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ABSTRACT

Introduction: the detection of motion-based cardiac abnormalities at an early stage proves difficult
because individual systems fail to measure how motion affects depth and structural changes. A multimodal
spatiotemporal system would enhance the accuracy of medical diagnoses.

Objective: the research aims to create a real-time system which unites cardiac video data with range/depth
information to detect cardiac conditions at an early stage.

Method: the system operates through independent encoders which join their data streams through a gated
fusion module. The system performs denoising operations followed by statistical normalization and geometric
transformation of the input data. The system uses beat-level temporal attention to identify essential time
segments for clinical evaluation. The research evaluated system performance through comparison with video
transformers and traditional temporal analysis methods.

Results: the model produced F1 reached 0,945 while AUROC reached 0,9978 and the model achieved sensitivity
at 0,950 and specificity at 0,940 and precision at 0,940 and AUPRC at 0,972. The system demonstrated
excellent calibration performance through its ECE and Brier values which approached perfect results (slope =
1,01, = 0). The system produced useful screening results when using 10 % and 20 % thresholds which produced
0,142 and 0,118 respectively. The system performed real-time processing at 4,9 GFLOPs while maintaining a
processing time of ~98 ms.

Conclusions: the combination of intensity dynamics with depth-derived geometry allows for accurate real-
time cardiac prediction with precise calibration. The proposed method delivers superior results than single-
signal systems and conventional temporal methods which makes it a useful advancement for early detection
and point-of-care cardiology.
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© 2026; Los autores. Este es un articulo en acceso abierto, distribuido bajo los términos de una licencia Creative Commons (https://

creativecommons.org/licenses/by/4.0) que permite el uso, distribucion y reproduccion en cualquier medio siempre que la obra original
sea correctamente citada


https://doi.org/10.56294/dm20261227
https://orcid.org/0009-0001-1362-4942
mailto:afadol@kfu.edu.sa?subject=
mailto:a.alhamadi@seu.edu.sa?subject=
mailto:Rajit.nair@vitbhopal.ac.in?subject=
mailto:madaileh@kfu.edu.sa?subject=
https://orcid.org/0000-0002-3198-7974
mailto:s.alisher@psau.edu.sa?subject=
mailto:taldhyani@kfu.edu.sa?subject=
https://orcid.org/0000-0001-9557-3933
mailto:h_abdeljaber@asu.edu.jo?subject=
https://orcid.org/0009-0000-1497-4381
mailto:melfadiel@Kfu.edu.sa?subject=
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.56294/dm20261227
https://doi.org/10.56294/dm20261227
https://orcid.org/0000-0002-7811-2470
mailto:s.alisher@psau.edu.sa?subject=

Data and Metadata. 2026; 5:1227 2
Monitoring; Interpretability; Medical Imaging; Spatiotemporal.
RESUMEN

Introduccioén: la deteccion temprana de anomalias cardiacas relacionadas con el movimiento resulta dificil
debido a que los sistemas individuales no miden como el movimiento afecta la profundidad y los cambios
estructurales. Un sistema espacio-temporal multimodal mejoraria la precision de los diagndsticos médicos.
Objetivo: la investigacion busca crear un sistema en tiempo real que combine datos de video cardiaco con
informacion de alcance/profundidad para detectar afecciones cardiacas en una etapa temprana.

Método: el sistema opera mediante codificadores independientes que unen sus flujos de datos mediante
un modulo de fusion controlado. El sistema realiza operaciones de eliminacion de ruido, seguidas de la
normalizacion estadistica y la transformacion geométrica de los datos de entrada. El sistema utiliza la
atencion temporal a nivel de latido para identificar segmentos de tiempo esenciales para la evaluacion
clinica. La investigacion evaluo el rendimiento del sistema comparandolo con transformadores de video y
métodos tradicionales de analisis temporal.

Resultados: el modelo produjo una F1 de 0,945, mientras que el AUROC fue de 0,9978. El modelo alcanzo
una sensibilidad de 0,950, una especificidad de 0,940, una precision de 0,940 y un AUPRC de 0,972. El sistema
demostro un excelente rendimiento de calibracion gracias a sus valores de ECE y Brier, que se acercaron a la
perfeccion (pendiente = 1,01, = 0). El sistema produjo resultados de cribado Utiles al utilizar umbrales del 10
%y del 20 %, que arrojaron 0,142 y 0,118, respectivamente. El sistema realizd un procesamiento en tiempo
real a 4,9 GFLOP, manteniendo un tiempo de procesamiento de ~98 ms.

