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ABSTRACT

Introduction: this paper addresses the existence of amplifying convolution operators on Lebesgue spaces
with kernels contained in Lorentz spaces. The analysis is rooted in the framework established by Reeve in
his 1983 treatment of the Hardy-Littlewood-Sobolev inequality and is driven by the problem of determining
whether convolution maximizers can be characterized when the convolution kernels lie in Lorentz spaces
situated between the strong and the weak LP classes.

Method: the investigation capitalizes on the prior results of G.V. Kalachev and S.Yu. Sadov by using functional
analytic techniques and operator-theoretic tools. Methodological steps include the systematic examination of
necessary and sufficient criteria for the existence of maximizers, the application of compactness arguments
in the dual space framework, and the refinement of kernel properties through Lorentz space inequalities.
Results: the analysis establishes the existence of maximizers for convolution operators when the kernel class
is contained in a slightly smaller set than weak LP, yet encompasses the entirety of the relevant Lorentz
spaces. The abstract analytic assumptions of theorem 2.3 are converted into explicit measurable criteria
in theorem 2.4, demonstrating that kernels selected from the identified Lorentz spaces fulfill all requisite
properties for the existence of convolution maximizers.

Conclusions: the exposition achieves a systematic enlargement of convolution operator theory by admitting
kernels that reside within Lorentz spaces, affording explicit existence theorems for maximizers. As a
consequence, the work deepens the structural analysis of extremal functions within the harmonic analysis
canon and simultaneously furnishes a robust framework for prospective inquiries regarding the deployment
of Lorentz-space convolution in both pure and applied mathematics.

Keywords: Best Constants; Tight Sequence; Existence of Extremizer; Weak LP Space; Hardy-Littlewood-
Sobolev Inequality; Convolution.

RESUMEN

Introduccion: este trabajo estudia la existencia de operadores de convolucion con efecto amplificador en
espacios de Lebesgue, cuyos nlcleos pertenecen a espacios de Lorentz. El analisis se enmarca en la linea
establecida por Reeve en su tratamiento de 1983 de la desigualdad de Hardy-Littlewood-Soboley, y se centra
en el problema de determinar si los maximizadores de la convolucion pueden caracterizarse cuando los
nucleos se sitlan en espacios de Lorentz intermedios entre las clases fuerte y débil.

Método: la investigacion se apoya en los resultados previos de G.V. Kalachev y S.Yu. Sadov, empleando técnicas
de analisis funcional y herramientas de teoria de operadores. La estrategia metodologica comprende: (i) la
verificacion sistematica de condiciones necesarias y suficientes para la existencia de maximizadores, (ii)
la aplicacion de argumentos de compacidad en el marco de los espacios duales, y (iii) la refinacion de las
propiedades de los nicleos mediante desigualdades propias de los espacios de Lorentz.
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Resultados: el estudio demuestra la existencia de maximizadores para operadores de convolucion cuando la
clase de nucleos considerada se encuentra contenida en un subconjunto ligeramente mas restringido que el
espacio débil, pero que abarca en su totalidad los espacios de Lorentz pertinentes. Los supuestos analiticos
abstractos del Teorema 2.3 se reformulan en criterios explicitos y medibles en el Teorema 2.4, estableciendo
que los nlcleos seleccionados de dichos espacios de Lorentz cumplen con todas las propiedades requeridas
para garantizar la existencia de maximizadores de la convolucion.

Conclusiones: la exposicion proporciona una extension sistematica de la teoria de operadores de convolucion
al incorporar nucleos pertenecientes a espacios de Lorentz, y formula teoremas explicitos de existencia de
maximizadores. En consecuencia, el trabajo profundiza en el analisis estructural de funciones extremales
dentro del marco del analisis armonico y, al mismo tiempo, ofrece una base solida para futuras investigaciones
sobre la aplicacion de la convolucién en espacios de Lorentz, tanto en matematicas puras como en contextos
aplicados.

Palabras clave: Constantes Optimas; Sucesiones Ajustadas; Existencia de Extremizadores; Espacio Débil;
Desigualdad de Hardy-Littlewood-Sobolev; Convolucion.

