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ABSTRACT

This paper presents AfKh-OpenIMU Generator, an open-source platform developed in Java and deployed via 
Docker, aimed at supporting machine learning research in inertial navigation. The objective is to address 
two major challenges: the high cost of inertial navigation systems (INS) and the lack of large, labeled 
datasets required for training neural networks. Our platform simulates all six inertial sensors, including three 
accelerometers and three gyroscopes, using configurable error models that incorporate bias, scale factor, 
and stochastic noise. From user-defined reference trajectories, it generates raw inertial data and supports 
large-scale data augmentation by varying noise profiles, enabling the creation of diverse datasets without 
requiring physical hardware. Simulation results demonstrate high fidelity with real-world INS performance. 
The generated data yielded root mean square error (RMSE) values of 32,98 meters for low-cost INS, 8,99 
meters for industrial-grade INS, and 1,07 meters for tactical-grade INS. In addition, the data augmentation 
mechanism allows dataset expansion by up to 10 000 times, significantly enhancing training robustness 
and helping to prevent overfitting in deep learning models. Our platform provides a flexible, low-cost, and 
reproducible solution for generating realistic inertial data. It facilitates the development and evaluation 
of machine learning algorithms for sensor fusion and secure navigation, making it particularly valuable for 
research in GPS-denied environments.

Keywords: Inertial Navigation System; Sensor Simulation; Machine Learning Algorithm; Imu Error Modeling; 
Data Augmentation; Overfitting.

RESUMEN

Este artículo presenta AfKh-OpenIMU Generator, una plataforma de código abierto desarrollada en Java y 
desplegada mediante Docker, diseñada para apoyar la investigación en aprendizaje automático aplicada 
a la navegación inercial. El objetivo es abordar dos desafíos principales: el alto costo de los sistemas de 
navegación inercial (INS) y la escasez de grandes conjuntos de datos etiquetados necesarios para entrenar 
redes neuronales. Nuestra plataforma simula los seis sensores inerciales, incluidos tres acelerómetros y 
tres giróscopos, utilizando modelos de error configurables que incorporan sesgo, factor de escala y ruido 
estocástico. A partir de trayectorias de referencia definidas por el usuario, genera datos inerciales en bruto 
y admite una amplia ampliación de datos mediante la variación de los perfiles de ruido, lo que permite crear 
conjuntos de datos diversos sin necesidad de hardware físico. Los resultados de la simulación demuestran 
una alta fidelidad en comparación con el rendimiento real de los sistemas INS. Los datos generados arrojaron 
valores de error cuadrático medio (RMSE) de 32,98 metros para INS de bajo costo, 8,99 metros para INS
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de grado industrial y 1,07 metros para INS de grado táctico. Además, el mecanismo de aumento de 
datos permite expandir el conjunto hasta 10 000 veces, lo que mejora significativamente la robustez del 
entrenamiento y ayuda a prevenir el sobreajuste en modelos de aprendizaje profundo. Nuestra plataforma 
ofrece una solución flexible, de bajo costo y reproducible para generar datos inerciales realistas. Facilita 
el desarrollo y la evaluación de algoritmos de aprendizaje automático para fusión sensorial y navegación 
segura, siendo especialmente útil en entornos sin cobertura GPS.

Palabras clave: Sistema de Navegación Inercial; Simulación de Sensores; Algoritmo de Aprendizaje Automático; 
Modelado de Errores del IMU; Aumento de Datos; Sobreajuste.