Conclusiones: la combinacion de la dinamica de intensidad con la geometria derivada de la profundidad
permite una prediccion cardiaca precisa en tiempo real con una calibracion precisa. El método propuesto
ofrece resultados superiores a los de los sistemas de sefal Unica y los métodos temporales convencionales,
lo que lo convierte en un avance Util para la deteccion temprana y la cardiologia en el punto de atencion.

Palabras clave: Analisis Cardiaco; Clasificacion; Fusion de Datos; Aprendizaje Profundo; Deteccion de
Enfermedades; Eficiencia; Monitoreo Cardiaco; Interpretabilidad; Imagenes Médicas; Espaciotemporal.

INTRODUCTION

One reason heart disease is still the top cause of mortality globally is that static or single-modality approaches
don’t find motion-level problems early on. This project aims to provide a complete spatiotemporal framework
for the treatment of the heart as a dynamic system, employing range data (echocardiography, cine-MRI) and
video images (four-dimensional ultrasound, depth maps). Regional CNN encoders collect additional spatial
inputs and then project them onto a shared latent space. The inputs have previously been standardized, noise-
reduced, and aligned either rigidly or elastically before this happens.™?%* Localized dyssynergy, relaxation,
and contraction are all things that can be seen. You may use any of these ways and get the same results.
Using the obtained fingerprints, multitask predictors may do early tests for ischemia and cardiomyopathies
and regress parameters like strain rate and ejection fraction. Using explainable Al with attention techniques
can help us acquire spatial-temporal attributions more often. By pointing out clinically important locations
and phases, these attributions would improve both reliability and interpretability. Our pipeline is designed to
operate in real time and employ quick and easy methods to trim, quantize, and batch. This means that the
deployment might begin immediately soon where patients are being treated. This method’s major goal is to
detect early trends that aren’t yet visible as structural changes by combining depth, mobility, and structure.
“58 The focus of the method is on discovering these patterns or trends. Making treatments that are more
precise and work faster can help fewer individuals get SCA, heart failure, and strokes in the future. We are
pleased to provide the following: (1) a pipeline that combines learned cross-modal projections with range data;
(2) a model of spatiotemporal motion-awareness that uses optical flow, convolutional neural networks (CNNs),
and long short-term memory (LSTMs); and (3) a pipeline that combines learned cross-modal projections with
range data. (3) a person who can accomplish more than one thing simultaneously, such as categorize illnesses
and supply a quantitative functional estimate; (4) medically comprehensible predictions achieved through
spatial-temporal attention mechanisms and low-latency inference; (5) real-time preparedness realized through
model compression and low-latency inference; (6) scanner and protocol resilience secured through alignment,
normalization, and domain-aware augmentation; and (7) a design adaptable to 4D ultrasound, cine-MRI, and
echocardiography for the earlier, more sensitive, and more specific identification of cardiac dysfibrillation.

Related Works
Cardiovascular imaging is mostly done with deep learning and motion-centric computing. Using these
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methods, you can collect information from video and range data that changes according to where and when it
is. Machine learning techniques are employed to achieve this objective. Convolutional neural networks (CNNs)
have issues in temporal modeling because they can only deal with frames. However, they are particularly
effective at learning spatial data and finding structural flaws. Recurrent neural networks (RNNs) have been
struggling with the issue of gradients that disappear. To solve this problem, two new models were made: long
short-term memory (LSTMs) and generalized recurrent units (GRUs). GRUs models use gated memory to keep
long-range dynamics stable, while LSTM models need fewer parameters to keep the same level of accuracy.
There has been a lot of advancement in the field of convolutional neural networks (CNNs). The best approach to
combine video with a lot of space with motion data from range sensors or 4D ultrasound is through multimodal
fusion.”®9 This method is incredibly essential for how well it works since it combines two separate kinds of
data. The accuracy, reliability, and utility of these sorts of frameworks in the clinic are continually growing
better. They also find areas that are causing problems, make generalizations about different kinds of scanners
and treatments, and offer comprehensive spatiotemporal fingerprints."®'"-12 Qur major objective is to develop
multimodal systems powered by transformers that can discover threats that can be acted on right away. It will
start with CNN/RNN baselines and then go on to create hybrids of 3D-CNN and ConvLSTM and make LSTM/GRU
better. Next, we’ll make LSTM/GRU better.