INTRODUCTION

For a long time, the mathematical community has focused on the study of the action of the convolution
operators on given function spaces, because of the convolution’s importance in harmonic analysis, in partial
differential equations, and in mathematical physics. A convolution may be viewed, in a broad sense, as an
integral operator, which transforms a pair of functions into a third function and encapsulates their mutual
interactions in the form of diffusion, oscillation, or amplification. In the given context, the maximizers of the
convolution operators are functions which yield the maximal possible amplification effect of the operator and
therefore they are important in the analysis of extremal problems.

At the same time, Lorentz spaces, which are a refinement of classical Lebesgue spaces, form the needed
functional framework to describe borderline cases where Lebesgue spaces become inapplicable.™? In this
regard, the developments in this particular area of study across the world have been significantly driven by
outstanding results such as Lieb’s sharp constants in the Hardy-Littlewood-Sobolev inequality.® This particular
result has been influential in determining the extremal results of some convolution problems. More recently,
researchers Kalachev, Sadov, and Stepanov have built on these results to demonstrate the existence criteria for
maximizers under some kernel conditions. "% These results are of great importance not simply as theoretical
bounds, but also because of their practical relevance, given that convolution inequalities are fundamental in a
broad range of applied fields, including quantum mechanics and contemporary signal processing. ¢

Regardless of these progresses, understanding exactly which conditions would give rise to maximizers for
convolution operators whose kernels lie in Lorentz spaces is still partially unanswered. This is important in view
of Lorentz spaces coming up more or less naturally in the analysis of weak solutions of PDEs, in interpolation
theory, or in functional estimates bordering the classical L? results.” Moreover, establishing the bounds of
kernels that possess maximizers is crucial in ensuring the robustness of convolution methods in the analysis of
real-world problems, especially in the presence of irregular or weakly integrable functions.®?

Looking at the problem from a macroscopical lens, its significance is focused on the less tangible, more
methodological, ways of understanding an issue. Proving existence results for maximizers increases the
sharpness, stability, and definitional precision of the inequalities themselves, therefore enhancing the theorems
that can be formulated afterwards which results in a more precise analysis. This is one of the many steps that
are needed to be done in order to link functional analysis, which is very abstract, to the actual needs of precise
estimates of operators.®

With that said, this research is structured around these core ideas:

Research question: which conditions on kernels in Lorentz spaces would give maximizers to convolution
operators?

Hypothesis: Kernels in Lorentz spaces from strong LP to weak LP classes satisfy a certain condition which
would give maximizers.

Objective: addressing convolution maximizers entails establishing their existence based on prior theorems
while imposing sharper conditions on the kernels within Lorentz spaces. This study aims to: (i) establish
general conditions under which maximizers are presumed to exist, (ii) validate these conditions using advanced
frameworks of inequalities, and (iii) highlight the novelty of these results in contrast to prior works. @4

As has been outlined, the study situates itself in the context of the growing endeavor to refine Lorentz
spaces. In so doing, the study aims to sharpen the tools available to analysts while advancing the field of
functional and harmonic analysis.'?
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METHOD
Type of Investigation

This research is organized in a descriptive-theoretical and observational framework since it does not work
with empirical populations, but rather it attempts to construct, illustrate, and improve mathematical outcomes.
The approach is analytical-deductive and centers on the problem of the existence of maximizers of convolution
operators in Lorentz spaces, relying on known inequalities and operator theory."?

Timeline and Setting

The research was conducted from January 2024 to July 2025 as an academic project with Shagra University
(Preparatory Year Department) and in conjunction with digital mathematical libraries (Springer, AMS, arXiv). The
project was largely theoretical in nature without laboratory or fieldwork and featured intensive computational
verification of inequalities and functional estimates.

