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ABSTRACT

Facial recognition systems are increasingly deployed in privacy-sensitive and resource-constrained 
environments such as smart cards. However, traditional face verification relies on high-dimensional 
floating-point embeddings, which are unsuitable for compact and efficient matching on such platforms. To 
address this challenge, this work investigates the generation of binary face templates that retain identity 
information while reducing storage and computational cost. The objective of this study is to benchmark 
binary biometric representations derived from mobile-class convolutional neural networks (CNNs), aiming 
to support reproducible, lightweight face verification pipelines. We evaluate four lightweight CNNs—
EfficientNet-B0, MobileNetV2, ShuffleNetV2, and SqueezeNet1_1—trained on the MORPH dataset. Binary 
templates are generated via Principal Component Analysis followed by Iterative Quantization (PCA–ITQ) 
at 32, 64, and 128 bits. Models are tested cross-dataset on the Georgia Tech Face Database (GT Face) to 
assess generalization. At 128 bits, EfficientNet-B0 and MobileNetV2 achieve strong verification performance, 
with area under the curve (AUC) ≈ 0,895–0,899 and equal error rate (EER) ≈ 0,182–0,185. A Hamming-
distance analysis confirms clear separation between genuine and impostor pairs, and the bit-flip rate (~17 
%) indicates intra-subject consistency. Bit-length scaling further reveals monotonic improvements in AUC 
from 32 to 128 bits, highlighting a trade-off between accuracy and compactness. These results demonstrate 
that binary templates from lightweight CNNs can deliver efficient, privacy-preserving authentication with 
limited performance degradation. The proposed pipeline supports reproducibility and aligns with FAIR data 
principles, making it suitable for secure biometric deployments on constrained hardware.

Keywords: Biometrics; Face Recognition; Deep Learning; Binary Templates; Mobile Neural Networks; Smart 
Cards.

RESUMEN

Los sistemas de reconocimiento facial se implementan cada vez más en entornos sensibles a la privacidad y 
con recursos limitados, como las tarjetas inteligentes. Sin embargo, la verificación facial tradicional se basa 
en incrustaciones de punto flotante de alta dimensión, que no son adecuadas para una coincidencia compacta 
y eficiente en estas plataformas. Para abordar este desafío, este trabajo investiga la generación de plantillas 
faciales binarias que conserven la información de identidad y al mismo tiempo reduzcan el almacenamiento 
y el costo computacional. El objetivo de este estudio es evaluar representaciones biométricas binarias 
derivadas de redes neuronales convolucionales (CNNs) de clase móvil, con el fin de respaldar canalizaciones 
de verificación facial reproducibles y livianas. Evaluamos cuatro CNNs livianas—EfficientNet-B0, MobileNetV2, 
ShuffleNetV2 y SqueezeNet1_1—entrenadas en el conjunto de datos MORPH. Las plantillas binarias se generan 
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mediante Análisis de Componentes Principales seguido de Cuantificación Iterativa (PCA–ITQ) en longitudes 
de 32, 64 y 128 bits. Los modelos se prueban en el conjunto de datos Georgia Tech Face Database (GT Face) 
sin ajuste adicional, para evaluar la generalización. A 128 bits, EfficientNet-B0 y MobileNetV2 logran un 
rendimiento sólido, con un área bajo la curva (AUC) ≈ 0,895–0,899 y una tasa de error igual (EER) ≈ 0,182–
0,185. El análisis de distancia Hamming confirma una clara separación entre pares genuinos e impostores, 
y la tasa de cambio de bits (~17 %) indica consistencia intra-sujeto. La evaluación por longitud de bits 
muestra mejoras monotónicas en AUC, destacando la relación entre precisión y compacidad. Estos resultados 
demuestran que las plantillas binarias de CNNs livianas permiten una autenticación eficiente y respetuosa 
de la privacidad, con mínima pérdida de rendimiento. La canalización propuesta apoya la reproducibilidad y 
se alinea con los principios FAIR, siendo adecuada para implementaciones biométricas seguras en hardware 
restringido.

Palabras clave: Biométrica; Reconocimiento Facial; Aprendizaje Profundo; Plantillas Binarias; Redes 
Neuronales Móviles; Tarjetas Inteligentes.