INTRIDUCTION
Modern intelligent systems have become pervasive across critical domains ranging from aviation and 

robotics to automotive applications and beyond.(1) While these technologies drive innovation, their widespread 
adoption creates an urgent need for secure, continuous, and reliable navigation solutions.(2,3) The consequences 
of navigation failures—whether a catastrophic automotive collision due to positioning errors or a flawed aircraft 
landing extend beyond endangering lives to imposing severe economic and societal costs. To address these 
challenges, diverse navigation systems have been developed. Global Positioning Systems (GPS), which rely on 
satellite networks to deliver precise worldwide positioning data, remain vulnerable to signal disruptions caused 
by environmental obstructions or intentional attacks such as GPS spoofing and GPS jamming.(4,5,6) These two 
types of attacks, often conducted by malicious actors, pose a serious threat to critical applications that depend 
on such systems. GPS spoofing involves broadcasting fake signals to deceive the receiver, causing significant 
trajectory deviations or deliberately guiding the target to a location chosen by the attacker.(1,7,8,9) On the 
other hand, GPS jamming consists of emitting high-power signals on the same frequency as GPS transmissions, 
effectively overwhelming the legitimate signals and leading the system to compute incorrect positioning 
information.(1)

As a complementary solution, Inertial Navigation Systems (INS) provide autonomous operation through 
onboard triaxial accelerometers and gyroscopes that measure linear accelerations and angular rates.(10,11) Such 
a system uses mechanical sensors embedded in the vehicle, operating independently of external signals—
unlike satellite-based systems like GNSS. This characteristic enables continuous navigation under all conditions, 
including in environments where satellite signals are unavailable or unreliable. However, INS technologies 
face two critical limitations: inherent sensor errors that accumulate rapidly during integration, and the high 
cost of inertial measurement units (IMUs).(9,12) Physical IMUs also introduce additional complexities, including 
configuration challenges and constrained testing scenarios due to hardware limitations.(13)

To overcome the limitations associated with each individual navigation system, numerous solutions have 
been proposed in the literature, exploiting the complementarities between various sensors. Among these, GPS/
INS fusion using the Kalman filter remains one of the most widely adopted approaches. It operates through a 
two-step process: a prediction step that estimates the system’s state based on a dynamic model, followed by 
a correction step using a measurement model. The Kalman filter also allows for the integration of data from 
other sensors beyond GPS and INS, such as odometry systems, LiDAR, or cameras.

However, the original Kalman filter struggles to handle nonlinear systems. To address this limitation, several 
extensions have been developed, including the Extended Kalman Filter (EKF) and the Unscented Kalman Filter 
(UKF). Yet, these enhanced versions often come with a major drawback: significantly increased computational 
complexity.

With the rise of parallel computing enabled by GPUs — replacing traditional CPU processing — and the rapid 
advancement of machine learning algorithms, new alternatives have emerged. Machine learning has found its 
place in navigation due to its ability to model complex and nonlinear systems, a characteristic inherent to the 
behavior and error models of inertial sensors. In fact, the error modeling and integration equations of such 
sensors are nonlinear in nature, making machine learning a strong candidate for solving this type of problem.

Nevertheless, despite the availability of GPU acceleration, supervised learning algorithms still require large 
volumes of data for effective training. Many existing works rely on real INS datasets, which are often limited in 
size and diversity, leading to potential overfitting during model training. 

Overfitting is a major phenomenon closely associated with machine learning models, particularly deep 
learning algorithms. Models such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), 
and Long Short-Term Memory networks (LSTMs) are widely used in navigation applications due to their ability 
to capture complex temporal and spatial patterns. However, training these models comes with a significant 
challenge: overfitting. One of the primary causes of overfitting in deep learning is the use of a limited dataset 
during training. When insufficient data is available, the model tends to memorize the training examples rather 
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than learning to generalize to unseen data. As a result, while the model may perform well on the training set, 
its performance on new or real-world data degrades significantly. Synthetic data generation and augmentation 
are increasingly used to address this limitation and to support robust training in machine learning frameworks.