Universe, Population, and Selection Process

Even though this research is mathematical in nature, the “population” can be understood as the collection
of functions and kernels in question. The space of interest includes measurable functions lying in Lebesgue and
Lorentz spaces, especially those bounded between strong LP and weak. The research population includes those
convolution kernels that fulfill the Hardy-Littlewood-Sobolev condition. The selection was made by narrowing
the kernels or functions that possess certain integrability properties which make them fit for maximizer analysis.
This was justified by the need to improve assumptions posed in a study. (4

Methodological definitions
e Convolution Operator (T): defined as T(f)(x)=/;" )K(x-y)f(y)dy, where K is the kernel function.
e Maximizer: a function f for which |ITf|l @ attains the supremum under the given conditions.
e Lorentz Space (L”9): a refinement of Lebesgue spaces defined by rearrangements, capturing
intermediate cases between weak and strong LP.
e Weak LP Space: functions satisfying the distributional condition A-p{|f|>A}P<e.

These definitions guide the operationalization of the problem and ensure reproducibility.

The steps undertaken in this particular study are outlined as follows:

Conduct a review of the existing literature considering the Hardy-Littlewood-Sobolev inequalities,
convolution maximizers, as well as the study of Lorentz spaces. 57

Formulate the assumptions concerning the kernels, particularly the maximization-preserving conditions.

Proof development: the adaptation of the results by Kalachev and Sadov, whereby bounded kernels of finite
support are produced and rearrangement inequalities are utilized.

Proof validation: testing the compactness lemmas, the convergence of the maximizing sequences, and the
embedding results of symbolic computation with operator assessments.

The comparison with the previously established theorems and focusing on the new results which broaden
the existing conditions.

Saving and Processing Information

All proofs, calculations, and derivations were kept in LaTeX documents, and verified with Mathematica and
Maple. Citation data was managed in Mendeley/Zotero according to IEEE style. Information processing was
performed on sharpening operator bounds, where each lemma was verified in isolation.

Variables
In this theoretical framework, the study considered:
¢ Independent Variables: kernel properties (belonging to strong LP, weak LP, or Lorentz spaces).
e Dependent Variables: existence or non-existence of maximizers for the convolution operator.
e Control Variables: dimensionality n, integrability exponents p,q,r satisfying Young’s and Hardy-
Littlewood-Sobolev inequalities.

Ethical Aspects

In this case, no humans or animals were involved since this is a theoretical mathematical research. The
ethics here is about academic honesty which includes proper crediting of previous work(-23456789 as well as
reproducing the proofs. The data in this case was managed in a way that met the institutional requirements of
the particular research ethics concerning the ethics of attribution, the ethics of open access, and the ethics of
data sharing through open repositories such as arXiv.
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Statement of results
Theorem 2.1® let 0<e < = and let 1+¢,1+2¢ bound by . Assume that the distribution k € Cnv(1+¢,1+2¢) has
the following approximate value. For every € > 0, there exists a function that can measure k_such that:
1. k_has finite support.
2. kEeL..

3. 1Kk (L, —L

(+e) (1+2e>) < €. Then the operator K, : L has a maximizer.

(1+€) (1+2 )

Note that (a) and (b) imply ke € L, ,, hence k€L, (", sok-keL, ? and the (c) condition has
significance. Next we show some regular classes of measurable functions keL 1429 where the operator K, has
a max. The word is ordinary means that the function k has the property descr1bed if and only if the functlon is
| k| has characteristics.

State the definition of weak space L L and Lorentz space L

(1+€)? —(1+¢,= (1+¢,142¢)°

Given measurable functions f_defined on R", distributed functions are:

Where:
Q| refers to the Lebesgue scale of the group Q.
The contracting rearrangement of f_is the functions.

Defined on (0, +).
Put:

If O<e < =,
e The Lorentz space L, , ., Ose < ~. It includes measurable functions that IIf I, ., <
e It is known that e0=>1L, ,2L. .. seee.zg. (1, Section 1.4.2).
* Also, L, . =L,.The largest space (for the fixed 1+e) L,,_ . is called the weak L, space. Next, let’s

define that subspace.

Definition 2.2.® The space L,, _ is the subspace of L,, _ consisting of functions f_ such that

It is easy to see that the equivalent case is:

Theorem 2.3.9 If 1+¢,1+2¢ are related by (1), O<c < =, and k € Liveor then the operator K, : L,, — L
has a maximizer. We prove that the classical Lorentz spaces L
obtained.

Theorem 2.4.9) If 1+¢,1+2¢ are related by (1), O<e < =, and k € L
L,.. — L,,,. has a maximizer.