METHOD

To discover heart abnormalities early, it is proposed to use a three-stage end-to-end pipeline that uses
range data and video. It can reach this aim with the aid of this pipeline. The way this pipeline is built also
makes it easier to grasp. The first step is to be ready for the multimodal approach by using the mean-standard
deviation to make the intensities equal. You can use bilateral filtering to get rid of noise in movies and produce
range maps.>'*" To improve transformation matrices, it uses iterative correspondences, surface-normal
deviations, and vertex-distance penalties. The next step is to apply these transformation matrices to make
the squared disparities between frames smaller and line up the modalities. Everything will be OK. When
you create broad goals, you should consider structural regularization, robustness, and feature discrepancy.
It store signals that are unique to a given modality via nonlinear fusion, which is also called tanh/sigmoid
fusion. (6718 On the other hand, inter-frame abnormalities are penalized to maintain smooth time. Another
important advantage is that students learn to use expressive spatiotemporal descriptions better. One technique
utilizes convolutional neural networks (CNNs) to extract the fine-grained pixel dynamics of the video, and the
other uses grid convolutional neural networks (GCNs) to get the geometric distortion of range surfaces. The
smoothness of temporal progression limitations is necessary for recurrent gated models to last, which show
periodic motion across cycles. These models could also show motion that happens over and over again. Cross-
modality refinement enables us to put together and look at data from the video range, which helps us maintain
things balanced throughout time and between sensors. This is one way we may retain the notion of fairness.
It also makes losses more regular and fixes broken sections. It can generate unique compact descriptors by
combining cycle-level embeddings with nonlinear mapping methods. Third, attention-guided categorization
creates weighted temporal contexts with weights that may be learned. (%20

Algorithm 1: Multimodal Preprocessing and Registration of Cardiac Video and Range Data for Harmonized
Spatiotemporal Representation
Steps:

Step 1: Normalization of Input Data

, Ve—wy
Vt=t0—v (1)

This normalizes each video frame by mean and standard deviation.

, _Re—un
thto_—RR (2)

This normalizes each range data frame similarly.

Ey = ii(vij - MV)Z 3)

i=1j=1

https://doi.org/10.56294/dm20261227 ISSN: 2953-4917


https://doi.org/10.56294/dm20261227

This computes variance-based error energy in video frames.

a
Z(Rij - HR)Z (4)
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This computes variance-based error energy in range frames.

Step 2: Noise Reduction Using Filters

M?&“
=

N, = Gij - V¢ (5)

Il
[y
1l
[

i=1j

This applies Gaussian smoothing to video frames.

N, = Bij - R¢ (6)

.M”
Ma-

...
1l
=y

-
1l

j=1

This applies bilateral filtering to range frames.

T
Ey = ;(Nu —N)E ()

This computes discrepancy between filtered video and range data.

Step 3: Frame-Wise Discrepancy Estimation

= i zn:(vilj - R{j)z )]

i=1j=1

This measures squared pixel differences between modalities.

Step 4: Transformation-Based Alignment

This finds the transformation aligning range to video data.
Step 5: Alignment Error Calculation

At = Vt’ - Mt (10)

This defines residual alignment error per frame.

n
Lalign = z t= 1TZ(AM-)2 (11)
i=1

This is the squared loss for all aligned frames.
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T n
Ey, = ZZth’,i - Mt,i| (12)
t=1

i=1
This is the absolute alignment error for robustness.

Step 6: Structural and Geometric Similarity

n

nv,i-nr,i
0; = Z arccos (—) (13)

. |nv, i||nr, i
i=1

This measures angular differences between surface normals.

n
de= ) [poi—pril (8
i=1

This measures Euclidean distance between matched vertices.

n
C; = Z(et,i + dt,i) (15)
i=1

This combines angular and distance penalties.

Step 7: Iterative Closest Point Adjustment

n
Rl = Z ICP(R;;,V}))  (16)
i=1

This applies iterative closest point to refine registration.