Rare research discusses the generation of INS datasets for free use; the authors of propose MAGF-ID,(14) a 
valuable experimental dataset for MIMU and GFINS research, featuring 54 real inertial sensors and ground-truth 
trajectories. However, its limitations include fixed, hardware-dependent noise profiles, constrained scenario 
diversity, and a non-scalable data volume. While this UAV dataset provides valuable real-world visual-inertial 
data with RTK ground truth across 50-500m altitudes - addressing a notable gap in low-altitude flight scenarios - 
it shares common limitations of experimental datasets: the fixed 28 sequences cannot cover all potential flight 
conditions, sensor noise characteristics are hardware-dependent and unmodifiable,(15) and the dataset size 
cannot be expanded without new costly field campaigns. This paper presents a unique outdoor aerial visual-
inertial-LiDAR dataset captured using a multi-sensor payload to promote GNSS-denied navigation research.(16) The 
experiment consists of hardware-synchronized monocular images, IMU measurements, 3D LiDAR point clouds, 
and high-precision RTK-GNSS-based ground truth. This dataset was designed to facilitate the development of 
visual-inertial-LiDAR odometry and mapping algorithms, visual-inertial navigation algorithms, object detection, 
segmentation, and landing zone detection algorithms based on real-world drone and full-scale helicopter data. 
However, despite its richness, the dataset faces notable limitations: the high cost of the multi-sensor payload, 
the complexity of the calibration and synchronization procedures, and the operational constraints (requiring 
large-scale vehicles like drones and helicopters). 

This paper presents a novel simulation platform designed to overcome key barriers in navigation research. 
It accurately models all six IMU sensors—three accelerometers and three gyroscopes—using configurable error 
profiles that replicate commercial, tactical, and industrial-grade devices. The platform enables the generation 
of scalable synthetic datasets tailored for training deep neural networks aimed at low-cost inertial error 
correction, using credible tactical-grade INS data as a reference. Developed as an open-source framework 
in Java and running in Docker to avoid compatibility with the operating system or the conflict with other 
applications, the platform proposes a user graphical interface for parameter selection, including IMU grade, 
reference trajectory upload, and dataset scaling. A MATLAB backend handles the simulation of the inertial 
sensors to then generate the raw data. Hosted on GitHub, the platform eliminates both financial and logistical 
barriers, supporting accessible and reproducible research in advanced and resilient navigation system design. 
It is freely available at the following link: https://github.com/GenerationINSDataset/AfKh-OpenIMU.

The remainder of this paper is organized as follows: section 2 details the proposed method, including 
INS modeling and its principal inherent errors, the Java user interface with Docker deployment, and the 
experimental configuration. Section 3 validates the proposed approach and demonstrates the feasibility of our 
developments through results and discussion and presents some directions for future work. Finally, section 4 
concludes the paper.

Table 1. Comparison of rare existing research on dataset generation for simulating inertial navigation systems and 
our proposed solution

Authors Year Model Results Limitations

Yampolsky et 
al.(14)

2024 MAGF-ID Provides experimental dataset with 
54 real sensors and ground-truth 
trajectories

Fixed hardware-dependent noise, 
limited diversity, non-scalable data 
volume

Lyu et al.(15) 2024 UAV dataset Rich multi-sensor data for UAVs and 
helicopters

Sensor noise characteristics 
are hardware-dependent and 
unmodifiable

Thalagala et 
al.(16)

2024 MUN-FRL IMU measurements, 3D LiDAR point 
clouds, and high-precision RTK-GNSS-
based

High cost, complex synchronization, 
requires large-scale vehicles

Aftatah et al. 2025 AfKh-OpenIMU 
Generator

Generates scalable synthetic datasets 
with configurable IMU error models; 
includes GUI and Docker deployment

