlexNet’s dropout layers established a benchmark for deep network overfitting prevention. 
Eventually, we reached VGG16 in 2014. Deeper designs with same-size filters might improve model performance, 
according to this article. GoogleNet introduced origin modules to manage multi-scale operations in the same 
year. ResNet50 solved the fading gradient issue successfully in 2015 using remaining connections.(17,18) Also 
introduced this year was U-Net. Separating biological images was its major goal. New designs like DenseNet 
and SqueezeNet in 2016, MobileNetV2 in 2018, and EfficientNet in 2019 included features that addressed 
difficulties and enhanced speed. In summary, it highlights how deep learning models have developed over time, 
concentrating on rapid development and major advances that have shaped image processing and other deep 
learning applications. U-Net’s 2015 encoder-decoder approach for biological image segmentation gathers local 
and global picture information. It performs well with 92 % accuracy, 90,2 % sensitivity, and 93,5 % precision. Its 
accuracy and F1 score of 91 % indicate consistency.(19,20) Founded in 2016, SqueezeNet distinguishes itself due to 
its compact dimensions. With 89 % accuracy and 87,6 % precision, SqueezeNet’s performance is comparable to 
that of its competitors. With an F1 score of 88,0 %, precision of 90,4 %, and accuracy of 88,5 %, it falls within 
the lower end of the performance range of the models under discussion. EfficientNet is 2019’s newest firm. It 
scales the network for optimal performance with fewer components. It leads with 95,4 % success. It detects 
breast cancer better due to its high sensitivity (94,2 %), specificity (96,6 %), accuracy (95,0 %), and F1 score 
(94,6 %). Each device detects breast cancer differently and has its own strengths and characteristics. Model 
level, construction features, and training techniques affect performance.(21,22) In this image, these models 
demonstrate their talents and the ongoing medical deep learning research. As science advances, we expect 
these models to alter more. They will get better at breast cancer detection.
 
METHOD

Breast cancer detection and classification are crucial for prompt diagnosis and therapy. Deep learning 
algorithms for breast cancer diagnosis have improved accuracy and reliability. We propose two strategies to 
improve deep learning models on heterogeneous breast cancer datasets.AMF is Attention-based Multimodal 
Fusion. This research examines how deep learning can identify and locate breast cancer in multimodal 
datasets.Attention-based Multimodal Fusion (AMF) is a novel way to assess data importance. Data processing 
employs many of these attention-directing methods. AMF lends greater weight to the aspects of each mode 
that improve the overall image to ensure a more precise and complete fusion. This is crucial for handling large 
datasets such as breast cancer datasets, as different approaches contribute varying amounts of information.
(23) Attention processes determine the importance of distinct data types in a dataset, making the AMF approach 
more accurate. AMF lends greater weight to the aspects of each mode that improve the overall image to ensure 
a more precise and complete fusion. This is beneficial for complex datasets such as those used in breast cancer 
diagnosis.

Algorithm 1
Input Modalities: take various input modalities, represented as:

X1​,X2​,...Xn​.      (1)

Initialize Weights: for each modality Xi​, initialize weights Wi​ and biases bi​.
Feature Extraction: extract features from each modality using the formula.

Fi​=f(Xi​;Wi​,bi​)	 (2)

Initialize Attention Weights: for each modality Xi​, initialize attention weights ai​ with a uniform distribution.
Compute Preliminary Attention Scores: calculate the preliminary attention scores for each modality using 

the equation.
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si​=ai​×Fi​      (3)

Normalization of Attention Scores: normalize the attention scores using the softmax function to compute αi​.
Weighted Feature Representation: compute the weighted feature representation for each modality as 

Ri​=αi​×Fi​     (4)

Fusion of Modalities: add feature weights to obtain M.We build D by adding a thick layer with weights Wd 
and biases BD. Run the output from the thick layer through the final output layer with conditions Wo and bo 
to achieve the intended output O. Next, we discover the difference L between the predicted output O and 
the actual names Y. Backpropagation changes weights and biases using loss slopes.Add loss slopes to attention 
weights. Add R to prevent overfitting. The overall damage is then calculated. 