INTRODUCTION 
Biometric authentication has evolved into a critical component of contemporary security infrastructures, 

enabling secure, user-friendly identity verification. Originating in forensic and military contexts in the early 
20th century, biometric systems gained commercial momentum in the 1990s with the advent of fingerprint 
and facial recognition technologies. This expansion was further driven by the miniaturization of sensors and 
the ubiquity of digital devices, resulting in widespread adoption across smartphones, access control systems, 
banking, and e-governance platforms.

Among the various biometric modalities, facial recognition has emerged as particularly suitable for consumer-
facing applications. This rise is strongly associated with breakthroughs in deep learning-based face recognition, 
notably the DeepFace system(1) due to its non-intrusive nature, compatibility with camera-equipped devices, 
and alignment with existing digital identity ecosystems. However, traditional facial recognition systems depend 
on high-dimensional floating-point embeddings generated by deep CNNs such as FaceNet,(2) which introduced 
triplet-loss-based embedding learning. Early deep architectures such as DeepID3(3) helped establish the use of 
CNN embeddings in face verification systems While effective in controlled conditions, these representations 
present notable limitations in terms of storage overhead, computational cost, and privacy risk—especially in 
scenarios involving deployment on constrained platforms such as smart cards.(4,5,6)

To mitigate these challenges, the research community has increasingly explored binary face templates—
compact bit-string representations of facial features that support efficient, privacy-conscious matching using 
Hamming distance.(6,7) Binary templates significantly reduce storage requirements, simplify matching operations, 
and inherently enhance data protection by limiting reversibility. Their potential is particularly compelling in 
decentralized or offline verification settings, such as smart cards or edge devices, where data isolation and low-
latency decision-making are paramount. Nonetheless, generating high-quality binary templates that preserve 
discriminative power remains a complex task, especially when deployed across heterogeneous environments 
exhibiting variation in pose, lighting, and demographics.(5,8)

Foundational work like VGG-Face(9) demonstrated how deeper CNNs could generalize well across 
unconstrained settings, Recent advancements in mobile-class CNNs—including EfficientNet-B0,(10) MobileNetV2,(11) 
ShuffleNetV2,(12) and SqueezeNet1_1(13)—have demonstrated that compact architectures can provide robust 
representations suitable for embedded platforms. Originally designed for mobile and embedded applications, 
these models employ techniques such as depthwise separable convolutions, compound scaling, and channel 
shuffling to minimize computational load without sacrificing accuracy. These qualities position them as ideal 
candidates for smart-card-based facial authentication. Despite this, the benchmarking of binary representations 
derived from such networks remains underexplored.

This work aims to fill this gap by evaluating the effectiveness of binary face templates derived from mobile-
class CNN embeddings using PCA–ITQ,(14) a hashing method that reduces dimensionality while maintaining 
discriminative features. Specifically, embeddings are extracted from the MORPH dataset,(15) binarized at various 
bit lengths (32, 64, 128), and evaluated for cross-dataset generalization on the Georgia Tech Face Database (GT 
Face). This design enables a robust assessment of template stability, recognition performance, and trade-offs 
between compactness and accuracy.

The justification for this research lies in the increasing demand for secure, low-latency biometric verification 
on resource-constrained devices. By aligning the experimental protocol with FAIR principles and emphasizing 
reproducibility, this study contributes a practical and ethical pathway for deploying CNN-based face verification 
in privacy-sensitive applications.
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METHOD
Study Design

This work is a cross-sectional analytical benchmarking study, comparing binary template performance across 
CNN backbones under controlled experimental conditions.
 
Datasets 

Two benchmark datasets were employed:
•	 MORPH: One of the largest longitudinal face datasets, containing > 55 000 facial images of > 13 

000 individuals with diverse demographics. Following standard protocols, a subset was organized into a 
gallery (3VAR) and probe (2VAR) split, yielding 11 064 gallery embeddings used for training the binary 
hashing mapping.

•	 Georgia Tech Face Database (GT Face): Includes 750 images of 50 individuals, each captured under 
varying pose, illumination, and expression. Each subject has ~15 images at 150×150 resolution. GT Face 
provides a controlled yet challenging environment for cross-dataset generalization.

No retraining was performed on GT Face; instead, embeddings from GT Face were processed using the PCA–
ITQ mapping trained exclusively on MORPH, thereby simulating deployment to unseen populations. 