------

METHOD
We conducted experiments to validate our proposed method, with the aim of designing an open-source 

simulation platform capable of generating large-scale augmented inertial navigation datasets. The proposed 
method begins with the accurate mathematical modeling of the six inertial sensors. This includes the 
incorporation of key sensor error sources such as bias, scale factor, and noise. The theoretical models are 
then translated into executable simulation code within the MATLAB environment to generate realistic inertial 
data. In the second stage, a user-friendly graphical interface is developed using Java, allowing users to define 
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input parameters such as sensor grade, reference trajectory, and dataset scaling. This interface is deployed as 
a Docker container image to ensure platform independence and ease of integration. In order to visualize the 
estimated trajectory produced by each INS grade, the mechanization process is also implemented within the 
Docker image. Mechanization refers to the set of navigation equations that transform raw sensor data, linear 
accelerations and angular velocities, into exploitable navigation information such as three-dimensional position 
and orientation (attitude). The attitude is described using the Euler angles in the following order: roll, pitch, 
and yaw. Specifically, roll represents the rotation about the x-axis, pitch is the rotation about the y-axis, and 
yaw is the rotation about the z-axis. The following subsections describe each component of the method in detail. 

Inertial sensor modeling
An inertial navigation system (INS) is composed of two essential components: an inertial measurement 

unit (IMU) and a processing unit.(17) The IMU integrates three gyroscopes and three accelerometers to measure 
movements along three axes, delivering raw sensor data.(18) The processing unit then uses these measurements, 
based on the mechanization equations, to compute key navigation parameters, including attitude, velocity, 
and position.(19) In this work, the simulated IMU setup consists of three accelerometers and three gyroscopes. 
The simulation process involves calculating accelerations and angular velocities based on 3D positional data 
along the X, Y, and Z axes. The 3D trajectory used is a real trajectory that emulates a vehicle’s movement. For 
IMU modeling, the East-North-Up (ENU) reference frame is adopted to express the equations. Throughout this 
study, the ENU frame, also referred to as the navigation frame (n-frame), serves as the primary reference.(20) 
The body frame (b-frame) is located at the center of the IMU.(21) The IMU modeling equations in the n-frame are 
presented in equations (1), (2), and (3).(13)

The components of the three equations presented above are detailed as follows: [φ, θ, ψ] represent the 
Euler angles, which describe the orientation of the body frame relative to the navigation frame. [x, y, z] denote 
the 3D position coordinates expressed in the East-North-Up frame. The variable t corresponds to time. [p,q,r] 
are the components of the angular velocity vector, representing rotational rates around the body frame axes. 
[(φ,) ̇(θ,) ̇ψ ̇ ]  are the time derivatives of the Euler angles. [fx, fy, fz] correspond to the linear accelerations 
measured along the three axes of the body frame. Cn

b is the transformation matrix from the navigation frame 
to the body frame enables the conversion of vectors between these frames, while Cb

n a separate conversion 
matrix is used to map quantities from the body frame to the ENU frame.

Sensor errors modeling 
Inertial navigation systems, relying on mechanical sensors, are inherently subject to various sources of 

error that significantly degrade their precision over time. In this study, we focus on three major error sources, 
as they have the most critical impact on the drift behavior of such systems. Specifically, bias is modeled as 
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a constant offset added to the true sensor output, typically caused by imperfections in manufacturing or 
sensor calibration.(22,23) The scale factor error is represented as a multiplicative deviation from the reference 
value, often arising from inaccuracies in the sensor’s sensitivity or response characteristics.(22,23) Finally, noise 
is modeled as random additive fluctuations, mainly introduced by electronic disturbances and internal thermal 
variations. By concentrating on these dominant error sources, the model effectively captures the key factors 
influencing INS performance. The modeling of the previously described errors is detailed in the following 
equations.(13)

     
In the presented modeling, ωmeasured represents the measured angular rate, while ωtrue denotes the true 

angular rate. The term bgyroscope corresponds to the gyroscope bias, ηgyroscope to the gyroscope noise, and SFgyroscope 
to the gyroscope scale factor. Similarly, ameasured refers to the measured linear acceleration, atrue to the true 
linear acceleration, baccelerometer to the accelerometer bias, ηaccelerometer to the accelerometer noise, and SFaccelerometer 
to the accelerometer scale factor.

