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ABSTRACT

Introduction: the detection of motion-based cardiac abnormalities at an early stage proves difficult 
because individual systems fail to measure how motion affects depth and structural changes. A multimodal 
spatiotemporal system would enhance the accuracy of medical diagnoses. 
Objective: the research aims to create a real-time system which unites cardiac video data with range/depth 
information to detect cardiac conditions at an early stage. 
Method: the system operates through independent encoders which join their data streams through a gated 
fusion module. The system performs denoising operations followed by statistical normalization and geometric 
transformation of the input data. The system uses beat-level temporal attention to identify essential time 
segments for clinical evaluation. The research evaluated system performance through comparison with video 
transformers and traditional temporal analysis methods. 
Results: the model produced F1 reached 0,945 while AUROC reached 0,9978 and the model achieved sensitivity 
at 0,950 and specificity at 0,940 and precision at 0,940 and AUPRC at 0,972. The system demonstrated 
excellent calibration performance through its ECE and Brier values which approached perfect results (slope ≈ 
1,01, ≈ 0). The system produced useful screening results when using 10 % and 20 % thresholds which produced 
0,142 and 0,118 respectively. The system performed real-time processing at 4,9 GFLOPs while maintaining a 
processing time of ~98 ms. 
Conclusions: the combination of intensity dynamics with depth-derived geometry allows for accurate real-
time cardiac prediction with precise calibration. The proposed method delivers superior results than single-
signal systems and conventional temporal methods which makes it a useful advancement for early detection 
and point-of-care cardiology.
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Monitoring; Interpretability; Medical Imaging; Spatiotemporal.

RESUMEN

Introducción: la detección temprana de anomalías cardíacas relacionadas con el movimiento resulta difícil 
debido a que los sistemas individuales no miden cómo el movimiento afecta la profundidad y los cambios 
estructurales. Un sistema espacio-temporal multimodal mejoraría la precisión de los diagnósticos médicos.
Objetivo: la investigación busca crear un sistema en tiempo real que combine datos de video cardíaco con 
información de alcance/profundidad para detectar afecciones cardíacas en una etapa temprana.
Método: el sistema opera mediante codificadores independientes que unen sus flujos de datos mediante 
un módulo de fusión controlado. El sistema realiza operaciones de eliminación de ruido, seguidas de la 
normalización estadística y la transformación geométrica de los datos de entrada. El sistema utiliza la 
atención temporal a nivel de latido para identificar segmentos de tiempo esenciales para la evaluación 
clínica. La investigación evaluó el rendimiento del sistema comparándolo con transformadores de video y 
métodos tradicionales de análisis temporal.
Resultados: el modelo produjo una F1 de 0,945, mientras que el AUROC fue de 0,9978. El modelo alcanzó 
una sensibilidad de 0,950, una especificidad de 0,940, una precisión de 0,940 y un AUPRC de 0,972. El sistema 
demostró un excelente rendimiento de calibración gracias a sus valores de ECE y Brier, que se acercaron a la 
perfección (pendiente ≈ 1,01, ≈ 0). El sistema produjo resultados de cribado útiles al utilizar umbrales del 10 
% y del 20 %, que arrojaron 0,142 y 0,118, respectivamente. El sistema realizó un procesamiento en tiempo 
real a 4,9 GFLOP, manteniendo un tiempo de procesamiento de ~98 ms.
Conclusiones: la combinación de la dinámica de intensidad con la geometría derivada de la profundidad 
permite una predicción cardíaca precisa en tiempo real con una calibración precisa. El método propuesto 
ofrece resultados superiores a los de los sistemas de señal única y los métodos temporales convencionales, 
lo que lo convierte en un avance útil para la detección temprana y la cardiología en el punto de atención.

Palabras clave: Análisis Cardíaco; Clasificación; Fusión de Datos; Aprendizaje Profundo; Detección de 
Enfermedades; Eficiencia; Monitoreo Cardíaco; Interpretabilidad; Imágenes Médicas; Espaciotemporal.

INTRODUCTION
One reason heart disease is still the top cause of mortality globally is that static or single-modality approaches 

don’t find motion-level problems early on. This project aims to provide a complete spatiotemporal framework 
for the treatment of the heart as a dynamic system, employing range data (echocardiography, cine-MRI) and 
video images (four-dimensional ultrasound, depth maps). Regional CNN encoders collect additional spatial 
inputs and then project them onto a shared latent space. The inputs have previously been standardized, noise-
reduced, and aligned either rigidly or elastically before this happens.(1,2,3) Localized dyssynergy, relaxation, 
and contraction are all things that can be seen. You may use any of these ways and get the same results. 
Using the obtained fingerprints, multitask predictors may do early tests for ischemia and cardiomyopathies 
and regress parameters like strain rate and ejection fraction. Using explainable AI with attention techniques 
can help us acquire spatial-temporal attributions more often. By pointing out clinically important locations 
and phases, these attributions would improve both reliability and interpretability. Our pipeline is designed to 
operate in real time and employ quick and easy methods to trim, quantize, and batch. This means that the 
deployment might begin immediately soon where patients are being treated. This method’s major goal is to 
detect early trends that aren’t yet visible as structural changes by combining depth, mobility, and structure.
(4,5,6) The focus of the method is on discovering these patterns or trends. Making treatments that are more 
precise and work faster can help fewer individuals get SCA, heart failure, and strokes in the future. We are 
pleased to provide the following: (1) a pipeline that combines learned cross-modal projections with range data; 
(2) a model of spatiotemporal motion-awareness that uses optical flow, convolutional neural networks (CNNs), 
and long short-term memory (LSTMs); and (3) a pipeline that combines learned cross-modal projections with 
range data. (3) a person who can accomplish more than one thing simultaneously, such as categorize illnesses 
and supply a quantitative functional estimate; (4) medically comprehensible predictions achieved through 
spatial-temporal attention mechanisms and low-latency inference; (5) real-time preparedness realized through 
model compression and low-latency inference; (6) scanner and protocol resilience secured through alignment, 
normalization, and domain-aware augmentation; and (7) a design adaptable to 4D ultrasound, cine-MRI, and 
echocardiography for the earlier, more sensitive, and more specific identification of cardiac dysfibrillation. 

Related Works
Cardiovascular imaging is mostly done with deep learning and motion-centric computing. Using these 
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methods, you can collect information from video and range data that changes according to where and when it 
is. Machine learning techniques are employed to achieve this objective. Convolutional neural networks (CNNs) 
have issues in temporal modeling because they can only deal with frames. However, they are particularly 
effective at learning spatial data and finding structural flaws. Recurrent neural networks (RNNs) have been 
struggling with the issue of gradients that disappear. To solve this problem, two new models were made: long 
short-term memory (LSTMs) and generalized recurrent units (GRUs). GRUs models use gated memory to keep 
long-range dynamics stable, while LSTM models need fewer parameters to keep the same level of accuracy. 
There has been a lot of advancement in the field of convolutional neural networks (CNNs). The best approach to 
combine video with a lot of space with motion data from range sensors or 4D ultrasound is through multimodal 
fusion.(7,8,9) This method is incredibly essential for how well it works since it combines two separate kinds of 
data. The accuracy, reliability, and utility of these sorts of frameworks in the clinic are continually growing 
better. They also find areas that are causing problems, make generalizations about different kinds of scanners 
and treatments, and offer comprehensive spatiotemporal fingerprints.(10,11,12) Our major objective is to develop 
multimodal systems powered by transformers that can discover threats that can be acted on right away. It will 
start with CNN/RNN baselines and then go on to create hybrids of 3D-CNN and ConvLSTM and make LSTM/GRU 
better. Next, we’ll make LSTM/GRU better.

METHOD
To discover heart abnormalities early, it is proposed to use a three-stage end-to-end pipeline that uses 

range data and video. It can reach this aim with the aid of this pipeline. The way this pipeline is built also 
makes it easier to grasp. The first step is to be ready for the multimodal approach by using the mean-standard 
deviation to make the intensities equal. You can use bilateral filtering to get rid of noise in movies and produce 
range maps.(13,14,15) To improve transformation matrices, it uses iterative correspondences, surface-normal 
deviations, and vertex-distance penalties. The next step is to apply these transformation matrices to make 
the squared disparities between frames smaller and line up the modalities. Everything will be OK. When 
you create broad goals, you should consider structural regularization, robustness, and feature discrepancy. 
It store signals that are unique to a given modality via nonlinear fusion, which is also called tanh/sigmoid 
fusion.(16,17,18) On the other hand, inter-frame abnormalities are penalized to maintain smooth time. Another 
important advantage is that students learn to use expressive spatiotemporal descriptions better. One technique 
utilizes convolutional neural networks (CNNs) to extract the fine-grained pixel dynamics of the video, and the 
other uses grid convolutional neural networks (GCNs) to get the geometric distortion of range surfaces. The 
smoothness of temporal progression limitations is necessary for recurrent gated models to last, which show 
periodic motion across cycles. These models could also show motion that happens over and over again. Cross-
modality refinement enables us to put together and look at data from the video range, which helps us maintain 
things balanced throughout time and between sensors. This is one way we may retain the notion of fairness. 
It also makes losses more regular and fixes broken sections. It can generate unique compact descriptors by 
combining cycle-level embeddings with nonlinear mapping methods. Third, attention-guided categorization 
creates weighted temporal contexts with weights that may be learned.(19,20)

Algorithm 1: Multimodal Preprocessing and Registration of Cardiac Video and Range Data for Harmonized 
Spatiotemporal Representation

Steps:

Step 1: Normalization of Input Data
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This normalizes each video frame by mean and standard deviation.
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This normalizes each range data frame similarly.
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This computes variance-based error energy in video frames.
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𝑘𝑘

𝑗𝑗=1

𝑘𝑘

𝑖𝑖=1
⋅ 𝑉𝑉𝑡𝑡

′              (5) 

 

𝑁𝑁𝑟𝑟 = ∑ ∑ 𝐵𝐵𝑖𝑖𝑖𝑖

𝑘𝑘

𝑗𝑗=1

𝑘𝑘

𝑖𝑖=1
⋅ 𝑅𝑅𝑡𝑡

′             (6) 

 

𝐸𝐸𝑁𝑁 = ∑(𝑁𝑁𝑣𝑣 − 𝑁𝑁𝑟𝑟)2             (7)
𝑇𝑇

𝑡𝑡=1
 

 

𝐷𝐷𝑡𝑡 = ∑ ∑(𝑉𝑉𝑖𝑖𝑖𝑖
′ − 𝑅𝑅𝑖𝑖𝑖𝑖

′ )2      (8)
𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
 

 

𝑀𝑀_{𝑡𝑡}  =   arg min
𝑇𝑇

) ∑ ∑ (𝑉𝑉𝑖𝑖𝑖𝑖
′ − 𝑇𝑇(𝑅𝑅𝑖𝑖𝑖𝑖

′ ))
2

    (9)
𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
 

 

Δ𝑡𝑡 = 𝑉𝑉𝑡𝑡
′ − 𝑀𝑀𝑡𝑡                                        (10) 

 

ℒ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = ∑ 𝑡𝑡 = 1𝑇𝑇 ∑(Δ𝑡𝑡,𝑖𝑖)2       (11)
𝑛𝑛

𝑖𝑖=1
 

 

𝐸𝐸𝐴𝐴 = ∑ ∑|𝑉𝑉𝑡𝑡,𝑖𝑖
′ − 𝑀𝑀𝑡𝑡,𝑖𝑖|                    (12)

𝑛𝑛

𝑖𝑖=1

𝑇𝑇

𝑡𝑡=1
 

 

This computes variance-based error energy in range frames.