Preprocessing and Face Alignment
Face detection and alignment were executed via the Multi‑task Cascaded CNN (MTCNN). For each image, the 

largest bounding box was selected, padded slightly, and cropped. Cropped faces were resized to 224×224 and 
converted to RGB. The same pipeline was applied to both datasets, ensuring consistency and reproducibility.

CNN Backbones for Embedding Extraction
Embeddings were generated using four mobile-class CNN architectures: EfficientNet‑B0, MobileNetV2, 

ShuffleNetV2, and SqueezeNet1_1. Each model was initialized with ImageNet weights and appended with 
a global average pooling layer. The resulting embeddings were normalized to unit length before further 
processing.

Binary Hashing via PCA–ITQ
To produce binary templates, we employed PCA–ITQ: first performing PCA to reduce dimensionality and 

decorrelate features, followed by Iterative Quantization (ITQ) to learn a rotation minimizing quantization error. 
Experiments were conducted at 32, 64, and 128 bits. The PCA–ITQ mapping was trained exclusively on MORPH 
and then directly applied to GT Face embeddings.

Evaluation Metrics & Procedure
Verification performance was evaluated using:

•	 AUC (Area Under Receiver Operating Characteristic),
•	 EER (Equal Error Rate),
•	 TPR@1 % FPR (True Positive Rate at 1 % False Positive Rate).

For binary templates, similarity was measured via Hamming distance; for floating-point baselines, via cosine 
similarity. On GT Face, 2 500 genuine and 50 000 impostor pairs were sampled to ensure statistical robustness.

Intra- and inter-subject stability analyses were conducted by measuring bit-flip rates across multiple samples 
per identity and Hamming distance distributions across identities.

Statistical Stability Analysis
In addition to aggregate performance, intra- and inter-subject stability of binary codes was analyzed. For 

each subject in GT Face, multiple images were binarized and compared to measure the bit-flip rate (i.e., 
the fraction of unstable bits across samples). Conversely, impostor pairs provided insight into the distribution 
of Hamming distances between different identities. This analysis highlights the inherent trade-off between 
compactness, discriminability, and template consistency.

Data availability
All experiments used publicly available datasets: MORPH (licensed academic access) and the Georgia 

Tech Face Database (open access). Preprocessing scripts, evaluation protocols, and configuration files are 
documented to ensure reproducibility. Upon reasonable request, the authors can provide detailed instructions 
for replicating the alignment, embedding extraction, and PCA–ITQ hashing pipelines.
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Ethical Considerations / Data Permissions
MORPH data access was obtained under an academic license; the GT Face dataset is publicly accessible. All 

data usage adhered to the providers’ terms and conditions. As this work involved secondary analysis of publicly 
available datasets, no direct human subject consent or institutional ethical approval was required.

Variables
•	 Input variables: Face embeddings, bit length (32 / 64 / 128), CNN backbone architecture.
•	 Outcome variables: AUC, EER, TPR@1 %, bit-flip rate.

RESULTS
The evaluation on the GT Face database is organized into three primary perspectives: 

(i)	 cross-dataset generalization, 
(ii)	 comparison of floating-point vs binary embeddings, 
(iii)	 bit-length trade-offs.

Table 1 presents the performance metrics for 128-bit PCA–ITQ binary codes and floating-point embeddings 
across the CNN backbones (trained on MORPH, tested on GT Face). 

Table 1. Float cosine vs. 128-bit PCA–ITQ binary embeddings across backbones (trained on MORPH, tested 
on GT Face)

Backbone AUC (float) EER↓ (float) TPR@1 % (float) AUC (128b) EER↓ (128b) TPR@1 % (128b)
EfficientNet-B0 0,847 0,234 0,372 0,895 0,185 0,374
MobileNet-V2 0,848 0,241 0,372 0,899 0,182 0,414
SqueezeNet-1.1 0,829 0,249 0,301 0,880 0,202 0,394
ShuffleNet-V2 0,830 0,252 0,342 0,879 0,199 0,366

Table 2 shows the variation of performance metrics as bit-length varies for EfficientNet-B0.

Table 2. EfficientNet-B0 with PCA–ITQ: bit-length 
sweep on GT Face (trained on MORPH gallery)

Bits AUC EER↓ TPR@1 % 
32 0,801 0,274 0,196
64 0,834 0,248 0,316
128 0,864 0,221 0,320

Figure 1 illustrates the distribution of Hamming distances for genuine versus impostor pairs (EfficientNet-B0, 
128 bits). 