Figure 1 illustrates the IMU modeling process within the body frame, offering a visual overview of the 
simulation approach adopted in this study. The developed platform provides the flexibility to modify error 
parameters, enabling the increase or decrease of their values to simulate various scenarios and evaluate their 
effects on system performance.

Figure 1. Methodology adopted for IMU modeling within the body frame(24)

Inertial sensors mechanization
Once the six degrees-of-freedom inertial sensors—comprising three accelerometers and three gyroscopes—

are mathematically modeled, they produce raw inertial measurements in the form of specific forces and angular 
velocities. At this stage, two complementary processes are initiated. The first is the mechanization, which 
converts the raw sensor data into navigable information. The second is data augmentation, which artificially 
expands the dataset by varying sensor noise parameters to improve the robustness and generalization of 
learning algorithms. The focus here is on the mechanization process, which is a fundamental step in any inertial 
navigation system.

Figure 2. Mechanization process of inertial sensors in the navigation(25) 
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Inertial sensor mechanization is defined as the process of computing position, velocity, and orientation over 
time from raw inertial data using the laws of motion. This is achieved through the continuous integration of a 
set of navigation equations within a defined reference frame, typically the local-level frame known as North-
East-Down (NED). The mechanization process begins by updating the orientation using angular velocity data, 
which determines the system’s attitude in terms of roll, pitch, and yaw. Roll describes the rotation around the 
x-axis, pitch around the y-axis, and yaw around the z-axis. The next step involves computing the velocity by 
integrating the specific force measurements after compensating for gravity, followed by position estimation 
through the integration of velocity. This process provides a complete navigation solution and enables real-time 
visualization of the estimated trajectory for each sensor grade. Figure 2 details this mechanization process as 
implemented in the navigation frame.

Java user interface and Docker deployment
To facilitate the use of the inertial system simulation, we developed a platform based on two frameworks: 

React.js for the frontend and Spring Boot for the backend. This platform will later be packaged as a Docker 
container image to simplify deployment and usage across different environments.(26)  Through the user interface, 
users can upload a reference trajectory defined in cartesian coordinates and specify their requirements 
regarding the grade of the inertial system to be simulated. They can also set the sampling time and define 
a data augmentation factor, which controls how many additional data points are generated from the original 
reference trajectory. Following this, the user can generate a text file containing the ground truth and all the 
necessary parameters. This file can then be easily injected into the MATLAB code to finally generate the full 
dataset. Figure 3 shows a screenshot of the graphical interface of our platform.

Figure 3. Interface for reference trajectory input and simulation configuration

The developed platform includes the complete source code for its components, combining a user-friendly 
graphical interface built with React.js and Spring Boot, along with MATLAB scripts for simulating three grades 
of Inertial Navigation Systems (INS): tactical, industrial-grade, and low-cost. Additionally, a MATLAB-based 
data generator is integrated, responsible for augmenting the dataset by varying key error parameters such as 
scale factor, bias, and stochastic noise. All these components are containerized into a single Docker image. 
The pivotal role of this containerization lies in ensuring seamless deployment across various environments, 
regardless of operating system compatibility or language dependencies. This functionality significantly enhances 
the platform’s usability and reproducibility, making it feasible to execute and scale the system across a wide 
range of heterogeneous computing environments.
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Simulation process 
Our proposed method, illustrated in the diagram shown in figure 4, consists of four essential steps. In Step 

1, the user (researcher) defines their requirements through a simple and dedicated graphical interface by 
uploading the reference trajectory, selecting the inertial system grade, setting the data multiplier and time, 
and then clicking “Generate”. Step 2 produces a text file that contains all the specified parameters and user 
inputs. In Step 3, this text file is passed to a MATLAB-coded main program that simulates the inertial navigation 
system and generates the corresponding dataset. Finally, Step 4 delivers the output: a “.mat” file dataset for 
training, a graphical comparison between the reference and estimated trajectories, and the simulated inertial 
data in terms of accelerations and angular rates.