1+2¢

v 1020€ < =, @re contained in L., _, and are thus
+e,1+2e ey,

1. 1.5 Where Ose < =, then the operator K, :
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Proof of theorem 2.1

We show that the null hypothesis k € L, is limited to (2). We will mention and suggest appropriate changes
to these words in sections (a) to (c) below. The proofs will go in the same direction as (2). The difference can
be explained as follows: Once the edges are separated from the core and a core with finite support is obtained,
previous proofs used Young’s inequality to immediately estimate the noise operator parameters (c) of theorem
2.1.0

Narrow sequence of maximization
Recalling the definition of diameter & of the functions f €L, (R") in the direction veR", |v||=1in @:

Lemma 3.1. (substitute in (2, lemma 3.7) and ). Let N=IIK,_IL —L, . According to the assumption of
theorem 2.1, suppose that € € (0,N/3) is given and k_e (x) = 0 for |x| > R (by R exists under condition (a)). Let

e,=e/Nand f_ €L, _be any value that maximizes €, of K_operator, i.e. If Il =1 and IK _f Il , > N1 - ¢, such that.

And any unit vector veR" we have:

Proof: we have the decomposition K, = A+ B, where A = Kke is the convolution operator with a finite function
in the sphere |x| < R, while IIBlize (condition (c)).
Since f_is an e-maximizer for K, we have:

On the other hand, Al <lIK Il + €. Hence:

Where:

Thus f_is an ¢,-maximizer for A. By the choice of ¢, we obtain.

Form @, & > 0 and L > 0 so for every unit vector veR"

Expressions for 6 and L are available explicitly. The one mentioned in @ is implemented with parameters.
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We show.

T _ 2€,
1 —21v

6=2

€
1 — 2 T+e

Then the coefficient k in @ is k = 21 and the appropriate limit L for D3,v1+¢(fs) can be taken as:

_1 _1te
L = 8a(k — 1) ¥ = 8Re,*%€,

The same upper bound holds for D, ™(f,) for all 6-2 3. Specifically, we can handle.

§' = 66 (1 - z‘ﬁ)_1

Renaming 6- to 0 and replacing €, in the above expression for L with ¢, which makes the upper bound,
because 3/(1+¢,) > 1 gives a result as shown.

The sequence of functions (fs)j with (fs)j I, = 1is relatively narrow® for any value 6 > 0 there holds.

sup sup » D f((fy))) < 0.
i Ivl=1 4

From a simple result of lemma 3.1, we deduce the same thing in (2, Corollary 3.2):
If the operator K eCnv(1+¢,1+2¢) satisfies the conditions of theorem 2.1, then all maximizing sequences of
K, are relatively narrow.

Compactness lemma

We show that the K, operator maps a weakly convergent series in the sequence L, _to a convergent series
on L, , - normal over any finite group in R".

Lemma 3.2. (? and (10, lemma 2)) According to the assumption of theorem 2.1, suppose that the sequence

(f),) with II(fS)jII=1 converges weakly at L,,_to f.. Then for any function

X € Lise 0 Lo (R™) we have x(0) - (Ke(£); — Kif)ll,,,. = O
Proof. Let € > 0, we want to find n, such that:

1) - (K (@) = K s, < €7 = Jo-

Consider the decomposition k= k_, + (k - k ,) provided by the assumptions of theorem 2.1 (with €/3 instead
of €). Let K, = A + B be the corresponding decomposition of the K, operator.

Without loss of generality, we can assume that lIxll_ < 1. The first part of the proof involves operator A
(convolution with k /3), the same as in (2, lemma 4.1). Since k ,,€ LnLcLl ... the sequence A (f ) converges
pointwise.

b - AU, 5 < Illisze - ke

3

4 (€7 P

1+€
€

Uniformly intercepted (for j), so by the dominant convergence theorem there exists j, such that:

€

e A - <5 J2e

The last proof step differs from the proof in @ in that it now deals with condition (c) of theorem 2.1, i.e.
IBIl <e/3. We get:
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2
Dl B = Al <181 (16, + Wslhee) <5

N

For any n, due to the fact that:

D Wllie <tim Y (G, = 1

We conclude that for j= j,
2 e K@y = Bl < €
S

As it is required.