Step 8: Nonlinear Feature Fusion

n

fi = Z tanh(W;V{;)  (17)

=1

This extracts nonlinear video features.

n

ge=) o(WR)  (8)

i=1

This extracts nonlinear range features.
n
Fy = Z(ft,i ' gt,i) (19)
i=1

This fuses video and range features multiplicatively.

Step 9: Temporal Smoothness Constraint
n
2
S¢ = Z(Ft,i - Ft—l,i) (20)
i=1
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This ensures smooth transitions between frames.

Step 10: Combined Alignment and Smoothness Cost

n n
Q=M z Eri+ A, Z Sei (21)
i=1 i=1

This defines a weighted cost for alignment and smoothness.

T
J=) e 22)
t=1

This is the total optimization cost over all frames.

Step 11: Projection and Regularization

n
Ze=) UMy (23)
i=1
This projects registered frames into lower-dimensional space.
n
Ko=) (Zi+Fy) (24
i=1

This merges projected and fused features.

zn: KZ; (25)

=1

T
0=
=1

t

This adds a regularization penalty.

Step 12: Final Optimized Registration Output

T
M* = argmin (2 Q; + Q) (26)
t=1

This yields the final optimized multimodal registration result.

Notations

V. - video frame at time t, R, - range data frame at time t, V*’,- normalized video frame, R"’;-normalized
range frame, p_V,0_V-mean and standard deviation of video intensity, p_R,6_R-mean and standard deviation of
range intensity, G - Gaussian filter for video smoothing, B - bilateral filter for range smoothing, M, - registered
multimodal frame, T - transformation matrix used for alignment, ny,nr - surface normals for video and range
data, pv,pr - vertex positions in video and range space, A, - alignment error term, L_a lign- alignment loss
function, M* - final optimized registered dataset

The first thing to do is to make the heart video frames and range data normal. After figuring out the mean
and standard deviation, which show how normal the data is, the next step is to rectify the variations in intensity
and shape. We use the mean and the standard deviation to do this. The third phase will be to put a strategy into
action to cut down on background noise. This approach will employ a bilateral filter to clean up the range data
and a Gaussian algorithm to smooth out the video data. Then, we add together the intensities of all the pixels
or voxels to find the error energy terms. This step comes after the last one. We will use this approach to check
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the modalities’ unity by determining the squared differences between frames. The next step is to apply iterative
closest point (ICP) methods to improve a transformation matrix until everything is right. The registration process
uses both structural and geometric data, so you may adjust how the heart is alighed to match its real shape. The
only method to achieve that is to add the sums of the changes in surface normals and the distances between
the vertices to the cost function. To achieve the goal of nonlinear feature fusion, voxel and pixel attribute
aggregations must be converted using sigmoid and tanh algorithms.

Input video frames
and range data

!

[ Normalize video ]

~an d range data

(e e —t e e s o
Estimate Apply Gaussian
transformatiion filter to video
for alignment

v

Apply iterative
Calculate closest point

alignment error

Measure Compute
surface normals discrepancy
and vertex distances between video
Measure Perform
surface i nonlinear
smoothness feature fusion

(ICP) refinement

[ 0

utput final regis-
tered dataset

Figure 1. Flowchart of multimodal preprocessing and registration steps for cardiac video and range data integration

Input
registered data

Encode
features with
GRU

Apply update
and reset gates

Generate
spatiotemporal
embeddings

Compute
optimization
objectives

Compute
optimization
objectives
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Extract video
features using
CNN

Initialize
temporal hidden
states

Generate
candidate hidden
states

Generate
candidate hidden
states

Performm
cross-modality
refinement

Aggregate
global
representation

cardiac data

Extract range
features using
GCN

Fuse video
and range
features

Update hidden
states with
smoothness

Extract frame-
wise-wise
embeddings

Aggregate
global
representation

Output final
discriminative
embedding

Figure 2. Flowchart of deep spatiotemporal feature extraction using CNN, GCN, and GRU-based modeling for multimodal
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Figure 1 shows the steps that must be taken to preprocess and register multimodal data using cardiac video
and range pictures. This approach skips the process of getting the input and goes straight to the normalization
step, which gets rid of the intensity changes and shape inaccuracies that were there before. To reduce noise
and make inputs smoother, it is important to utilize bilateral filters for range data and Gaussian filters for
video frames. In order to make sure that transformation-based alignment works, you need to know what
makes each modality different. Using iterative closest point (ICP) calculations, surface normals, and vertex
distances, it is feasible to get precise registration and greater structural consistency. Nonlinear feature fusion
makes it feasible to merge geographical data from both sources. Also, using temporal smoothness helps keep
things consistent across frames.?" To provide the most accurate registered dataset for spatiotemporal analysis
of cardiac motion, we enhance a composite cost function that integrates projection and regularization. The
optimization of the function achieves this goal. To start, convolutional neural networks (CNNs) encode video
frames such that they can see changes at the pixel level. On the other hand, graph convolutional networks use
geometric distortions to show range data and give it weight.?22324