Figure 4. Overview of the proposed four-step data generation process

AfKh-OpenIMU Generator
The integration of these components, including inertial sensor modeling, error injection, mechanization, 

user interface development, Docker deployment, and the simulation workflow, forms the architecture of our 
developed platform called AfKh-OpenIMU Generator. This platform is particularly beneficial when working with 
machine learning algorithms, as it enables the generation of sufficiently large and diverse datasets to mitigate 
overfitting problems. The overall diagram illustrating this solution is presented in figure 5.

Figure 5. Architectural flowchart of the proposed AfKh-OpenIMU Generator

https://doi.org/10.56294/dm20251150
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Experimental configuration
In this study, we employed a real-world trajectory defined by positions in a navigation frame, with coordinates 

represented in a 3D Cartesian system. The reference trajectory was obtained from Marrakech City, Morocco, 
emulating a realistic urban transportation scenario. The trajectory comprised 620 discrete points and has a 
total length of 1653 meters, capturing the dynamics of vehicular motion. The reference path was initially 
generated using Google Earth Pro and exported as a Keyhole Markup Language (KML) file. While KML is suitable 
for visualization, its binary structure hinders direct data processing. To enable data manipulation, the KML 
file was converted into a plaintext format (comma-delimited TXT file) using GPS Visualizer—an online tool 
for geodata transformation. The output file contained coordinates in WGS84 (decimal degrees) with columns 
for  latitude, longitude, and altitude. For practical navigation and analysis, the coordinates were converted 
from WGS84 (geodetic degrees) to WGS84 (UTM) via the World Coordinate Converter (WCC) online platform. 
This step projected the curvilinear geographic coordinates into a local Cartesian East-North-Up (ENU) frame, 
simplifying distance and velocity calculations. The reference trajectory used in this study is illustrated in two 
stages: Figure 6 shows the satellite view of the trajectory extracted from Google Earth. Figure 7 details this 
same reference projected in the navigation frame and visualized in 2D using MATLAB displays.

Figure 6. Satellite view of reference trajectory in Marrakech city using Google Earth

Figure 7. Complete reference trajectory projected in the navigation frame and visualized in 2D using MATLAB
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RESULTS
To validate the proposed modeling approach and demonstrate the feasibility of our developments, a series 

of experiments, detailed in the previous section, were conducted to evaluate the platform’s performance. For 
this evaluation, two key criteria were considered: the comparison of simulated trajectories with reference 
trajectories, and the calculation of the Root Mean Square Error (RMSE) between them. Additionally, the 
performance of the developed platform was compared to that of real inertial sensors to assess its realism and 
accuracy.

Trajectory comparison
For the comparison of trajectories, four trajectories were superimposed in 2D for better visualization: 

the ground truth, the estimated trajectory produced by the low-cost INS, the generated trajectory by the 
industrial-grade INS, and the trajectory obtained from the tactical-grade INS. This superposition is crucial 
to highlight the performance of our proposed approach. However, in the freely available platform hosted on 
GitHub, the user must select a single INS grade, and the platform will generate the corresponding data in 3D, 
not just in 2D, for the selected grade. Figure 8 shows the superposition of the four trajectories. 

Figure 8 (a) shows the complete superposition of the reference trajectory and those estimated by the three 
INS grades, clearly demonstrating a strong consistency with the theoretical expectations. Specifically, the 
trajectory estimated by the low-cost INS deviates the most from the reference due to its higher error levels. In 
second position, the industrial-grade INS trajectory exhibits a smaller deviation, reflecting improved accuracy. 
Finally, the path generated by the tactical-grade INS closely follows the reference trajectory, due to its minimal 
error characteristics.

Figure 8 (b) presents a zoomed-in view of the final portion of the trajectory to better visualize the 
accumulation effect of inertial errors over time. This focused view reveals how these errors tend to grow 
progressively along the trajectory, particularly in the case of the low-cost INS, where error drift is most 
pronounced. This observation clearly illustrates the need for correcting inertial errors in low-grade systems, 
reinforcing the motivation behind employing machine learning algorithms for error compensation.