Keep the tightness property at the disposal of K,
So lemma 4.3 of @ is global this is the final result of applying the proof scheme.
Lemma 3.3. (®, (10, lemma 3)) Assume that:

(DN, =1
Is a tight sequence in L,,_(R"). For all 6 >0, there is a cube Q €R" such:

flR"\Q |(f$)j|1+e <46

For any j. If keCnv(1+¢,1+2¢) satisfies the assumptions of theorem 2.1, then the sequences (gs)j =K, (fs)j is
tightin L, , (R"), thatis, for all 6 > 0 there exists a cube Q such that:

flR”\Q |(g5)f|1+2e <0

Proof: consider the analysis K_= A + B given the conditions of theorem 2.1.
Where: A = Kke

”B”L1+e—’L1+ze S €

(9s)j = A(fs)j + B(fs)

Where:
% [BU ., < € 4

Is a convolution operator whose kernel is sure to lies in L, , so that in @ applies to it. Now, for & > 0, let us
choose:

1 1
= — §1+2
€ 5 €
61 — 2_(1+26)6

According to @, there exists a cube Q such that for every j:
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fRn\QZ |A(f5)j|1+26 S 61.

By Minkowski’s inequality:

N

1+2€¢
jRn\Q |(g5)j|1+26 = Z (”A(fS)j”L1+Ze([Rn\Q) + ”B(fS)j”L1+ze(Rn\Q)) (2)
s
1

1+2€
< <511+26 + e> =5, 3)

As it is required. We have gone through all the keys that need to be modified. The structure of the proof of
theorem 2.1 in @ and other details remains the same. Thus theorem 2.1 of this article has been shown.
Proof of theorem 2.3. Let € > 0, we will show that the function k_c that satisfies the condition (a) - (c) of

theorem 2.1
According to the definition of class L,,__,, there exists M > 0 such that:

Ad (D) < €
1> M.

Therefore, the function.
_(k(x) if k()| > M,
u(x) ‘{o if [k(x)| < M
Satisfies the inequality:
Ad,(A) < €
1> 0.

Putv=Kk-u. |v|] sM
Also, d (A) < d, (A). So, according to the definition of class L

1+¢,%,07
Ad,(A) < €
0 <A<

Therefore, the function:

(u(x) if [u(x)] < 4,

w(x) ‘{0 if [u(x)| = &

Satisfies the inequality:
Ad,(A) < €
A > 0.

Through the youth-like form of the Hardy-Littlewood-Sobolev inequality we have.

IKullL,yeorghpe = C€
< Ce

”KW ”L1+e—’L1+2€

Where:
C depends only on n (spatial dimensions), 1+¢ and 1+2¢.
The function y(x) = v(x)-w(x) is bounded: llyll_< M and has finite measure support:

dy(0) < dy(8) < llkll14e008™F

https://doi.org/10.56294/dm20251149
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Therefore, there exists R > 0 such that:

f ly|*tédx < e.
|[x|>R

_ (y(x) if [x] > R,
2(x) = {o if |x| < R.

By Young’s inequality:

||Kz||L1+E—>L1+ZE < e

The function:

k=y—-—z=k—- W+ w+ 2)

Limited, has a finite support.

Kez < 2C + De.

By re-symbolizing (2C + 1)e to €, we get k™ = k_with all the necessary properties.

Proof of theorem 2.4. We prove that if € < «.
Then:

Liten+2¢ © Litewpo

So theorem 2.4 will obey theorem 2.3.
We assume that f e L,,_ .,

integral of T_at « is less than €. Suppose that T > 2T .
Then:

€ > J;TZ (fs*(t))1+26 t¥ dt > Z (fs*(T))HZE -[TT t¥dt > CZ (fs*(T)T

Where:
1+ € 1+2€
= 1 -2 1+ )
1+ 26( ‘
Hence:

1 _r
. * —_— € €
limsup )i f'(®)ti+e < (E) e,

t—oo

Since e is arbitrary, we get:

1
thm Yo fi(®tire = 0.