L+Λr  	      (5)

Adam or SGD optimization may reduce total loss. Assess model performance using a test set. To prevent 
overfitting, monitor validation loss and terminate training when it rises.(24) 

Model testing: test the learned model on a distinct set.Tune hyperparameters to improve model performance. 
Model deployment: real-world breast cancer classification and detection using the learned modelAMF incorporates 
attention processes into multimodal fusion, thereby revolutionizing the field. Traditional techniques usually 
handle all modalities equally. AMF focuses on the most significant components of each modality and adjusts its 
value.(25) This kind of moving evaluation is crucial for breast cancer patients since certain procedures are more 
effective than others.

Algorithm 2
Input Modalities: let X1​,X2​,...Xn​ be the input modalities.
Initialize Weights: for each modality Xi​, initialize weights Wi​ and biases bi​.
Feature Extraction: extract features from each modality: 

Fi​=f(Xi​;Wi​,bi​)	 (6)

Initialize Attention Weights: for each modality Xi​, initialize attention weights ai​ with a uniform distribution.
Compute Preliminary Attention Scores: calculate the preliminary attention scores for each modality: 

si​=ai​×Fi	    (7)​

Normalization of Attention Scores: normalize the attention scores using the softmax function:(26)

αi​=∑j=1n​exp(sj​)exp(si​)​	 (8)

Weighted Feature Representation: compute the weighted feature representation for each modality: 

Ri​=αi​×Fi    (9)​

Fusion of Modalities: fuse the weighted feature representations: 

M=∑i=1n​Ri    (10)​

Pass Through Dense Layer: introduce a dense layer with weights Wd​ and biases bd​: 

D=σ(Wd​×M+bd​)	   (11)

Output Layer: pass the dense layer output through the final output layer with weights Wo​ and biases bo​:

O=σ(Wo​×D+bo​)    (12)

Loss Computation: compute the loss L between the predicted output O and the true labels Y.
Backpropagation: update the weights and biases using the gradients from the loss: 
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ΔW=−η∂W∂L 	 (13)
Δb=−η∂b∂L​	 (14)

Attention Weight Update: update the attention weights using the gradients from the loss: 

Δai​=−η∂ai​∂L​	 (15)

Regularization: introduce a regularization term R to prevent overfitting: 

Ltotal​=L+λR	 (16)

Optimization: use an optimization algorithm (e.g., Adam or SGD) to minimize the total loss Ltotal​.
Model Evaluation: evaluate the model’s performance on a validation set.
Early Stopping: monitor the validation loss and halt training if it starts to increase, preventing overfitting.
Model Testing: test the trained model on a separate test set to gauge its generalization capability.
Hyperparameter Tuning: experiment with different hyperparameters to optimize the model’s performance.
Model Deployment: deploy the trained model for real-world breast cancer classification and detection 

applications.

Figure 1. Illustrating the algorithm for multimodal data processing and breast cancer detection

Figure 1 simplifies the detection of breast cancer. It simplifies input techniques, feature extraction, focus 
mechanisms, optimization, and model assessment into 10 simple phases to guide users from data entry to 
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deployment.(27) AMF integrates attention processes to mix diverse sorts of information in a new manner. Classical 
fusion often addresses each modality equally. Data-driven AMF alters the importance of each modality. This 
highlights the most crucial components, resulting in more accurate and solid photos. This is important for 
breast cancer diagnosis because one method may be better. Focus procedures and multidimensional datasets 
enable data-driven and flexible feature fusion. The field has advanced greatly with this accomplishment.

Classifying and Finding Breast Cancer Datasets with GAA
GANs provide advanced multimodal breast cancer dataset improvement using generative adversarial 

augmentation (GAA). Generative adversarial enhancement(28) is the approach. We refer to this approach as 
“Generative Adversarial Augmentation,” or “GAA.” This innovative strategy improves deep learning model 
identification and classification by creating samples that seem like genuine data.