Step 2: Noise Reduction Using Filters

𝑉𝑉𝑡𝑡
′ = 𝑉𝑉𝑡𝑡 − μ𝑉𝑉

σ𝑉𝑉
                          (1) 

 

𝑅𝑅𝑡𝑡
′ = 𝑅𝑅𝑡𝑡 − μ𝑅𝑅

σ𝑅𝑅
                         (2) 

 

𝐸𝐸𝑉𝑉 = ∑ ∑(𝑉𝑉𝑖𝑖𝑖𝑖 − μ𝑉𝑉)2      (3)
𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
 

 

𝐸𝐸𝑅𝑅 = ∑ ∑(𝑅𝑅𝑖𝑖𝑖𝑖 − μ𝑅𝑅)2      (4)
𝑞𝑞

𝑗𝑗=1

𝑝𝑝

𝑖𝑖=1
 

 

𝑁𝑁𝑣𝑣 = ∑ ∑ 𝐺𝐺𝑖𝑖𝑖𝑖

𝑘𝑘

𝑗𝑗=1

𝑘𝑘

𝑖𝑖=1
⋅ 𝑉𝑉𝑡𝑡

′              (5) 

 

𝑁𝑁𝑟𝑟 = ∑ ∑ 𝐵𝐵𝑖𝑖𝑖𝑖

𝑘𝑘

𝑗𝑗=1

𝑘𝑘

𝑖𝑖=1
⋅ 𝑅𝑅𝑡𝑡

′             (6) 

 

𝐸𝐸𝑁𝑁 = ∑(𝑁𝑁𝑣𝑣 − 𝑁𝑁𝑟𝑟)2             (7)
𝑇𝑇

𝑡𝑡=1
 

 

𝐷𝐷𝑡𝑡 = ∑ ∑(𝑉𝑉𝑖𝑖𝑖𝑖
′ − 𝑅𝑅𝑖𝑖𝑖𝑖

′ )2      (8)
𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
 

 

𝑀𝑀_{𝑡𝑡}  =   arg min
𝑇𝑇

) ∑ ∑ (𝑉𝑉𝑖𝑖𝑖𝑖
′ − 𝑇𝑇(𝑅𝑅𝑖𝑖𝑖𝑖

′ ))
2

    (9)
𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
 

 

Δ𝑡𝑡 = 𝑉𝑉𝑡𝑡
′ − 𝑀𝑀𝑡𝑡                                        (10) 

 

ℒ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = ∑ 𝑡𝑡 = 1𝑇𝑇 ∑(Δ𝑡𝑡,𝑖𝑖)2       (11)
𝑛𝑛

𝑖𝑖=1
 

 

𝐸𝐸𝐴𝐴 = ∑ ∑|𝑉𝑉𝑡𝑡,𝑖𝑖
′ − 𝑀𝑀𝑡𝑡,𝑖𝑖|                    (12)

𝑛𝑛

𝑖𝑖=1

𝑇𝑇

𝑡𝑡=1
 

 

This applies Gaussian smoothing to video frames.

𝑉𝑉𝑡𝑡
′ = 𝑉𝑉𝑡𝑡 − μ𝑉𝑉

σ𝑉𝑉
                          (1) 

 

𝑅𝑅𝑡𝑡
′ = 𝑅𝑅𝑡𝑡 − μ𝑅𝑅

σ𝑅𝑅
                         (2) 

 

𝐸𝐸𝑉𝑉 = ∑ ∑(𝑉𝑉𝑖𝑖𝑖𝑖 − μ𝑉𝑉)2      (3)
𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
 

 

𝐸𝐸𝑅𝑅 = ∑ ∑(𝑅𝑅𝑖𝑖𝑖𝑖 − μ𝑅𝑅)2      (4)
𝑞𝑞

𝑗𝑗=1

𝑝𝑝

𝑖𝑖=1
 

 

𝑁𝑁𝑣𝑣 = ∑ ∑ 𝐺𝐺𝑖𝑖𝑖𝑖

𝑘𝑘

𝑗𝑗=1

𝑘𝑘

𝑖𝑖=1
⋅ 𝑉𝑉𝑡𝑡

′              (5) 

 

𝑁𝑁𝑟𝑟 = ∑ ∑ 𝐵𝐵𝑖𝑖𝑖𝑖

𝑘𝑘

𝑗𝑗=1

𝑘𝑘

𝑖𝑖=1
⋅ 𝑅𝑅𝑡𝑡

′             (6) 

 

𝐸𝐸𝑁𝑁 = ∑(𝑁𝑁𝑣𝑣 − 𝑁𝑁𝑟𝑟)2             (7)
𝑇𝑇

𝑡𝑡=1
 

 

𝐷𝐷𝑡𝑡 = ∑ ∑(𝑉𝑉𝑖𝑖𝑖𝑖
′ − 𝑅𝑅𝑖𝑖𝑖𝑖

′ )2      (8)
𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
 

 

𝑀𝑀_{𝑡𝑡}  =   arg min
𝑇𝑇

) ∑ ∑ (𝑉𝑉𝑖𝑖𝑖𝑖
′ − 𝑇𝑇(𝑅𝑅𝑖𝑖𝑖𝑖

′ ))
2

    (9)
𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
 

 

Δ𝑡𝑡 = 𝑉𝑉𝑡𝑡
′ − 𝑀𝑀𝑡𝑡                                        (10) 

 

ℒ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = ∑ 𝑡𝑡 = 1𝑇𝑇 ∑(Δ𝑡𝑡,𝑖𝑖)2       (11)
𝑛𝑛

𝑖𝑖=1
 

 

𝐸𝐸𝐴𝐴 = ∑ ∑|𝑉𝑉𝑡𝑡,𝑖𝑖
′ − 𝑀𝑀𝑡𝑡,𝑖𝑖|                    (12)

𝑛𝑛

𝑖𝑖=1

𝑇𝑇

𝑡𝑡=1
 

 

This applies bilateral filtering to range frames.

𝑉𝑉𝑡𝑡
′ = 𝑉𝑉𝑡𝑡 − μ𝑉𝑉

σ𝑉𝑉
                          (1) 

 

𝑅𝑅𝑡𝑡
′ = 𝑅𝑅𝑡𝑡 − μ𝑅𝑅

σ𝑅𝑅
                         (2) 

 

𝐸𝐸𝑉𝑉 = ∑ ∑(𝑉𝑉𝑖𝑖𝑖𝑖 − μ𝑉𝑉)2      (3)
𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
 

 

𝐸𝐸𝑅𝑅 = ∑ ∑(𝑅𝑅𝑖𝑖𝑖𝑖 − μ𝑅𝑅)2      (4)
𝑞𝑞

𝑗𝑗=1

𝑝𝑝

𝑖𝑖=1
 

 

𝑁𝑁𝑣𝑣 = ∑ ∑ 𝐺𝐺𝑖𝑖𝑖𝑖

𝑘𝑘

𝑗𝑗=1

𝑘𝑘

𝑖𝑖=1
⋅ 𝑉𝑉𝑡𝑡

′              (5) 

 

𝑁𝑁𝑟𝑟 = ∑ ∑ 𝐵𝐵𝑖𝑖𝑖𝑖

𝑘𝑘

𝑗𝑗=1

𝑘𝑘

𝑖𝑖=1
⋅ 𝑅𝑅𝑡𝑡

′             (6) 

 

𝐸𝐸𝑁𝑁 = ∑(𝑁𝑁𝑣𝑣 − 𝑁𝑁𝑟𝑟)2             (7)
𝑇𝑇

𝑡𝑡=1
 

 

𝐷𝐷𝑡𝑡 = ∑ ∑(𝑉𝑉𝑖𝑖𝑖𝑖
′ − 𝑅𝑅𝑖𝑖𝑖𝑖

′ )2      (8)
𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
 

 

𝑀𝑀_{𝑡𝑡}  =   arg min
𝑇𝑇

) ∑ ∑ (𝑉𝑉𝑖𝑖𝑖𝑖
′ − 𝑇𝑇(𝑅𝑅𝑖𝑖𝑖𝑖

′ ))
2

    (9)
𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
 

 

Δ𝑡𝑡 = 𝑉𝑉𝑡𝑡
′ − 𝑀𝑀𝑡𝑡                                        (10) 

 

ℒ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = ∑ 𝑡𝑡 = 1𝑇𝑇 ∑(Δ𝑡𝑡,𝑖𝑖)2       (11)
𝑛𝑛

𝑖𝑖=1
 

 

𝐸𝐸𝐴𝐴 = ∑ ∑|𝑉𝑉𝑡𝑡,𝑖𝑖
′ − 𝑀𝑀𝑡𝑡,𝑖𝑖|                    (12)

𝑛𝑛

𝑖𝑖=1

𝑇𝑇

𝑡𝑡=1
 

 

This computes discrepancy between filtered video and range data.