(a)

(b)
Figure 8. 2D comparison between ground truth and estimated trajectories for Low-Cost, industrial-grade, and tactical-

grade INS (a), with a zoomed overview (b)
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RMSE evaluation
The RMSE (Root Mean Square Error) is a fundamental criterion used to evaluate the performance of the 

proposed method. In this study, the RMSE is calculated for three simulated grades of INS in the East, North, and 
Up directions for each grade. The RMSE is computed by comparing the estimated trajectory of each INS grade with the 
reference trajectory, as depicted in table 2.

Table 2. Evaluation of RMSE in East, North, and Up directions for different INS grades

INS grade
RMSE (meter)

East North Up Total

Low Cost 9,22 16,94 26,75 32,98

Industrial 0,58 1,28 8,88 8,99

Tactical 0,01 0,13 1,06 1,07

The results show that the low-cost INS exhibits the highest RMSE values in all three directions, due to the 
significant errors inherent to such systems, mainly resulting from the use of low-quality materials and sensors. 
The industrial-grade INS ranks second, demonstrating a noticeable reduction in RMSE across the East, North, 
and Up directions, owing to improved manufacturing quality, better calibration processes, and enhanced sensor 
performance. Finally, the tactical-grade INS shows a significant reduction in RMSE compared to the reference 
trajectory, achieving high precision in all three directions. This superior performance is mainly attributed to 
the use of high-grade materials, rigorous calibration, advanced sensor technology, and the implementation of 
sophisticated error compensation techniques, which are typical features of tactical-grade systems.

Moreover, the obtained results show a close correspondence with the expected performances of real sensors, 
confirming the effectiveness of our modeling approach for both the sensors and their associated errors, as well 
as the relevance of the parameter choices made for the three principal error sources affecting each grade.

Custom Dataset Generation Output
Although the dataset generation process does not produce a visual output suitable for direct inclusion as 

a figure, the result of this stage is a structured and augmented dataset automatically generated in “.txt” and 
“.mat” formats. This dataset reflects the user’s selections defined through the graphical interface, including 
the INS grade, reference trajectory, number of sequences, and error profile configuration. The platform ensures 
that each generated dataset is customized to the specified simulation needs, supporting varied use cases such 
as machine learning training, error analysis, and trajectory reconstruction. The flexibility of the system to 
generate on-demand, diverse datasets represent a key contribution, especially in domains where real-world 
inertial data acquisition is costly or limited.

DISCUSSION 

Figure 9. Performance of real Low-Cost INS in a real-world transport scenario(27)
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Although the developed platform successfully achieves its initial objectives by simulating three grades of 
inertial navigation systems and supporting large-scale data augmentation to overcome underfitting, several 
enhancements can be envisioned. One key area for improvement is the simulation of additional sources 
of sensor errors, particularly those caused by temperature variations and sensor misalignment, which are 
commonly encountered in real-world hardware. Moreover, future versions of the platform could benefit from a 
more structured and optimized data management system.

CONCLUSIONS
This study addresses the growing need for secure, adaptable, and cost-effective navigation solutions 

in intelligent systems. By introducing a modular and extensible simulation framework, AfKh-OpenIMU 
Generator, we enable the generation of synthetic inertial datasets at scale, independent of physical hardware 
constraints. The approach fosters reproducibility, promotes data diversity, and supports the design of robust 
machine learning models for navigation in both nominal and degraded environments. Beyond its technical 
implementation, the platform reflects a methodological shift toward virtualized experimentation, facilitating 
innovation in sensor modeling, data augmentation, and navigation security. It establishes a versatile foundation 
for future research focused on resilient sensor fusion strategies and AI-driven navigation frameworks under 
constrained conditions.
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