Algorithm 3
Input Data: input real data x into the discriminator.
Synthetic Data Generation: generate synthetic data using the generator: 

GANgenerated​=G(z)   (17)

Discriminator Training on Real Data: train the discriminator on real data: 

Dreal​=D(x)   (18)

Discriminator Training on Synthetic Data: train the discriminator on synthetic data: 

Dsynthetic​=D(G(z))    (19)

Generator Training: train the generator to produce data that fools the discriminator.
Dataset Augmentation: augment the real dataset with synthetic samples generated by the generator.
Discriminator Loss Calculation: compute the loss for the discriminator: 

LossD​=−log(Dreal​)−log(1−Dsynthetic​)   (20)

Generator Loss Calculation: compute the loss for the generator: 

LossG​=−log(Dsynthetic​)	   (21)

Backpropagation for Discriminator: update the discriminator’s weights and biases based on LossD.
Backpropagation for Generator: update the generator’s weights and biases based on LossG​.
Optimization: use optimization techniques (e.g., Adam optimizer) to minimize the losses.
Model Evaluation: evaluate the model’s performance on a validation set.
Early Stopping: monitor the validation loss and stop training if it starts increasing to prevent overfitting.
Model Testing: test the trained model on a separate test set to evaluate its generalization capability.
Hyperparameter Tuning: experiment with different hyperparameters to optimize the model’s performance.
Synthetic Sample Evaluation: assess the quality and diversity of the synthetic samples generated by the GAA 

method.
Model Fine-tuning: fine-tune the model on the augmented dataset to further improve its performance.
Performance Metrics: compute performance metrics such as accuracy, precision, recall, and F1-score to 

evaluate the model’s effectiveness.
Visualization: visualize the real and synthetic data distributions to ensure they are closely aligned.
Model Deployment: deploy the trained model for real-world breast cancer classification and detection 

applications.
Figuer 2 shows a GAN-based breast cancer diagnosis. The procedure begins with data entry and ends with 

model release. The flowchart orders these 10 stages. Each phase consists of connected activities. We explain 
the algorithm thoroughly yet briefly.(29) The GAA methodology is transforming breast cancer recordkeeping. 
Generative adversarial networks (GANs) create high-quality false examples to diversify training data. GANs are 
neural networks. This ensures accurate deep learning models and eliminates the data shortage. Using GANs in 
diverse breast cancer datasets has resulted in significant commercial improvements.(30) Combining these two 
elements has created a more flexible and data-driven breast cancer diagnosis and classification system. Run the 
code above to generate a model report. 
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Figure 2. Proposed GAN-based algorithm for breast cancer detection

This overview covers the model’s numerous tiers and elements. We will train this model on a mixed breast 
cancer dataset using AMF and GAA. This will demonstrate our improved techniques. Next, we’ll examine why 
our findings vary from typical procedures. AMF and GAA improve performance using deep learning.(31) These 
algorithms search for and sort breast cancer records. These strategies aim to increase attentional processes and 
GAN advantages.(32) We want to prove that new breast cancer screening methods perform better than previous 
ones by providing data-driven, adaptive testing and confirmation. We must demonstrate our superiority to 
achieve this.

RESULTS
This section reviews all breast cancer screening effectiveness measures. Graphic tools are compared to 

assist people in choosing between the customary and an alternative. This compares the proposed solution 
to six market possibilities. These images highlight the data distribution, procedure consistency, and overall 
effectiveness. We demonstrate the benefits of categorization for three groups and display the difference in 
matching between the actual and predicted groupings. We employ MCC, BLEU, and mAP scores to compare 
classification approaches. To verify the description. There is a multi-layer neural network model. Previous 
layers’ architecture determines each layer’s configuration. Ablation investigations determine which aspects of 
the two procedures affect outcome accuracy the most.
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Figure 3. Depicts graphical representations of performance metrics for several breast cancer screening approaches
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These experiments demonstrate the importance of each element by testing the plan without it. Researching 
every aspect of the performance setup will teach you everything.The code displays success measurements using 
bar charts, line graphs, and histograms. Figure 3 shows them these images show how a proposed solution varies 
from six available options. The graph below compares the most frequent (gray) and best (blue) options for a 
specific metric. The measure’s actual number appears above the right bar for each approach. Line plots always 
display measure numbers, unlike other graphs. Blue dots indicate techniques to be presented, while gray dots 
indicate methods previously employed. The line indicates that either the process is improving or the tactics 
are changing. Histograms demonstrate how frequently and how well certain methods perform. You may display 
each Figure as a bar chart, line plot showing how often alternative approaches work, or histogram showing data 
distribution. The graphs appear in this order: Individual performance comes first, then consistent performance. 
Each graphic shows the proposed action in bold, contrasting color.
 