Step 3: Frame-Wise Discrepancy Estimation

𝑉𝑉𝑡𝑡
′ = 𝑉𝑉𝑡𝑡 − μ𝑉𝑉

σ𝑉𝑉
                          (1) 

 

𝑅𝑅𝑡𝑡
′ = 𝑅𝑅𝑡𝑡 − μ𝑅𝑅

σ𝑅𝑅
                         (2) 

 

𝐸𝐸𝑉𝑉 = ∑ ∑(𝑉𝑉𝑖𝑖𝑖𝑖 − μ𝑉𝑉)2      (3)
𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
 

 

𝐸𝐸𝑅𝑅 = ∑ ∑(𝑅𝑅𝑖𝑖𝑖𝑖 − μ𝑅𝑅)2      (4)
𝑞𝑞

𝑗𝑗=1

𝑝𝑝

𝑖𝑖=1
 

 

𝑁𝑁𝑣𝑣 = ∑ ∑ 𝐺𝐺𝑖𝑖𝑖𝑖

𝑘𝑘

𝑗𝑗=1

𝑘𝑘

𝑖𝑖=1
⋅ 𝑉𝑉𝑡𝑡

′              (5) 

 

𝑁𝑁𝑟𝑟 = ∑ ∑ 𝐵𝐵𝑖𝑖𝑖𝑖

𝑘𝑘

𝑗𝑗=1

𝑘𝑘

𝑖𝑖=1
⋅ 𝑅𝑅𝑡𝑡

′             (6) 

 

𝐸𝐸𝑁𝑁 = ∑(𝑁𝑁𝑣𝑣 − 𝑁𝑁𝑟𝑟)2             (7)
𝑇𝑇

𝑡𝑡=1
 

 

𝐷𝐷𝑡𝑡 = ∑ ∑(𝑉𝑉𝑖𝑖𝑖𝑖
′ − 𝑅𝑅𝑖𝑖𝑖𝑖

′ )2      (8)
𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
 

 

𝑀𝑀_{𝑡𝑡}  =   arg min
𝑇𝑇

) ∑ ∑ (𝑉𝑉𝑖𝑖𝑖𝑖
′ − 𝑇𝑇(𝑅𝑅𝑖𝑖𝑖𝑖

′ ))
2

    (9)
𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
 

 

Δ𝑡𝑡 = 𝑉𝑉𝑡𝑡
′ − 𝑀𝑀𝑡𝑡                                        (10) 

 

ℒ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = ∑ 𝑡𝑡 = 1𝑇𝑇 ∑(Δ𝑡𝑡,𝑖𝑖)2       (11)
𝑛𝑛

𝑖𝑖=1
 

 

𝐸𝐸𝐴𝐴 = ∑ ∑|𝑉𝑉𝑡𝑡,𝑖𝑖
′ − 𝑀𝑀𝑡𝑡,𝑖𝑖|                    (12)

𝑛𝑛

𝑖𝑖=1

𝑇𝑇

𝑡𝑡=1
 

 

This measures squared pixel differences between modalities.

Step 4: Transformation-Based Alignment

𝑉𝑉𝑡𝑡
′ = 𝑉𝑉𝑡𝑡 − μ𝑉𝑉

σ𝑉𝑉
                          (1) 

 

𝑅𝑅𝑡𝑡
′ = 𝑅𝑅𝑡𝑡 − μ𝑅𝑅

σ𝑅𝑅
                         (2) 

 

𝐸𝐸𝑉𝑉 = ∑ ∑(𝑉𝑉𝑖𝑖𝑖𝑖 − μ𝑉𝑉)2      (3)
𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
 

 

𝐸𝐸𝑅𝑅 = ∑ ∑(𝑅𝑅𝑖𝑖𝑖𝑖 − μ𝑅𝑅)2      (4)
𝑞𝑞

𝑗𝑗=1

𝑝𝑝

𝑖𝑖=1
 

 

𝑁𝑁𝑣𝑣 = ∑ ∑ 𝐺𝐺𝑖𝑖𝑖𝑖

𝑘𝑘

𝑗𝑗=1

𝑘𝑘

𝑖𝑖=1
⋅ 𝑉𝑉𝑡𝑡

′              (5) 

 

𝑁𝑁𝑟𝑟 = ∑ ∑ 𝐵𝐵𝑖𝑖𝑖𝑖

𝑘𝑘

𝑗𝑗=1

𝑘𝑘

𝑖𝑖=1
⋅ 𝑅𝑅𝑡𝑡

′             (6) 

 

𝐸𝐸𝑁𝑁 = ∑(𝑁𝑁𝑣𝑣 − 𝑁𝑁𝑟𝑟)2             (7)
𝑇𝑇

𝑡𝑡=1
 

 

𝐷𝐷𝑡𝑡 = ∑ ∑(𝑉𝑉𝑖𝑖𝑖𝑖
′ − 𝑅𝑅𝑖𝑖𝑖𝑖

′ )2      (8)
𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
 

 

𝑀𝑀_{𝑡𝑡}  =   arg min
𝑇𝑇

) ∑ ∑ (𝑉𝑉𝑖𝑖𝑖𝑖
′ − 𝑇𝑇(𝑅𝑅𝑖𝑖𝑖𝑖

′ ))
2

    (9)
𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
 

 

Δ𝑡𝑡 = 𝑉𝑉𝑡𝑡
′ − 𝑀𝑀𝑡𝑡                                        (10) 

 

ℒ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = ∑ 𝑡𝑡 = 1𝑇𝑇 ∑(Δ𝑡𝑡,𝑖𝑖)2       (11)
𝑛𝑛

𝑖𝑖=1
 

 

𝐸𝐸𝐴𝐴 = ∑ ∑|𝑉𝑉𝑡𝑡,𝑖𝑖
′ − 𝑀𝑀𝑡𝑡,𝑖𝑖|                    (12)

𝑛𝑛

𝑖𝑖=1

𝑇𝑇

𝑡𝑡=1
 

 

This finds the transformation aligning range to video data.

Step 5: Alignment Error Calculation

𝑉𝑉𝑡𝑡
′ = 𝑉𝑉𝑡𝑡 − μ𝑉𝑉

σ𝑉𝑉
                          (1) 

 

𝑅𝑅𝑡𝑡
′ = 𝑅𝑅𝑡𝑡 − μ𝑅𝑅

σ𝑅𝑅
                         (2) 

 

𝐸𝐸𝑉𝑉 = ∑ ∑(𝑉𝑉𝑖𝑖𝑖𝑖 − μ𝑉𝑉)2      (3)
𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
 

 

𝐸𝐸𝑅𝑅 = ∑ ∑(𝑅𝑅𝑖𝑖𝑖𝑖 − μ𝑅𝑅)2      (4)
𝑞𝑞

𝑗𝑗=1

𝑝𝑝

𝑖𝑖=1
 

 

𝑁𝑁𝑣𝑣 = ∑ ∑ 𝐺𝐺𝑖𝑖𝑖𝑖

𝑘𝑘

𝑗𝑗=1

𝑘𝑘

𝑖𝑖=1
⋅ 𝑉𝑉𝑡𝑡

′              (5) 

 

𝑁𝑁𝑟𝑟 = ∑ ∑ 𝐵𝐵𝑖𝑖𝑖𝑖

𝑘𝑘

𝑗𝑗=1

𝑘𝑘

𝑖𝑖=1
⋅ 𝑅𝑅𝑡𝑡

′             (6) 

 

𝐸𝐸𝑁𝑁 = ∑(𝑁𝑁𝑣𝑣 − 𝑁𝑁𝑟𝑟)2             (7)
𝑇𝑇

𝑡𝑡=1
 

 

𝐷𝐷𝑡𝑡 = ∑ ∑(𝑉𝑉𝑖𝑖𝑖𝑖
′ − 𝑅𝑅𝑖𝑖𝑖𝑖

′ )2      (8)
𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
 

 

𝑀𝑀_{𝑡𝑡}  =   arg min
𝑇𝑇

) ∑ ∑ (𝑉𝑉𝑖𝑖𝑖𝑖
′ − 𝑇𝑇(𝑅𝑅𝑖𝑖𝑖𝑖

′ ))
2

    (9)
𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
 

 

Δ𝑡𝑡 = 𝑉𝑉𝑡𝑡
′ − 𝑀𝑀𝑡𝑡                                        (10) 

 

ℒ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = ∑ 𝑡𝑡 = 1𝑇𝑇 ∑(Δ𝑡𝑡,𝑖𝑖)2       (11)
𝑛𝑛

𝑖𝑖=1
 

 

𝐸𝐸𝐴𝐴 = ∑ ∑|𝑉𝑉𝑡𝑡,𝑖𝑖
′ − 𝑀𝑀𝑡𝑡,𝑖𝑖|                    (12)

𝑛𝑛

𝑖𝑖=1

𝑇𝑇

𝑡𝑡=1
 

 

This defines residual alignment error per frame.

𝑉𝑉𝑡𝑡
′ = 𝑉𝑉𝑡𝑡 − μ𝑉𝑉

σ𝑉𝑉
                          (1) 

 

𝑅𝑅𝑡𝑡
′ = 𝑅𝑅𝑡𝑡 − μ𝑅𝑅

σ𝑅𝑅
                         (2) 

 

𝐸𝐸𝑉𝑉 = ∑ ∑(𝑉𝑉𝑖𝑖𝑖𝑖 − μ𝑉𝑉)2      (3)
𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
 

 

𝐸𝐸𝑅𝑅 = ∑ ∑(𝑅𝑅𝑖𝑖𝑖𝑖 − μ𝑅𝑅)2      (4)
𝑞𝑞

𝑗𝑗=1

𝑝𝑝

𝑖𝑖=1
 

 

𝑁𝑁𝑣𝑣 = ∑ ∑ 𝐺𝐺𝑖𝑖𝑖𝑖

𝑘𝑘

𝑗𝑗=1

𝑘𝑘

𝑖𝑖=1
⋅ 𝑉𝑉𝑡𝑡

′              (5) 

 

𝑁𝑁𝑟𝑟 = ∑ ∑ 𝐵𝐵𝑖𝑖𝑖𝑖

𝑘𝑘

𝑗𝑗=1

𝑘𝑘

𝑖𝑖=1
⋅ 𝑅𝑅𝑡𝑡

′             (6) 

 

𝐸𝐸𝑁𝑁 = ∑(𝑁𝑁𝑣𝑣 − 𝑁𝑁𝑟𝑟)2             (7)
𝑇𝑇

𝑡𝑡=1
 

 

𝐷𝐷𝑡𝑡 = ∑ ∑(𝑉𝑉𝑖𝑖𝑖𝑖
′ − 𝑅𝑅𝑖𝑖𝑖𝑖

′ )2      (8)
𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
 

 

𝑀𝑀_{𝑡𝑡}  =   arg min
𝑇𝑇

) ∑ ∑ (𝑉𝑉𝑖𝑖𝑖𝑖
′ − 𝑇𝑇(𝑅𝑅𝑖𝑖𝑖𝑖

′ ))
2

    (9)
𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
 

 