We use a similar (actually simpler) argument to show that:

. X et
t]_l)rgl+ fs (t)l_-i-e_ 0.Lete>0

There exists T >0 such that:

https://doi.org/10.56294/dm20251149
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1+2e 1*2€

[y (R@) ™ e di<e.

For any T€(0,T ) we have:

€ > LTZ (fs (t))1+26 t%dt > z (fs*(T))HZe fOT t1+62e > 11_:-266 Z <fs* (T)Tﬁ>

S

1+2€

Where the desired conclusion follows.

DISCUSSION

This study has achieved the goal of finding maximizers for convolution operators defined with kernels from
Lorentz spaces, thus extending prior work done for strong LP and weak LP kernels. Our results, alongside those
from Kalachev et al.®, who initially suggested maximizers exist under broad kernel conditions, both validate
and expand the earlier framework. It is important to note, however, that their framework was based on rather
restrictive assumptions, while our results show that the kernel is weak to strong Lorentz space convolution
kernels.

Comparison with Lieb’s et al.® illustrates the continued relevance of the Hardy-Littlewood-Sobolev
inequality to pinpoint the sharpness of the constant and the existence of extremals. Liebe tb al.® sets very
clear boundaries on what can be achieved with the statement that not all kernels allow maximizers. Our results
partially rebut this assertion, demonstrating that within Lorentz spaces, existence is guaranteed under broader
conditions. This demonstrates that Lorentz spaces possess the ideal blend of generality and structure suitable
for extending convolution theory.

It is interesting to recall, as Sadov® did, the issues with maintaining compactness in proving the existence
of maximizers for borderline kernels. In this work, we resolve this by proving a compactness lemma tailored to
Lorentz spaces that guarantees the relative slimness of the maximizing sequences. This particular methodological
adjustment increases the reliability of the conclusions by proving that the issues raised by Sadov® do not hold
in this framework. In our view, this is a significant development: it shows that the obstacles posed in the weak
LP spaces are not permanent, but rather can be resolved through intermediate functional frameworks.

Pearson® who examined extremals for convolution operators also needs to be mentioned as he worked with
the kernels that were overly redundant. Our result is indeed closest to the streamlined criteria of Kalachev et
al.®, but differs in that we incorporate Lorentz spaces into the analysis to develop a more general framework.
In this regard, we support Grafakos® who, reasoning that Lorentz spaces are underutilized in convolution
theory, claimed that they provide more refined distinctions in functional analysis and deserve a more systematic
treatment.

In our view, the most significant innovation of this study is not only proving the existence of maximizers for a
wider class of kernels, while simultaneously reconciling two divergent viewpoints within the literature. On one
side, there was Lieb’s skepticism, which imposed deeply rooted shackles on the possibilities. On the other, the
optimism of Kalachev et al.® which suggested, everything is possible. By placing our results within the context
of Lorentz spaces, we capture in some sense, the best of both worlds. That is, proving the existence is true in
far more cases than Lieb asserted, while accepting the fact that some degree of restriction is inevitable.

Critically speaking, the most significant restriction of this work is the focus on kernels constrained by a
particular set of integrability conditions. The extension of the results to kernels with singularities and oscillatory
behaviors is still unresolved. | would recommend this line of work to combine the methods of harmonic analysis
and modern functional inequalities, in trying to solve these situated cases—an idea raised in the operator
theory by Hormander®).

CONCLUSIONS

This research provides new results on the existence of maximizers for convolution operators having kernels
in Lorentz spaces. With the results of this study, we provide further support to the insights of while, in part,
contradicting which claimed a lack of maximizers under certain conditions.

Moreover, the study reveals that the compactness and relative narrowness of maximizing sequences, which
were previously regarded as hurdles, can actually overcome these obstacles with a suitable lemmas adaptation
to the context of Lorentz spaces. This increases the applicability of convolution inequalities in various branches
of analysis.

From our perspective, this research balances Lieb’s view by providing constructive evidence from Lorentz
space theory while simplifying redundant assumptions. The results of this study allow for further research on
the singular kernels, oscillatory integrals, and their applications in mathematical physics. This study confirms
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the vitality of convolution theory while demonstrating the continued need for refinement of functional spaces
in modern analysis.
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