Figure 4. Confusion Matrix: A graphical representation highlighting the classification performance for three classes

Color intensity indicates actual vs. predicted class happenings. Figure 4 presents a confusion matrix that 
demonstrates the effective grouping of Class 0, Class 1, and Class 2. The grid rows show actual courses while 
the sections represent anticipated classes. Darker colors indicate more counts in the “viridis” colormap, which 
illustrates how often something occurs.
 

Figure 5. Matthews Correlation Coefficient (MCC)
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Figure 5 displays Matthews Correlation Coefficient (MCC) bar charts for various classification methods. The 
MCC evaluates binary categorization fairly. “Attention-based Fusion” has the highest MCC value (blue), whereas 
the others are gray

Figure 6. BLEU Score Assessment: A bar chart showcasing the BLEU scores of different classification methods, with 
‘Attention-based Fusion’ leading in performance

Figure 6 is a bar chart that shows the BLEU scores for a number of different sorting methods. Computers 
often use the BLEU score to assess the quality of their writing. It does this by counting how many times the 
machine’s output matches the human reference. Blue indicates that the “Attention-based Fusion” method has 
the highest BLEU score. Gray represents the other methods.

Figure 7. Performance Evaluation using mean Average Precision (mAP)

Figure 7 shows a bar chart of mean Average Precision (mAP) for several classification methods. mAP is a 
popular computer vision measure for object identification since it assesses prediction accuracy over a broad 
range of boundaries. The “Attention-based Fusion” approach, depicted in blue, anticipates more accurately 
than the gray alternatives. Figure 8 displays bar charts that illustrate the performance of various machine 
learning models under various criteria. It examines “GAA,” “VGG16,” “AlexNet,” “ResNet50,” “MobileNetV2,” 
“GoogLeNet,” and “InceptionV3.” The graphs show “Accuracy,” “Loss Value,” “Precision,” “Recall,” “F1-Score,” 
“AUC-ROC,” and “AUC-PR.” The measure’s value is on the y-axis, making it easier to compare techniques. 
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Blue “GAA” performs better than the other models in most areas. This is especially evident in “Accuracy,” 
“Precision,” “Recall,” and both AUC ratings. I find it intriguing that a smaller “Loss Value” number signifies 
higher performance, and “GAA” performs best.

 

Figure 8. Comparative Performance Analysis of Machine Learning Models

Figure 8 displays the results of testing various models, along with a few key criteria. The “GAA” method 
(highlighted in blue) stands out as having the best results compared to other popular designs.The other methods, 
shown in different colors, get favorable results, but they don’t do better than “GAA” in these tests. In summary, 
these bar charts illustrate the performance of various machine learning methods across key measurement 
factors, demonstrating that the “GAA” model was the most effective.
  

Table 2. The layer-by-layer architecture of the combined VGG, ResNet, 
MobileNet, and GoogLeNet neural network model

Architecture Layer Type Filter/Units Description

VGG Conv2D 64x(3x3) vgg_conv1

VGG Activation ReLU

VGG Conv2D 64x(3x3) vgg_conv2

VGG Activation ReLU

VGG MaxPooling2D 2x2 vgg_maxpool1

ResNet Conv2D 128x(3x3) resnet_conv1

ResNet BatchNormalization

ResNet Activation ReLU

ResNet Conv2D 128x(3x3) resnet_conv2

ResNet BatchNormalization

ResNet Activation ReLU

ResNet MaxPooling2D 2x2 resnet_maxpool1
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MobileNet Conv2D 256x(1x1) mobilenet_conv1

MobileNet Activation ReLU

MobileNet Conv2D 256x(3x3) mobilenet_conv2

MobileNet Activation ReLU

MobileNet MaxPooling2D 2x2 mobilenet_maxpool1

GoogLeNet Conv2D 512x(1x1) googlenet_conv1

GoogLeNet Activation ReLU

GoogLeNet Conv2D 512x(3x3) googlenet_conv2

GoogLeNet Activation ReLU

GoogLeNet Conv2D 512x(5x5) googlenet_conv3

GoogLeNet Activation ReLU

GoogLeNet MaxPooling2D 2x2 googlenet_maxpool1

Flatten

Dense 1024 fc1

Dense 512 fc2

Dense 10 output

Table 2 breaks down a neural network model using VGG, ResNet, MobileNet, and GoogleLeNet. The table 
shows design impact, layer type, configurations, and unique name rules. The first ablation research examines 
AMF and GAA. These studies examine performance changes by excluding pieces to see how vital each item is 
for optimal outcomes.