Δ𝑡𝑡 = 𝑉𝑉𝑡𝑡
′ − 𝑀𝑀𝑡𝑡                                        (10) 

 

ℒ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = ∑ 𝑡𝑡 = 1𝑇𝑇 ∑(Δ𝑡𝑡,𝑖𝑖)2       (11)
𝑛𝑛

𝑖𝑖=1
 

 

𝐸𝐸𝐴𝐴 = ∑ ∑|𝑉𝑉𝑡𝑡,𝑖𝑖
′ − 𝑀𝑀𝑡𝑡,𝑖𝑖|                    (12)

𝑛𝑛

𝑖𝑖=1

𝑇𝑇

𝑡𝑡=1
 

 

This is the squared loss for all aligned frames.
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𝑉𝑉𝑡𝑡
′ = 𝑉𝑉𝑡𝑡 − μ𝑉𝑉

σ𝑉𝑉
                          (1) 

 

𝑅𝑅𝑡𝑡
′ = 𝑅𝑅𝑡𝑡 − μ𝑅𝑅

σ𝑅𝑅
                         (2) 

 

𝐸𝐸𝑉𝑉 = ∑ ∑(𝑉𝑉𝑖𝑖𝑖𝑖 − μ𝑉𝑉)2      (3)
𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
 

 

𝐸𝐸𝑅𝑅 = ∑ ∑(𝑅𝑅𝑖𝑖𝑖𝑖 − μ𝑅𝑅)2      (4)
𝑞𝑞

𝑗𝑗=1

𝑝𝑝

𝑖𝑖=1
 

 

𝑁𝑁𝑣𝑣 = ∑ ∑ 𝐺𝐺𝑖𝑖𝑖𝑖

𝑘𝑘

𝑗𝑗=1

𝑘𝑘

𝑖𝑖=1
⋅ 𝑉𝑉𝑡𝑡

′              (5) 

 

𝑁𝑁𝑟𝑟 = ∑ ∑ 𝐵𝐵𝑖𝑖𝑖𝑖

𝑘𝑘

𝑗𝑗=1

𝑘𝑘

𝑖𝑖=1
⋅ 𝑅𝑅𝑡𝑡

′             (6) 

 

𝐸𝐸𝑁𝑁 = ∑(𝑁𝑁𝑣𝑣 − 𝑁𝑁𝑟𝑟)2             (7)
𝑇𝑇

𝑡𝑡=1
 

 

𝐷𝐷𝑡𝑡 = ∑ ∑(𝑉𝑉𝑖𝑖𝑖𝑖
′ − 𝑅𝑅𝑖𝑖𝑖𝑖

′ )2      (8)
𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
 

 

𝑀𝑀_{𝑡𝑡}  =   arg min
𝑇𝑇

) ∑ ∑ (𝑉𝑉𝑖𝑖𝑖𝑖
′ − 𝑇𝑇(𝑅𝑅𝑖𝑖𝑖𝑖

′ ))
2

    (9)
𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
 

 

Δ𝑡𝑡 = 𝑉𝑉𝑡𝑡
′ − 𝑀𝑀𝑡𝑡                                        (10) 

 

ℒ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = ∑ 𝑡𝑡 = 1𝑇𝑇 ∑(Δ𝑡𝑡,𝑖𝑖)2       (11)
𝑛𝑛

𝑖𝑖=1
 

 

𝐸𝐸𝐴𝐴 = ∑ ∑|𝑉𝑉𝑡𝑡,𝑖𝑖
′ − 𝑀𝑀𝑡𝑡,𝑖𝑖|                    (12)

𝑛𝑛

𝑖𝑖=1

𝑇𝑇

𝑡𝑡=1
 

 This is the absolute alignment error for robustness.

Step 6: Structural and Geometric Similarity

θ𝑡𝑡 = ∑  
𝑛𝑛

𝑖𝑖=1
arccos ( 𝑛𝑛𝑛𝑛, 𝑖𝑖 ⋅ 𝑛𝑛𝑛𝑛, 𝑖𝑖

|𝑛𝑛𝑛𝑛, 𝑖𝑖||𝑛𝑛𝑛𝑛, 𝑖𝑖|)      (13) 

 

𝑑𝑑𝑡𝑡 = ∑|𝑝𝑝𝑣𝑣,𝑖𝑖 − 𝑝𝑝𝑟𝑟,𝑖𝑖|              (14)
𝑛𝑛

𝑖𝑖=1
 

 

𝐶𝐶𝑡𝑡 = ∑(θ𝑡𝑡,𝑖𝑖 + 𝑑𝑑𝑡𝑡,𝑖𝑖)             (15)
𝑛𝑛

𝑖𝑖=1
 

 

𝑅𝑅𝑡𝑡
′′ = ∑ ICP(𝑅𝑅𝑡𝑡,𝑖𝑖

′ , 𝑉𝑉𝑡𝑡,𝑖𝑖
′ )        (16)

𝑛𝑛

𝑖𝑖=1
 

 

𝑓𝑓𝑡𝑡 = ∑  
𝑛𝑛

𝑖𝑖=1
tanh(𝑊𝑊𝑓𝑓𝑉𝑉𝑡𝑡,𝑖𝑖

′ )       (17) 

 

𝑔𝑔𝑡𝑡 = ∑ σ(𝑊𝑊𝑔𝑔𝑅𝑅𝑡𝑡,𝑖𝑖
′ )              (18)

𝑛𝑛

𝑖𝑖=1
 

 

𝐹𝐹𝑡𝑡 = ∑(𝑓𝑓𝑡𝑡,𝑖𝑖 ⋅ 𝑔𝑔𝑡𝑡,𝑖𝑖)               (19)
𝑛𝑛

𝑖𝑖=1
 

 

𝑆𝑆𝑡𝑡 = ∑(𝐹𝐹𝑡𝑡,𝑖𝑖 − 𝐹𝐹𝑡𝑡−1,𝑖𝑖)2      (20)
𝑛𝑛

𝑖𝑖=1
 

 

𝑄𝑄𝑡𝑡 = λ1 ∑ 𝐸𝐸𝑡𝑡,𝑖𝑖

𝑛𝑛

𝑖𝑖=1
+ λ2 ∑ 𝑆𝑆𝑡𝑡,𝑖𝑖      (21)

𝑛𝑛

𝑖𝑖=1
 

 

𝐽𝐽 = ∑ 𝑄𝑄𝑡𝑡                              (22)
𝑇𝑇

𝑡𝑡=1
 

 

𝑍𝑍𝑡𝑡 = ∑ 𝑈𝑈𝑖𝑖𝑀𝑀𝑡𝑡,𝑖𝑖                     (23)
𝑛𝑛

𝑖𝑖=1
 

 

 

This measures angular differences between surface normals.

θ𝑡𝑡 = ∑  
𝑛𝑛

𝑖𝑖=1
arccos ( 𝑛𝑛𝑛𝑛, 𝑖𝑖 ⋅ 𝑛𝑛𝑛𝑛, 𝑖𝑖

|𝑛𝑛𝑛𝑛, 𝑖𝑖||𝑛𝑛𝑛𝑛, 𝑖𝑖|)      (13) 

 

𝑑𝑑𝑡𝑡 = ∑|𝑝𝑝𝑣𝑣,𝑖𝑖 − 𝑝𝑝𝑟𝑟,𝑖𝑖|              (14)
𝑛𝑛

𝑖𝑖=1
 

 

𝐶𝐶𝑡𝑡 = ∑(θ𝑡𝑡,𝑖𝑖 + 𝑑𝑑𝑡𝑡,𝑖𝑖)             (15)
𝑛𝑛

𝑖𝑖=1
 

 

𝑅𝑅𝑡𝑡
′′ = ∑ ICP(𝑅𝑅𝑡𝑡,𝑖𝑖

′ , 𝑉𝑉𝑡𝑡,𝑖𝑖
′ )        (16)

𝑛𝑛

𝑖𝑖=1
 

 

𝑓𝑓𝑡𝑡 = ∑  
𝑛𝑛

𝑖𝑖=1
tanh(𝑊𝑊𝑓𝑓𝑉𝑉𝑡𝑡,𝑖𝑖

′ )       (17) 

 

𝑔𝑔𝑡𝑡 = ∑ σ(𝑊𝑊𝑔𝑔𝑅𝑅𝑡𝑡,𝑖𝑖
′ )              (18)

𝑛𝑛

𝑖𝑖=1
 

 

𝐹𝐹𝑡𝑡 = ∑(𝑓𝑓𝑡𝑡,𝑖𝑖 ⋅ 𝑔𝑔𝑡𝑡,𝑖𝑖)               (19)
𝑛𝑛

𝑖𝑖=1
 

 

𝑆𝑆𝑡𝑡 = ∑(𝐹𝐹𝑡𝑡,𝑖𝑖 − 𝐹𝐹𝑡𝑡−1,𝑖𝑖)2      (20)
𝑛𝑛

𝑖𝑖=1
 

 

𝑄𝑄𝑡𝑡 = λ1 ∑ 𝐸𝐸𝑡𝑡,𝑖𝑖

𝑛𝑛

𝑖𝑖=1
+ λ2 ∑ 𝑆𝑆𝑡𝑡,𝑖𝑖      (21)

𝑛𝑛

𝑖𝑖=1
 

 

𝐽𝐽 = ∑ 𝑄𝑄𝑡𝑡                              (22)
𝑇𝑇

𝑡𝑡=1
 

 

𝑍𝑍𝑡𝑡 = ∑ 𝑈𝑈𝑖𝑖𝑀𝑀𝑡𝑡,𝑖𝑖                     (23)
𝑛𝑛

𝑖𝑖=1
 

 

 

This measures Euclidean distance between matched vertices.