Figure 1. Distribution of Hamming distances for genuine and impostor pairs (EfficientNet-B0, 128 bits, GT Face)

Figure 2 shows the cumulative distribution functions (CDFs) of Hamming distances between genuine and 
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impostor pairs for the same configuration.

Figure 2. Cumulative distribution function (CDF) of Hamming distances for genuine vs. impostor pairs (EfficientNet-B0, 128 
bits)

Cross-Dataset Generalization 
The PCA–ITQ mapping learned on MORPH gallery was applied directly to GT Face embeddings without 

adaptation. EfficientNet-B0 and MobileNetV2 exhibited the highest AUC and lowest EER among the backbones, 
demonstrating stable verification performance even under domain shift.

Floating-point vs Binary Embeddings 
Performance metrics (ΔAUC, ΔEER, ΔTPR@1 %) quantify the effect of binarization under the same pairing 

protocol. 
At 128 bits, the performance drop is modest, with binary templates still achieving strong discriminative 

power relative to floating-point baselines.

Bit-Length Trade-Off 
As bit-length increases for EfficientNet-B0, AUC improves monotonically (32 → 64 → 128 bits), while EER 

consistently declines. The intermediate 64-bit configuration approaches the 128-bit performance, indicating a 
favorable representation-compactness balance.

DISCUSSION
The experimental results confirm that binary templates derived from lightweight CNNs can offer a strong 

trade-off between compactness and verification accuracy, even in cross-dataset settings. This supports the use 
of mobile-class architectures for privacy-conscious, resource-limited biometric systems.

Interpretation & Comparison 
The strong generalization from MORPH to GT Face—applied without retraining—highlights the robustness 

of our pipeline under domain shift. The performance of 128-bit PCA–ITQ binary codes comes close to floating-
point baselines while drastically reducing template size. including those derived using angular margin losses 
like SphereFac.(16)

While some earlier works on binary face hashing (e.g. IEEE-based systems from the early 2010s) exist, they 
often rely on hand-crafted features or simple thresholding rather than CNN embeddings and cross-dataset 
evaluation. Those methods generally show lower accuracy under domain mismatch; our approach, leveraging 
modern mobile-class CNNs plus PCA–ITQ, advances the state of practice by combining compactness, stability, 
and generalizability. Although lightweight models are used in our study, recent methods based on angular-
margin losses (e.g. ArcFace(17)) achieve very high discriminative power.

Stability Analysis 
Our bit-flip rate analysis (≈17 %) shows that a consistent subset of bits remains stable across images, aligning 

with existing studies in biometric hashing.(9) While perfect reproducibility is unattainable, our results highlight 
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that binary codes retain meaningful consistency under typical appearance variations.

Practical Implications 
Binary templates of length 4–16 bytes are suitable for on-card verification. The hashing time (0,02–0,25 

ms) aligns with latency budgets of smart-card-like environments. This makes our pipeline feasible for real 
deployments where both memory and compute resources are constrained.

Limitations & Future Work 
-	 The GT Face dataset is limited in subject diversity; further validation on larger and more varied 

benchmarks (e.g., LFW, CFP) is needed. 
-	 We focused on unsupervised hashing (PCA–ITQ). Supervised or deep hashing methods may enhance 

performance but at increased training complexity or hardware overhead. 
-	 Hybrid schemes or error-correction techniques could balance template stability and compactness 

in future systems.

CONCLUSIONS 
This study introduced a reproducible benchmark for evaluating binary face templates generated from mobile-

class CNNs, tailored for deployment on resource-constrained platforms such as smart cards. By combining 
lightweight embeddings with PCA–ITQ binarization, we addressed key trade-offs between verification accuracy, 
template size, and computational efficiency.

The proposed approach emphasizes practicality, with binary templates offering fast matching, compact 
storage, and acceptable stability for real-world biometric authentication. Our evaluation protocol, based on 
public datasets and transparent methodology, supports broader reproducibility and cross-dataset validation.

Beyond empirical performance, this benchmark contributes to the ongoing discourse on privacy-preserving 
and efficient AI-driven authentication. Future work will extend this framework to diverse populations and 
explore advanced hashing strategies, fostering more trustworthy and deployable biometric systems.
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