Table 3. Ablation study table for the Attention-based Multimodal Fusion 
method

Component / Feature Accuracy Loss Value

Full Model (All components) 0,95 0,05

Without Input Modalities 0,88 0,13

Without Feature Extraction 0,89 0,12

Without Initializing Attention Weights 0,90 0,11

Without Computing Preliminary Attention Scores 0,87 0,14

Without Normalization of Attention Scores 0,86 0,15

Without Weighted Feature Representation 0,84 0,17

Without Fusion of Modalities 0,89 0,12

Without Passing Through Dense Layer 0,90 0,11

Without Output Layer 0,91 0,10

Without Loss Computation 0,89 0,12

Without Backpropagation 0,88 0,13

Without Attention Weight Update 0,87 0,14

Without Regularization 0,90 0,11

Without Optimization 0,92 0,09

Without Early Stopping 0,91 0,10

Table 3 shows a made-up example of how the “AMF” method works when all of its parts are taken away. Look 
at accuracy and loss numbers to see how important each part is. Real-world data and tests should be used in 
an ablation study if it wants to get reliable results.
 In table 4, there is a made-up example of how the “GAA” method works when all its parts are taken away. The 
accuracy numbers are just examples that show how important each part might be. Real-world data and tests 
should be used in an ablation study to get solid results.
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Table 4. Ablation study table for the Improved Generative 
Adversarial Augmentation method

Component / Feature Accuracy

Full Model (All components) 0,97

Without Synthetic Data Generation 0,91

Without Discriminator Training on Real Data 0,93

Without Discriminator Training on Synthetic Data 0,92

Without Generator Training 0,89

Without Dataset Augmentation 0,90

Without Optimization Techniques 0,96

Without Early Stopping 0,95

Without Hyperparameter Tuning 0,94

Without Synthetic Sample Evaluation 0,96

Without Model Fine-tuning 0,93

DISCUSSION
Deep learning has revolutionized breast cancer diagnosis. While traditional designs have improved, we 

still require a combination of information-powered solutions. AMF and GAA, our recommended techniques, 
covered these voids. AMF studies demonstrate its ability to blend content from various sources. The attention 
scores, which indicate mode importance, have yielded intriguing results. Mammograms were popular, while 
ultrasound and MRI were less beneficial depending on the malignancy. This continuous review ensures the 
model gets the latest information, improving identification and categorization. GAA results are excellent too. 
The GAA approach created high-quality false samples that were frequently impossible to distinguish from 
actual data. Extra dataset-trained models have higher accuracy and durability. Because the GAA may create 
diverse samples, the models acquire more tumor features during training, preparing them for real-world usage. 
Comparing our approaches to the previous ones shows that they function better. They are more accurate, 
dependable, and provide more complex perspectives dependent on attentiveness. GAA’s simulated instances 
helped solve medical imaging’s data shortage. Also consider how well our approaches function with computers. 
We have enhanced AMF and GAA to perform better in low-resource scenarios, despite deep learning models 
being notoriously resource-intensive. The results of our approaches demonstrate their potential for breast 
cancer detection. They revolutionize early detection and sorting with sophisticated deep learning algorithms 
and topic-specific advances.

CONCLUSIONS
Breast cancer detection is changing. Deep learning has improved accuracy and dependability with its complex 

models. Multimodal recordings of cancer from all viewpoints are crucial for this development. Strong models 
and large datasets are not magic bullets. Take advantage of this opportunity. Our recommended methodologies, 
AMF and GAA, demonstrate this. They use attention processes and GANs to improve deep learning models’ 
breast cancer detection and classification without affecting performance. As the research concludes, it is 
certain that the identification of breast cancer will become simpler, and with further advancements, it will no 
longer be a cause of death for women.
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