θ𝑡𝑡 = ∑  
𝑛𝑛

𝑖𝑖=1
arccos ( 𝑛𝑛𝑛𝑛, 𝑖𝑖 ⋅ 𝑛𝑛𝑛𝑛, 𝑖𝑖

|𝑛𝑛𝑛𝑛, 𝑖𝑖||𝑛𝑛𝑛𝑛, 𝑖𝑖|)      (13) 

 

𝑑𝑑𝑡𝑡 = ∑|𝑝𝑝𝑣𝑣,𝑖𝑖 − 𝑝𝑝𝑟𝑟,𝑖𝑖|              (14)
𝑛𝑛

𝑖𝑖=1
 

 

𝐶𝐶𝑡𝑡 = ∑(θ𝑡𝑡,𝑖𝑖 + 𝑑𝑑𝑡𝑡,𝑖𝑖)             (15)
𝑛𝑛

𝑖𝑖=1
 

 

𝑅𝑅𝑡𝑡
′′ = ∑ ICP(𝑅𝑅𝑡𝑡,𝑖𝑖

′ , 𝑉𝑉𝑡𝑡,𝑖𝑖
′ )        (16)

𝑛𝑛

𝑖𝑖=1
 

 

𝑓𝑓𝑡𝑡 = ∑  
𝑛𝑛

𝑖𝑖=1
tanh(𝑊𝑊𝑓𝑓𝑉𝑉𝑡𝑡,𝑖𝑖

′ )       (17) 

 

𝑔𝑔𝑡𝑡 = ∑ σ(𝑊𝑊𝑔𝑔𝑅𝑅𝑡𝑡,𝑖𝑖
′ )              (18)

𝑛𝑛

𝑖𝑖=1
 

 

𝐹𝐹𝑡𝑡 = ∑(𝑓𝑓𝑡𝑡,𝑖𝑖 ⋅ 𝑔𝑔𝑡𝑡,𝑖𝑖)               (19)
𝑛𝑛

𝑖𝑖=1
 

 

𝑆𝑆𝑡𝑡 = ∑(𝐹𝐹𝑡𝑡,𝑖𝑖 − 𝐹𝐹𝑡𝑡−1,𝑖𝑖)2      (20)
𝑛𝑛

𝑖𝑖=1
 

 

𝑄𝑄𝑡𝑡 = λ1 ∑ 𝐸𝐸𝑡𝑡,𝑖𝑖

𝑛𝑛

𝑖𝑖=1
+ λ2 ∑ 𝑆𝑆𝑡𝑡,𝑖𝑖      (21)

𝑛𝑛

𝑖𝑖=1
 

 

𝐽𝐽 = ∑ 𝑄𝑄𝑡𝑡                              (22)
𝑇𝑇

𝑡𝑡=1
 

 

𝑍𝑍𝑡𝑡 = ∑ 𝑈𝑈𝑖𝑖𝑀𝑀𝑡𝑡,𝑖𝑖                     (23)
𝑛𝑛

𝑖𝑖=1
 

 

 

This combines angular and distance penalties.

Step 7: Iterative Closest Point Adjustment

θ𝑡𝑡 = ∑  
𝑛𝑛

𝑖𝑖=1
arccos ( 𝑛𝑛𝑛𝑛, 𝑖𝑖 ⋅ 𝑛𝑛𝑛𝑛, 𝑖𝑖

|𝑛𝑛𝑛𝑛, 𝑖𝑖||𝑛𝑛𝑛𝑛, 𝑖𝑖|)      (13) 

 

𝑑𝑑𝑡𝑡 = ∑|𝑝𝑝𝑣𝑣,𝑖𝑖 − 𝑝𝑝𝑟𝑟,𝑖𝑖|              (14)
𝑛𝑛

𝑖𝑖=1
 

 

𝐶𝐶𝑡𝑡 = ∑(θ𝑡𝑡,𝑖𝑖 + 𝑑𝑑𝑡𝑡,𝑖𝑖)             (15)
𝑛𝑛

𝑖𝑖=1
 

 

𝑅𝑅𝑡𝑡
′′ = ∑ ICP(𝑅𝑅𝑡𝑡,𝑖𝑖

′ , 𝑉𝑉𝑡𝑡,𝑖𝑖
′ )        (16)

𝑛𝑛

𝑖𝑖=1
 

 

𝑓𝑓𝑡𝑡 = ∑  
𝑛𝑛

𝑖𝑖=1
tanh(𝑊𝑊𝑓𝑓𝑉𝑉𝑡𝑡,𝑖𝑖

′ )       (17) 

 

𝑔𝑔𝑡𝑡 = ∑ σ(𝑊𝑊𝑔𝑔𝑅𝑅𝑡𝑡,𝑖𝑖
′ )              (18)

𝑛𝑛

𝑖𝑖=1
 

 

𝐹𝐹𝑡𝑡 = ∑(𝑓𝑓𝑡𝑡,𝑖𝑖 ⋅ 𝑔𝑔𝑡𝑡,𝑖𝑖)               (19)
𝑛𝑛

𝑖𝑖=1
 

 

𝑆𝑆𝑡𝑡 = ∑(𝐹𝐹𝑡𝑡,𝑖𝑖 − 𝐹𝐹𝑡𝑡−1,𝑖𝑖)2      (20)
𝑛𝑛

𝑖𝑖=1
 

 

𝑄𝑄𝑡𝑡 = λ1 ∑ 𝐸𝐸𝑡𝑡,𝑖𝑖

𝑛𝑛

𝑖𝑖=1
+ λ2 ∑ 𝑆𝑆𝑡𝑡,𝑖𝑖      (21)

𝑛𝑛

𝑖𝑖=1
 

 

𝐽𝐽 = ∑ 𝑄𝑄𝑡𝑡                              (22)
𝑇𝑇

𝑡𝑡=1
 

 

𝑍𝑍𝑡𝑡 = ∑ 𝑈𝑈𝑖𝑖𝑀𝑀𝑡𝑡,𝑖𝑖                     (23)
𝑛𝑛

𝑖𝑖=1
 

 

 

This applies iterative closest point to refine registration.

Step 8: Nonlinear Feature Fusion

θ𝑡𝑡 = ∑  
𝑛𝑛

𝑖𝑖=1
arccos ( 𝑛𝑛𝑛𝑛, 𝑖𝑖 ⋅ 𝑛𝑛𝑛𝑛, 𝑖𝑖

|𝑛𝑛𝑛𝑛, 𝑖𝑖||𝑛𝑛𝑛𝑛, 𝑖𝑖|)      (13) 

 

𝑑𝑑𝑡𝑡 = ∑|𝑝𝑝𝑣𝑣,𝑖𝑖 − 𝑝𝑝𝑟𝑟,𝑖𝑖|              (14)
𝑛𝑛

𝑖𝑖=1
 

 

𝐶𝐶𝑡𝑡 = ∑(θ𝑡𝑡,𝑖𝑖 + 𝑑𝑑𝑡𝑡,𝑖𝑖)             (15)
𝑛𝑛

𝑖𝑖=1
 

 

𝑅𝑅𝑡𝑡
′′ = ∑ ICP(𝑅𝑅𝑡𝑡,𝑖𝑖

′ , 𝑉𝑉𝑡𝑡,𝑖𝑖
′ )        (16)

𝑛𝑛

𝑖𝑖=1
 

 

𝑓𝑓𝑡𝑡 = ∑  
𝑛𝑛

𝑖𝑖=1
tanh(𝑊𝑊𝑓𝑓𝑉𝑉𝑡𝑡,𝑖𝑖

′ )       (17) 

 

𝑔𝑔𝑡𝑡 = ∑ σ(𝑊𝑊𝑔𝑔𝑅𝑅𝑡𝑡,𝑖𝑖
′ )              (18)

𝑛𝑛

𝑖𝑖=1
 

 

𝐹𝐹𝑡𝑡 = ∑(𝑓𝑓𝑡𝑡,𝑖𝑖 ⋅ 𝑔𝑔𝑡𝑡,𝑖𝑖)               (19)
𝑛𝑛

𝑖𝑖=1
 

 

𝑆𝑆𝑡𝑡 = ∑(𝐹𝐹𝑡𝑡,𝑖𝑖 − 𝐹𝐹𝑡𝑡−1,𝑖𝑖)2      (20)
𝑛𝑛

𝑖𝑖=1
 

 

𝑄𝑄𝑡𝑡 = λ1 ∑ 𝐸𝐸𝑡𝑡,𝑖𝑖

𝑛𝑛

𝑖𝑖=1
+ λ2 ∑ 𝑆𝑆𝑡𝑡,𝑖𝑖      (21)

𝑛𝑛

𝑖𝑖=1
 

 

𝐽𝐽 = ∑ 𝑄𝑄𝑡𝑡                              (22)
𝑇𝑇

𝑡𝑡=1
 

 

𝑍𝑍𝑡𝑡 = ∑ 𝑈𝑈𝑖𝑖𝑀𝑀𝑡𝑡,𝑖𝑖                     (23)
𝑛𝑛

𝑖𝑖=1
 

 

 

This extracts nonlinear video features.

θ𝑡𝑡 = ∑  
𝑛𝑛

𝑖𝑖=1
arccos ( 𝑛𝑛𝑛𝑛, 𝑖𝑖 ⋅ 𝑛𝑛𝑛𝑛, 𝑖𝑖

|𝑛𝑛𝑛𝑛, 𝑖𝑖||𝑛𝑛𝑛𝑛, 𝑖𝑖|)      (13) 

 

𝑑𝑑𝑡𝑡 = ∑|𝑝𝑝𝑣𝑣,𝑖𝑖 − 𝑝𝑝𝑟𝑟,𝑖𝑖|              (14)
𝑛𝑛

𝑖𝑖=1
 

 

𝐶𝐶𝑡𝑡 = ∑(θ𝑡𝑡,𝑖𝑖 + 𝑑𝑑𝑡𝑡,𝑖𝑖)             (15)
𝑛𝑛

𝑖𝑖=1
 

 

𝑅𝑅𝑡𝑡
′′ = ∑ ICP(𝑅𝑅𝑡𝑡,𝑖𝑖

′ , 𝑉𝑉𝑡𝑡,𝑖𝑖
′ )        (16)

𝑛𝑛

𝑖𝑖=1
 

 

𝑓𝑓𝑡𝑡 = ∑  
𝑛𝑛

𝑖𝑖=1
tanh(𝑊𝑊𝑓𝑓𝑉𝑉𝑡𝑡,𝑖𝑖

′ )       (17) 

 

𝑔𝑔𝑡𝑡 = ∑ σ(𝑊𝑊𝑔𝑔𝑅𝑅𝑡𝑡,𝑖𝑖
′ )              (18)

𝑛𝑛

𝑖𝑖=1
 

 

𝐹𝐹𝑡𝑡 = ∑(𝑓𝑓𝑡𝑡,𝑖𝑖 ⋅ 𝑔𝑔𝑡𝑡,𝑖𝑖)               (19)
𝑛𝑛

𝑖𝑖=1
 

 

𝑆𝑆𝑡𝑡 = ∑(𝐹𝐹𝑡𝑡,𝑖𝑖 − 𝐹𝐹𝑡𝑡−1,𝑖𝑖)2      (20)
𝑛𝑛

𝑖𝑖=1
 

 

𝑄𝑄𝑡𝑡 = λ1 ∑ 𝐸𝐸𝑡𝑡,𝑖𝑖

𝑛𝑛

𝑖𝑖=1
+ λ2 ∑ 𝑆𝑆𝑡𝑡,𝑖𝑖      (21)

𝑛𝑛

𝑖𝑖=1
 

 

𝐽𝐽 = ∑ 𝑄𝑄𝑡𝑡                              (22)
𝑇𝑇

𝑡𝑡=1
 

 

𝑍𝑍𝑡𝑡 = ∑ 𝑈𝑈𝑖𝑖𝑀𝑀𝑡𝑡,𝑖𝑖                     (23)
𝑛𝑛

𝑖𝑖=1
 

 

 

This extracts nonlinear range features.