Figure 2 shows the method that was used to get deep spatiotemporal features from multimodal cardiac
data. Convolutional neural networks, or CNNs, are responsible for finding patterns in video at the pixel level.
On the other hand, graphene convolutional networks (GCNs) employ range data to look into geometric clues.
The initial phase of this process, called Algorithm 1, is in charge of giving these input properties. After these
traits are put together, a single representation is made and delivered to the recurring units. It is significantly
easier to simulate time when this is done.

( Input embeddings ]

[Compute attention scores J

(Nermalize attention weights j
1
Generate weighted context vectors)
1
Refine temporal features )
1
Map context to dense representation]
1
Apply nonlinear transformationsj
4
Aggregate global features J
4
Construct classification input ]

[Apply softmax for probability distribution]

[ Compute total loss function J

( Output final classification decision J

Figure 3. Flowchart of attention-based disease classification using spatiotemporal embeddings and attention-guided
refinement

Figure 3 shows how the attention-based sickness classification method works using the spatiotemporal
embeddings created by Algorithm 2. We first take embeddings as input and then use an attention technique to
acquire relevance ratings for each and every cardiac frame.

RESULTS

The well-established deep spatiotemporal multimodal method surpasses all baselines across several criteria.
This indicates that the method is better. It scores 0,96, 0,95, 0,94, and 0,97 for accuracy, sensitivity, specificity,
precision, F1 (0,95), and area under the curve (0,97) in classification. This indicates that the approach is better
than convolutional neural networks (CNNs), recurrent neural networks (RNNs), transformers, and attention
models. Also, it produces these results at 0,97. Furthermore, it is better than attention structures. When
compared to CNNs, RNNs, hybrids, transformers, and attention, reconstruction errors are the lowest. The mean
squared error (MSE) is 0,029, while the root mean squared error is 0,170. The phrase “neural networks” is used
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to talk about all of these distinct types of networks. When the PSNR is 34,6 and the SSIM is 0,91, the maximum
feasible level of structural faithfulness is reached. The baselines range from 0,78 to 0,86 SSIM, with CNN at
28,3 dB and RNN at 29,0 dB. For recurrent neural networks (RNNs), it takes 132 milliseconds for each example,
while for convolutional neural networks (CNNs), it takes 125 milliseconds. For attention models, hybrids, and
transformers, the throughput needs are 110 ms, 114 ms, and 110 ms, respectively. All of these benefits come
from the fact that we can copy both video-range fusion and spatial-temporal clues at the same time. By doing
these things, structures can be stored better, used in real time without wasting resources, and used all day long
in therapeutic settings.

Table 1. Calibration and Decision-Utility Comparison of Competing Models

Method ECE () Brier (1) Callb- - Intercept Netbenefi et benefi
Proposed (Spatiotemporal 0,017 0,061 1,01 0,00 0,142 0,118
FusionNet)

TimeSformer (Video 0,031 0,085 0,96 0,02 0,114 0,095
Transformer)

Video Swin V2 0,028 0,080 0,97 0,01 0,119 0,099
ViViT (Factorized) 0,034 0,089 0,95 0,02 0,110 0,092
UniFormerV2 0,030 0,084 0,97 0,01 0,117 0,097
ConvLSTM (3D-Conv + LSTM) 0,048 0,106 0,92 0,03 0,095 0,078
TCN (Temporal Conv Net) 0,055 0,115 0,90 0,04 0,089 0,072
GRU  Sequence (frame 0,058 0,121 0,89 0,05 0,085 0,069
embeddings)

Late Fusion (Video+Range) 0,036 0,094 0,94 0,03 0,106 0,083
Gated Early Fusion 0,033 0,090 0,95 0,02 0,112 0,088

Table 1 shows the results of the clinical utility and the probability calibration. The demonstrated
spatiotemporal fusion network offers the highest potential net benefit and is the most accurate. It is between
the 10 % (0,142) and 20 % (0,118) needs. It has a slope of around 1,01 and an intercept of about 0. The ECE value
is 0,017 at its lowest point, while the Brier value is 0,061 at its maximum point. The three video transformers—
TimeSformer, Video Swin V2, ViViT, and UniFormerV2—aren’t very useful or accurate, but they may still do a
satisfactory job of calibrating. Older temporal models like ConvLSTM, TCN, and GRU are less useful and more
likely to be wrong than newer ones.