θ𝑡𝑡 = ∑  
𝑛𝑛

𝑖𝑖=1
arccos ( 𝑛𝑛𝑛𝑛, 𝑖𝑖 ⋅ 𝑛𝑛𝑛𝑛, 𝑖𝑖

|𝑛𝑛𝑛𝑛, 𝑖𝑖||𝑛𝑛𝑛𝑛, 𝑖𝑖|)      (13) 

 

𝑑𝑑𝑡𝑡 = ∑|𝑝𝑝𝑣𝑣,𝑖𝑖 − 𝑝𝑝𝑟𝑟,𝑖𝑖|              (14)
𝑛𝑛

𝑖𝑖=1
 

 

𝐶𝐶𝑡𝑡 = ∑(θ𝑡𝑡,𝑖𝑖 + 𝑑𝑑𝑡𝑡,𝑖𝑖)             (15)
𝑛𝑛

𝑖𝑖=1
 

 

𝑅𝑅𝑡𝑡
′′ = ∑ ICP(𝑅𝑅𝑡𝑡,𝑖𝑖

′ , 𝑉𝑉𝑡𝑡,𝑖𝑖
′ )        (16)

𝑛𝑛

𝑖𝑖=1
 

 

𝑓𝑓𝑡𝑡 = ∑  
𝑛𝑛

𝑖𝑖=1
tanh(𝑊𝑊𝑓𝑓𝑉𝑉𝑡𝑡,𝑖𝑖

′ )       (17) 

 

𝑔𝑔𝑡𝑡 = ∑ σ(𝑊𝑊𝑔𝑔𝑅𝑅𝑡𝑡,𝑖𝑖
′ )              (18)

𝑛𝑛

𝑖𝑖=1
 

 

𝐹𝐹𝑡𝑡 = ∑(𝑓𝑓𝑡𝑡,𝑖𝑖 ⋅ 𝑔𝑔𝑡𝑡,𝑖𝑖)               (19)
𝑛𝑛

𝑖𝑖=1
 

 

𝑆𝑆𝑡𝑡 = ∑(𝐹𝐹𝑡𝑡,𝑖𝑖 − 𝐹𝐹𝑡𝑡−1,𝑖𝑖)2      (20)
𝑛𝑛

𝑖𝑖=1
 

 

𝑄𝑄𝑡𝑡 = λ1 ∑ 𝐸𝐸𝑡𝑡,𝑖𝑖

𝑛𝑛

𝑖𝑖=1
+ λ2 ∑ 𝑆𝑆𝑡𝑡,𝑖𝑖      (21)

𝑛𝑛

𝑖𝑖=1
 

 

𝐽𝐽 = ∑ 𝑄𝑄𝑡𝑡                              (22)
𝑇𝑇

𝑡𝑡=1
 

 

𝑍𝑍𝑡𝑡 = ∑ 𝑈𝑈𝑖𝑖𝑀𝑀𝑡𝑡,𝑖𝑖                     (23)
𝑛𝑛

𝑖𝑖=1
 

 

 

This fuses video and range features multiplicatively.

Step 9: Temporal Smoothness Constraint

θ𝑡𝑡 = ∑  
𝑛𝑛

𝑖𝑖=1
arccos ( 𝑛𝑛𝑛𝑛, 𝑖𝑖 ⋅ 𝑛𝑛𝑛𝑛, 𝑖𝑖

|𝑛𝑛𝑛𝑛, 𝑖𝑖||𝑛𝑛𝑛𝑛, 𝑖𝑖|)      (13) 

 

𝑑𝑑𝑡𝑡 = ∑|𝑝𝑝𝑣𝑣,𝑖𝑖 − 𝑝𝑝𝑟𝑟,𝑖𝑖|              (14)
𝑛𝑛

𝑖𝑖=1
 

 

𝐶𝐶𝑡𝑡 = ∑(θ𝑡𝑡,𝑖𝑖 + 𝑑𝑑𝑡𝑡,𝑖𝑖)             (15)
𝑛𝑛

𝑖𝑖=1
 

 

𝑅𝑅𝑡𝑡
′′ = ∑ ICP(𝑅𝑅𝑡𝑡,𝑖𝑖

′ , 𝑉𝑉𝑡𝑡,𝑖𝑖
′ )        (16)

𝑛𝑛

𝑖𝑖=1
 

 

𝑓𝑓𝑡𝑡 = ∑  
𝑛𝑛

𝑖𝑖=1
tanh(𝑊𝑊𝑓𝑓𝑉𝑉𝑡𝑡,𝑖𝑖

′ )       (17) 

 

𝑔𝑔𝑡𝑡 = ∑ σ(𝑊𝑊𝑔𝑔𝑅𝑅𝑡𝑡,𝑖𝑖
′ )              (18)

𝑛𝑛

𝑖𝑖=1
 

 

𝐹𝐹𝑡𝑡 = ∑(𝑓𝑓𝑡𝑡,𝑖𝑖 ⋅ 𝑔𝑔𝑡𝑡,𝑖𝑖)               (19)
𝑛𝑛

𝑖𝑖=1
 

 

𝑆𝑆𝑡𝑡 = ∑(𝐹𝐹𝑡𝑡,𝑖𝑖 − 𝐹𝐹𝑡𝑡−1,𝑖𝑖)2      (20)
𝑛𝑛

𝑖𝑖=1
 

 

𝑄𝑄𝑡𝑡 = λ1 ∑ 𝐸𝐸𝑡𝑡,𝑖𝑖

𝑛𝑛

𝑖𝑖=1
+ λ2 ∑ 𝑆𝑆𝑡𝑡,𝑖𝑖      (21)

𝑛𝑛

𝑖𝑖=1
 

 

𝐽𝐽 = ∑ 𝑄𝑄𝑡𝑡                              (22)
𝑇𝑇

𝑡𝑡=1
 

 

𝑍𝑍𝑡𝑡 = ∑ 𝑈𝑈𝑖𝑖𝑀𝑀𝑡𝑡,𝑖𝑖                     (23)
𝑛𝑛

𝑖𝑖=1
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This ensures smooth transitions between frames.

Step 10: Combined Alignment and Smoothness Cost

θ𝑡𝑡 = ∑  
𝑛𝑛

𝑖𝑖=1
arccos ( 𝑛𝑛𝑛𝑛, 𝑖𝑖 ⋅ 𝑛𝑛𝑛𝑛, 𝑖𝑖

|𝑛𝑛𝑛𝑛, 𝑖𝑖||𝑛𝑛𝑛𝑛, 𝑖𝑖|)      (13) 

 

𝑑𝑑𝑡𝑡 = ∑|𝑝𝑝𝑣𝑣,𝑖𝑖 − 𝑝𝑝𝑟𝑟,𝑖𝑖|              (14)
𝑛𝑛

𝑖𝑖=1
 

 

𝐶𝐶𝑡𝑡 = ∑(θ𝑡𝑡,𝑖𝑖 + 𝑑𝑑𝑡𝑡,𝑖𝑖)             (15)
𝑛𝑛

𝑖𝑖=1
 

 

𝑅𝑅𝑡𝑡
′′ = ∑ ICP(𝑅𝑅𝑡𝑡,𝑖𝑖

′ , 𝑉𝑉𝑡𝑡,𝑖𝑖
′ )        (16)

𝑛𝑛

𝑖𝑖=1
 

 

𝑓𝑓𝑡𝑡 = ∑  
𝑛𝑛

𝑖𝑖=1
tanh(𝑊𝑊𝑓𝑓𝑉𝑉𝑡𝑡,𝑖𝑖

′ )       (17) 

 

𝑔𝑔𝑡𝑡 = ∑ σ(𝑊𝑊𝑔𝑔𝑅𝑅𝑡𝑡,𝑖𝑖
′ )              (18)

𝑛𝑛

𝑖𝑖=1
 

 

𝐹𝐹𝑡𝑡 = ∑(𝑓𝑓𝑡𝑡,𝑖𝑖 ⋅ 𝑔𝑔𝑡𝑡,𝑖𝑖)               (19)
𝑛𝑛

𝑖𝑖=1
 

 

𝑆𝑆𝑡𝑡 = ∑(𝐹𝐹𝑡𝑡,𝑖𝑖 − 𝐹𝐹𝑡𝑡−1,𝑖𝑖)2      (20)
𝑛𝑛

𝑖𝑖=1
 

 

𝑄𝑄𝑡𝑡 = λ1 ∑ 𝐸𝐸𝑡𝑡,𝑖𝑖

𝑛𝑛

𝑖𝑖=1
+ λ2 ∑ 𝑆𝑆𝑡𝑡,𝑖𝑖      (21)

𝑛𝑛

𝑖𝑖=1
 

 

𝐽𝐽 = ∑ 𝑄𝑄𝑡𝑡                              (22)
𝑇𝑇

𝑡𝑡=1
 

 

𝑍𝑍𝑡𝑡 = ∑ 𝑈𝑈𝑖𝑖𝑀𝑀𝑡𝑡,𝑖𝑖                     (23)
𝑛𝑛

𝑖𝑖=1
 

 

 

This defines a weighted cost for alignment and smoothness.

θ𝑡𝑡 = ∑  
𝑛𝑛

𝑖𝑖=1
arccos ( 𝑛𝑛𝑛𝑛, 𝑖𝑖 ⋅ 𝑛𝑛𝑛𝑛, 𝑖𝑖

|𝑛𝑛𝑛𝑛, 𝑖𝑖||𝑛𝑛𝑛𝑛, 𝑖𝑖|)      (13) 

 

𝑑𝑑𝑡𝑡 = ∑|𝑝𝑝𝑣𝑣,𝑖𝑖 − 𝑝𝑝𝑟𝑟,𝑖𝑖|              (14)
𝑛𝑛

𝑖𝑖=1
 

 

𝐶𝐶𝑡𝑡 = ∑(θ𝑡𝑡,𝑖𝑖 + 𝑑𝑑𝑡𝑡,𝑖𝑖)             (15)
𝑛𝑛

𝑖𝑖=1
 

 

𝑅𝑅𝑡𝑡
′′ = ∑ ICP(𝑅𝑅𝑡𝑡,𝑖𝑖

′ , 𝑉𝑉𝑡𝑡,𝑖𝑖
′ )        (16)

𝑛𝑛

𝑖𝑖=1
 

 

𝑓𝑓𝑡𝑡 = ∑  
𝑛𝑛

𝑖𝑖=1
tanh(𝑊𝑊𝑓𝑓𝑉𝑉𝑡𝑡,𝑖𝑖

′ )       (17) 

 

𝑔𝑔𝑡𝑡 = ∑ σ(𝑊𝑊𝑔𝑔𝑅𝑅𝑡𝑡,𝑖𝑖
′ )              (18)

𝑛𝑛

𝑖𝑖=1
 

 

𝐹𝐹𝑡𝑡 = ∑(𝑓𝑓𝑡𝑡,𝑖𝑖 ⋅ 𝑔𝑔𝑡𝑡,𝑖𝑖)               (19)
𝑛𝑛

𝑖𝑖=1
 

 

𝑆𝑆𝑡𝑡 = ∑(𝐹𝐹𝑡𝑡,𝑖𝑖 − 𝐹𝐹𝑡𝑡−1,𝑖𝑖)2      (20)
𝑛𝑛

𝑖𝑖=1
 

 

𝑄𝑄𝑡𝑡 = λ1 ∑ 𝐸𝐸𝑡𝑡,𝑖𝑖

𝑛𝑛

𝑖𝑖=1
+ λ2 ∑ 𝑆𝑆𝑡𝑡,𝑖𝑖      (21)

𝑛𝑛

𝑖𝑖=1
 

 

𝐽𝐽 = ∑ 𝑄𝑄𝑡𝑡                              (22)
𝑇𝑇

𝑡𝑡=1
 

 

𝑍𝑍𝑡𝑡 = ∑ 𝑈𝑈𝑖𝑖𝑀𝑀𝑡𝑡,𝑖𝑖                     (23)
𝑛𝑛

𝑖𝑖=1
 

 

 

This is the total optimization cost over all frames.

Step 11: Projection and Regularization

θ𝑡𝑡 = ∑  
𝑛𝑛

𝑖𝑖=1
arccos ( 𝑛𝑛𝑛𝑛, 𝑖𝑖 ⋅ 𝑛𝑛𝑛𝑛, 𝑖𝑖

|𝑛𝑛𝑛𝑛, 𝑖𝑖||𝑛𝑛𝑛𝑛, 𝑖𝑖|)      (13) 

 

𝑑𝑑𝑡𝑡 = ∑|𝑝𝑝𝑣𝑣,𝑖𝑖 − 𝑝𝑝𝑟𝑟,𝑖𝑖|              (14)
𝑛𝑛

𝑖𝑖=1
 

 

𝐶𝐶𝑡𝑡 = ∑(θ𝑡𝑡,𝑖𝑖 + 𝑑𝑑𝑡𝑡,𝑖𝑖)             (15)
𝑛𝑛

𝑖𝑖=1
 

 

𝑅𝑅𝑡𝑡
′′ = ∑ ICP(𝑅𝑅𝑡𝑡,𝑖𝑖

′ , 𝑉𝑉𝑡𝑡,𝑖𝑖
′ )        (16)

𝑛𝑛

𝑖𝑖=1
 

 

𝑓𝑓𝑡𝑡 = ∑  
𝑛𝑛

𝑖𝑖=1
tanh(𝑊𝑊𝑓𝑓𝑉𝑉𝑡𝑡,𝑖𝑖

′ )       (17) 

 

𝑔𝑔𝑡𝑡 = ∑ σ(𝑊𝑊𝑔𝑔𝑅𝑅𝑡𝑡,𝑖𝑖
′ )              (18)

𝑛𝑛

𝑖𝑖=1
 

 

𝐹𝐹𝑡𝑡 = ∑(𝑓𝑓𝑡𝑡,𝑖𝑖 ⋅ 𝑔𝑔𝑡𝑡,𝑖𝑖)               (19)
𝑛𝑛

𝑖𝑖=1
 

 

𝑆𝑆𝑡𝑡 = ∑(𝐹𝐹𝑡𝑡,𝑖𝑖 − 𝐹𝐹𝑡𝑡−1,𝑖𝑖)2      (20)
𝑛𝑛

𝑖𝑖=1
 

 

𝑄𝑄𝑡𝑡 = λ1 ∑ 𝐸𝐸𝑡𝑡,𝑖𝑖

𝑛𝑛

𝑖𝑖=1
+ λ2 ∑ 𝑆𝑆𝑡𝑡,𝑖𝑖      (21)

𝑛𝑛

𝑖𝑖=1
 

 

𝐽𝐽 = ∑ 𝑄𝑄𝑡𝑡                              (22)
𝑇𝑇

𝑡𝑡=1
 

 

𝑍𝑍𝑡𝑡 = ∑ 𝑈𝑈𝑖𝑖𝑀𝑀𝑡𝑡,𝑖𝑖                     (23)
𝑛𝑛

𝑖𝑖=1
 

 

 
This projects registered frames into lower-dimensional space.

𝐾𝐾𝑡𝑡 = ∑(𝑍𝑍𝑡𝑡,𝑖𝑖 + 𝐹𝐹𝑡𝑡,𝑖𝑖)           (24)
𝑛𝑛

𝑖𝑖=1
 

 

Ω = ∑ ∑ 𝐾𝐾𝑡𝑡,𝑖𝑖
2                     (25)

𝑛𝑛

𝑖𝑖=1

𝑇𝑇

𝑡𝑡=1
 

 

𝑀𝑀∗ = arg min (∑ 𝑄𝑄𝑡𝑡

𝑇𝑇

𝑡𝑡=1
+ Ω)    (26) 

 

This merges projected and fused features.

𝐾𝐾𝑡𝑡 = ∑(𝑍𝑍𝑡𝑡,𝑖𝑖 + 𝐹𝐹𝑡𝑡,𝑖𝑖)           (24)
𝑛𝑛

𝑖𝑖=1
 

 

Ω = ∑ ∑ 𝐾𝐾𝑡𝑡,𝑖𝑖
2                     (25)

𝑛𝑛

𝑖𝑖=1

𝑇𝑇

𝑡𝑡=1
 

 

𝑀𝑀∗ = arg min (∑ 𝑄𝑄𝑡𝑡

𝑇𝑇

𝑡𝑡=1
+ Ω)    (26) 

 

This adds a regularization penalty.

Step 12: Final Optimized Registration Output

𝐾𝐾𝑡𝑡 = ∑(𝑍𝑍𝑡𝑡,𝑖𝑖 + 𝐹𝐹𝑡𝑡,𝑖𝑖)           (24)
𝑛𝑛

𝑖𝑖=1
 

 

Ω = ∑ ∑ 𝐾𝐾𝑡𝑡,𝑖𝑖
2                     (25)

𝑛𝑛

𝑖𝑖=1

𝑇𝑇

𝑡𝑡=1
 

 

𝑀𝑀∗ = arg min (∑ 𝑄𝑄𝑡𝑡

𝑇𝑇

𝑡𝑡=1
+ Ω)    (26) 

 
This yields the final optimized multimodal registration result.

Notations
Vₜ – video frame at time t, Rₜ – range data frame at time t, V^’ₜ– normalized video frame, R^’ₜ-normalized 

range frame, μ_V,σ_V-mean and standard deviation of video intensity, μ_R,σ_R-mean and standard deviation of 
range intensity, G - Gaussian filter for video smoothing, B – bilateral filter for range smoothing, Mₜ – registered 
multimodal frame, T - transformation matrix used for alignment, nᵥ,nᵣ – surface normals for video and range 
data, pᵥ,pᵣ – vertex positions in video and range space, Δₜ - alignment error term, L_a lign– alignment loss 
function, M* – final optimized registered dataset

The first thing to do is to make the heart video frames and range data normal. After figuring out the mean 
and standard deviation, which show how normal the data is, the next step is to rectify the variations in intensity 
and shape. We use the mean and the standard deviation to do this. The third phase will be to put a strategy into 
action to cut down on background noise. This approach will employ a bilateral filter to clean up the range data 
and a Gaussian algorithm to smooth out the video data. Then, we add together the intensities of all the pixels 
or voxels to find the error energy terms. This step comes after the last one. We will use this approach to check 
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the modalities’ unity by determining the squared differences between frames. The next step is to apply iterative 
closest point (ICP) methods to improve a transformation matrix until everything is right. The registration process 
uses both structural and geometric data, so you may adjust how the heart is aligned to match its real shape. The 
only method to achieve that is to add the sums of the changes in surface normals and the distances between 
the vertices to the cost function. To achieve the goal of nonlinear feature fusion, voxel and pixel attribute 
aggregations must be converted using sigmoid and tanh algorithms. 

Figure 1. Flowchart of multimodal preprocessing and registration steps for cardiac video and range data integration

Figure 2. Flowchart of deep spatiotemporal feature extraction using CNN, GCN, and GRU-based modeling for multimodal 
cardiac data
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Figure 1 shows the steps that must be taken to preprocess and register multimodal data using cardiac video 
and range pictures. This approach skips the process of getting the input and goes straight to the normalization 
step, which gets rid of the intensity changes and shape inaccuracies that were there before. To reduce noise 
and make inputs smoother, it is important to utilize bilateral filters for range data and Gaussian filters for 
video frames. In order to make sure that transformation-based alignment works, you need to know what 
makes each modality different. Using iterative closest point (ICP) calculations, surface normals, and vertex 
distances, it is feasible to get precise registration and greater structural consistency. Nonlinear feature fusion 
makes it feasible to merge geographical data from both sources. Also, using temporal smoothness helps keep 
things consistent across frames.(21) To provide the most accurate registered dataset for spatiotemporal analysis 
of cardiac motion, we enhance a composite cost function that integrates projection and regularization. The 
optimization of the function achieves this goal. To start, convolutional neural networks (CNNs) encode video 
frames such that they can see changes at the pixel level. On the other hand, graph convolutional networks use 
geometric distortions to show range data and give it weight.(22,23,24)

Figure 2 shows the method that was used to get deep spatiotemporal features from multimodal cardiac 
data. Convolutional neural networks, or CNNs, are responsible for finding patterns in video at the pixel level. 
On the other hand, graphene convolutional networks (GCNs) employ range data to look into geometric clues. 
The initial phase of this process, called Algorithm 1, is in charge of giving these input properties. After these 
traits are put together, a single representation is made and delivered to the recurring units. It is significantly 
easier to simulate time when this is done.