1.0
Proposed — VideoMAE-v2 —_— IWIT
vid-Mamba TimeSformer

.. 0.8}

R

=

[je]

o

S o0s

j=1

>

i

—

E 0.4

=

=]

g

0.2

0. : : - : :
%.0 0.2 0.4 0.6 0.8 1.0
Phase (0-1)

Figure 4. Phase-Aligned Cyclegrams Reveal Decision Timing Across Models
Figure 4 shows the phase-aligned cyclegrams for five distinct alternative techniques. Many software packages,

including ViViT, Vid-Mamba, VideoMAE-v2, TimeSformer, and Proposed, were used to show the calculated risk
based on the normalized cardiac cycle (phase 0-1). Ribbons that extended beyond the interquartile range

https://doi.org/10.56294/dm20261227 ISSN: 2953-4917


https://doi.org/10.56294/dm20261227

Data and Metadata. 2026; 5:1227 10

displayed the median. The model offered aids in the formulation of phase-specific confident judgments by
utilizing a narrow interquartile range (IQR) and focusing on risk concentration during mid-systolic phases.

Table 2 presents an overview of the classification performance of 10 distinct methodologies, providing
confidence intervals with a 95 % level of certainty. Every single data point shows that Spatiotemporal FusionNet
beats the most advanced video transformers, like TimeSformer, Video Swin V2, ViViT, and UniFormerV2.
This method includes the greatest AUROC (0,972), the highest F1 (0,945), and the highest accuracy (0,960).
Comparing these powerful video transformers to the proposed system confirms this conclusion.

100
80
60

40

% contribution

20

0123456?391011.1213111.5161?1819202].22232425262?282930
Patients (sorted by predicted risk)

Figure 5. Multimodal Attribution Bars Highlight Value of Range and Fusion Across Patients
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Figure 5 shows the stacking attribution bars for patients, with the ones who are most at risk at the bottom.
The video stream, range modality, and fusion approach all add something to each prediction on their own. Based
on the trend, it seems that fusion is the best treatment for many patients, especially those who are at a greater
risk. This evidence shows that combining complementary data not only helps some modalities, but it also makes
the discipline as a whole better. To make beneficial decisions, range is an important thing to consider because
it has a big effect on many different situations.®>2% In certain groups, video is the de facto norm since it can
show clearer visual information. Figure 2’s findings justify the use of gated and multimodal fusion in therapy
settings. This study clarifies that multiple modalities function collaboratively, not independently.

CONCLUSIONS

Studies have indicated that the procedure of finding out about an illness early on works much better when
cardiac video and range/depth data are combined in different ways. The receiver’s accuracy is 0,960, the area
under the noise propagation curve (AUPRC) is 0,972, and the area under the receiver operating characteristic
curve (AUROC) is 0,978. It provides people the capacity to tell the difference in today’s world. The fact that it
has ECE and Brier values of 0,017 and 0,061, respectively, shows that it does an impressive job of calibrating
probabilities. Both its slope and intercept values are quite near to 1,01, and their values are 0,97. The decision-
curve analysis indicates that the model has a higher clinical value at all screening thresholds. The model
demonstrates a net benefit of 0,142 after 10 % and 0,118 after 20 %. This evidence shows that the method
lowers sensitivity while maintaining a consistent level of necessary activities. The results of the calculation
suggest that modern clinical workstations or edge accelerators would be able to do real-time deployment with
a processing speed of around 4,9 gigaflops per second and an inference time of about 98 milliseconds. Clinicians
cannot rely on or utilize the framework without access to its attention processes and modality-attribution
studies. These studies elucidate the timing and rationale behind forecasts concerning the framework. In this
specific situation, the performance of the framework is merely one of multiple things to consider.
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