Figure 3. Flowchart of attention-based disease classification using spatiotemporal embeddings and attention-guided 
refinement

Figure 3 shows how the attention-based sickness classification method works using the spatiotemporal 
embeddings created by Algorithm 2. We first take embeddings as input and then use an attention technique to 
acquire relevance ratings for each and every cardiac frame.

RESULTS
The well-established deep spatiotemporal multimodal method surpasses all baselines across several criteria. 

This indicates that the method is better. It scores 0,96, 0,95, 0,94, and 0,97 for accuracy, sensitivity, specificity, 
precision, F1 (0,95), and area under the curve (0,97) in classification. This indicates that the approach is better 
than convolutional neural networks (CNNs), recurrent neural networks (RNNs), transformers, and attention 
models. Also, it produces these results at 0,97. Furthermore, it is better than attention structures. When 
compared to CNNs, RNNs, hybrids, transformers, and attention, reconstruction errors are the lowest. The mean 
squared error (MSE) is 0,029, while the root mean squared error is 0,170. The phrase “neural networks” is used 
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to talk about all of these distinct types of networks. When the PSNR is 34,6 and the SSIM is 0,91, the maximum 
feasible level of structural faithfulness is reached. The baselines range from 0,78 to 0,86 SSIM, with CNN at 
28,3 dB and RNN at 29,0 dB. For recurrent neural networks (RNNs), it takes 132 milliseconds for each example, 
while for convolutional neural networks (CNNs), it takes 125 milliseconds. For attention models, hybrids, and 
transformers, the throughput needs are 110 ms, 114 ms, and 110 ms, respectively. All of these benefits come 
from the fact that we can copy both video-range fusion and spatial-temporal clues at the same time. By doing 
these things, structures can be stored better, used in real time without wasting resources, and used all day long 
in therapeutic settings. 

Table 1. Calibration and Decision-Utility Comparison of Competing Models

Method ECE (↓) Brier (↓) Calib. 
slope (≈1)

Intercept 
(≈0)

Net benefit 
@ 10 %

Net benefit 
@ 20 %

Proposed (Spatiotemporal 
FusionNet)

0,017 0,061 1,01 0,00 0,142 0,118

TimeSformer (Video 
Transformer)

0,031 0,085 0,96 0,02 0,114 0,095

Video Swin V2 0,028 0,080 0,97 0,01 0,119 0,099

ViViT (Factorized) 0,034 0,089 0,95 0,02 0,110 0,092

UniFormerV2 0,030 0,084 0,97 0,01 0,117 0,097

ConvLSTM (3D-Conv + LSTM) 0,048 0,106 0,92 0,03 0,095 0,078

TCN (Temporal Conv Net) 0,055 0,115 0,90 0,04 0,089 0,072

GRU Sequence (frame 
embeddings)

0,058 0,121 0,89 0,05 0,085 0,069

Late Fusion (Video+Range) 0,036 0,094 0,94 0,03 0,106 0,083

Gated Early Fusion 0,033 0,090 0,95 0,02 0,112 0,088

Table 1 shows the results of the clinical utility and the probability calibration. The demonstrated 
spatiotemporal fusion network offers the highest potential net benefit and is the most accurate. It is between 
the 10 % (0,142) and 20 % (0,118) needs. It has a slope of around 1,01 and an intercept of about 0. The ECE value 
is 0,017 at its lowest point, while the Brier value is 0,061 at its maximum point. The three video transformers—
TimeSformer, Video Swin V2, ViViT, and UniFormerV2—aren’t very useful or accurate, but they may still do a 
satisfactory job of calibrating. Older temporal models like ConvLSTM, TCN, and GRU are less useful and more 
likely to be wrong than newer ones.

Figure 4. Phase-Aligned Cyclegrams Reveal Decision Timing Across Models

Figure 4 shows the phase-aligned cyclegrams for five distinct alternative techniques. Many software packages, 
including ViViT, Vid-Mamba, VideoMAE-v2, TimeSformer, and Proposed, were used to show the calculated risk 
based on the normalized cardiac cycle (phase 0-1). Ribbons that extended beyond the interquartile range 
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displayed the median. The model offered aids in the formulation of phase-specific confident judgments by 
utilizing a narrow interquartile range (IQR) and focusing on risk concentration during mid-systolic phases.

Table 2. Comprehensive Accuracy–Utility Comparison of Spatiotemporal and Fusion Models

Method Accuracy Sensitivity 
(Recall) Specificity Precision F1 AUROC AUPRC

Proposed (Spatiotemporal 
FusionNet)

0,960 
[0,947–
0,971]

0,950 
[0,933–
0,964]

0,940 
[0,922–
0,956]

0,940 
[0,922–
0,957]

0,945 
[0,929–
0,959]

0,978 
[0,971–
0,985]†

0,972 
[0,962–
0,981]†

TimeSformer (Video 
Transformer)

0,934 
[0,919–
0,948]

0,920 
[0,900–
0,939]

0,925 
[0,905–
0,943]

0,924 
[0,904–
0,942]

0,922 
[0,902–
0,940]

0,958 
[0,948–
0,967]

0,942 
[0,928–
0,955]

Video Swin V2 0,939 
[0,926–
0,951]

0,925 
[0,906–
0,942]

0,930 
[0,911–
0,947]

0,928 
[0,909–
0,945]

0,926 
[0,907–
0,943]

0,962 
[0,953–
0,970]

0,948 
[0,935–
0,960]

ViViT (Factorized) 0,928 
[0,913–
0,942]

0,912 
[0,891–
0,931]

0,920 
[0,899–
0,939]

0,915 
[0,893–
0,934]

0,914 
[0,892–
0,933]

0,954 
[0,944–
0,964]

0,936 
[0,921–
0,950]

UniFormerV2 0,936 
[0,922–
0,949]

0,918 
[0,898–
0,937]

0,930 
[0,910–
0,947]

0,922 
[0,902–
0,940]

0,920 
[0,900–
0,938]

0,960 
[0,951–
0,969]

0,944 
[0,931–
0,957]

ConvLSTM (3D-Conv + 
LSTM)

0,901 
[0,883–
0,918]

0,882 
[0,859–
0,903]

0,890 
[0,867–
0,910]

0,892 
[0,870–
0,911]

0,887 
[0,865–
0,906]

0,935 
[0,923–
0,947]

0,908 
[0,888–
0,926]

TCN (Temporal Conv Net) 0,887 
[0,868–
0,905]

0,870 
[0,846–
0,891]

0,880 
[0,857–
0,900]

0,879 
[0,857–
0,899]

0,874 
[0,852–
0,894]

0,922 
[0,910–
0,936]

0,894 
[0,872–
0,914]

GRU Sequence (frame 
embeddings)

0,879 
[0,860–
0,898]

0,862 
[0,838–
0,884]

0,875 
[0,852–
0,896]

0,870 
[0,848–
0,890]

0,866 
[0,844–
0,887]

0,918 
[0,905–
0,932]

0,886 
[0,864–
0,906]

Late Fusion (Video+Range) 0,918 
[0,903–
0,933]

0,902 
[0,880–
0,922]

0,905 
[0,882–
0,924]

0,910 
[0,888–
0,928]

0,906 
[0,884–
0,925]

0,948 
[0,938–
0,958]

0,930 
[0,915–
0,945]

Gated Early Fusion 0,926 
[0,911–
0,940]

0,910 
[0,889–
0,928]

0,913 
[0,892–
0,931]

0,918 
[0,897–
0,936]

0,914 
[0,893–
0,932]

0,952 
[0,942–
0,961]

0,938 
[0,924–
0,952]

Table 2 presents an overview of the classification performance of 10 distinct methodologies, providing 
confidence intervals with a 95 % level of certainty. Every single data point shows that Spatiotemporal FusionNet 
beats the most advanced video transformers, like TimeSformer, Video Swin V2, ViViT, and UniFormerV2. 
This method includes the greatest AUROC (0,972), the highest F1 (0,945), and the highest accuracy (0,960). 
Comparing these powerful video transformers to the proposed system confirms this conclusion.

Figure 5. Multimodal Attribution Bars Highlight Value of Range and Fusion Across Patients
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Figure 5 shows the stacking attribution bars for patients, with the ones who are most at risk at the bottom. 
The video stream, range modality, and fusion approach all add something to each prediction on their own. Based 
on the trend, it seems that fusion is the best treatment for many patients, especially those who are at a greater 
risk. This evidence shows that combining complementary data not only helps some modalities, but it also makes 
the discipline as a whole better. To make beneficial decisions, range is an important thing to consider because 
it has a big effect on many different situations.(25,26) In certain groups, video is the de facto norm since it can 
show clearer visual information. Figure 2’s findings justify the use of gated and multimodal fusion in therapy 
settings. This study clarifies that multiple modalities function collaboratively, not independently.

CONCLUSIONS
Studies have indicated that the procedure of finding out about an illness early on works much better when 

cardiac video and range/depth data are combined in different ways. The receiver’s accuracy is 0,960, the area 
under the noise propagation curve (AUPRC) is 0,972, and the area under the receiver operating characteristic 
curve (AUROC) is 0,978. It provides people the capacity to tell the difference in today’s world. The fact that it 
has ECE and Brier values of 0,017 and 0,061, respectively, shows that it does an impressive job of calibrating 
probabilities. Both its slope and intercept values are quite near to 1,01, and their values are 0,97. The decision-
curve analysis indicates that the model has a higher clinical value at all screening thresholds. The model 
demonstrates a net benefit of 0,142 after 10 % and 0,118 after 20 %. This evidence shows that the method 
lowers sensitivity while maintaining a consistent level of necessary activities. The results of the calculation 
suggest that modern clinical workstations or edge accelerators would be able to do real-time deployment with 
a processing speed of around 4,9 gigaflops per second and an inference time of about 98 milliseconds. Clinicians 
cannot rely on or utilize the framework without access to its attention processes and modality-attribution 
studies. These studies elucidate the timing and rationale behind forecasts concerning the framework. In this 
specific situation, the performance of the framework is merely one of multiple things to consider.
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