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ABSTRACT

Introduction: the integration of IoT and AI technologies presents opportunities for modernizing traditional 
fishing practices while preserving ecological knowledge.
Objective: this research develops and evaluates an integrated IoT-AI system to enhance traditional Chinese 
fishing net operations in Kerala backwaters, India, with an emphasis on TEK integration and economic viability 
assessment.
Method: we deployed an edge-cloud computing architecture integrating 15 environmental sensors, automated 
winch systems, and cloud-based AI analytics at Chathedam fishing site (9,9674°N, 76,2816°E) over six months 
(January–June 2025), documenting 1000 fishing operations and validating 20 TEK rules through statistical 
analysis.
Results: nine high-confidence TEK rules (≥0,80) achieved 100 % validation success with 18–47 % catch 
improvements. AI-guided operations achieved 10 percentage point improvement in profit margin (70,4 % vs 
60,4 %) primarily through cost reduction. System investment of $1,720 achieves payback in 1,8 months with 
898 % ROI over 18 months.
Conclusions: the validated edge-cloud architecture, TEK-AI integration framework, and demonstrated 
economic viability provide a replicable model for technology-enabled enhancement of traditional small-
scale fisheries.

Keywords: Internet of Things (IoT); Edge Computing; Traditional Ecological Knowledge (TEK); Economic 
Viability; Human-AI Collaboration; Smart Fisheries; Chinese Fishing Nets.

RESUMEN

Introducción: la integración de las tecnologías del IoT y la IA ofrece oportunidades para modernizar las 
prácticas pesqueras tradicionales, preservando al mismo tiempo el conocimiento ecológico. 
Objetivo: esta investigación desarrolla y evalúa un sistema integrado de IoT e IA para mejorar las operaciones 
de pesca con redes tradicionales chinas en las aguas estancadas de Kerala, India, con énfasis en la integración 
de la tecnología TEK y la evaluación de la viabilidad económica.
Método: implementamos una arquitectura de computación en la nube que integra 15 sensores ambientales, 
sistemas de cabrestante automatizados y análisis basados en IA en el centro pesquero de Chathedam 
(9,9674°N, 76,2816°E) durante seis meses (enero-junio de 2025), documentando 1000 operaciones de pesca 
y validando 20 reglas TEK mediante análisis estadístico.
Resultados: nueve reglas TEK de alta confianza (≥0,80) lograron un éxito de validación del 100 %, con mejoras 
en las capturas del 18-47 %. Las operaciones guiadas por IA lograron una mejora de 10 puntos porcentuales
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en el margen de beneficio (70,4 % frente a 60,4 %), principalmente mediante la reducción de costes. La 
inversión en el sistema de $1720 se amortiza en 1,8 meses, con un ROI del 898 % en 18 meses.
Conclusiones: la arquitectura edge-cloud validada, el marco de integración TEK-AI y la viabilidad económica 
demostrada proporcionan un modelo replicable para la mejora tecnológica de la pesca tradicional en pequeña 
escala.

Palabras clave: Internet de las Cosas (IoT); Computación Perimetral; Conocimiento Ecológico Tradicional 
(TEK); Viabilidad Económica; Colaboración Humano-IA; Pesquerías Inteligentes; Redes de Pesca Chinas.

INTRODUCTION
The integration of Internet of Things (IoT) and Artificial Intelligence (AI) presents transformative opportunities 

for modernizing fishing practices, promising improvements in efficiency, sustainability, and profitability. (1) 
Small-scale fisheries, which employ over 90 % of the world’s capture fishers and contribute significantly to 
food security, face mounting challenges including resource depletion, unpredictable environmental conditions, 
and economic instability.(2) Traditional fishing methods, while embodying generations of ecological knowledge, 
often lack the precision and data-driven decision support that modern technologies can provide.

Traditional Chinese fishing nets (locally known as “Cheena vala” in Kerala, India) represent a unique 
shore-operated lift net fishing technique dating back to the 14th century.(3) These iconic structures, primarily 
located in the Kerala backwaters, utilise a large horizontal net suspended from cantilever structures. Despite 
their cultural significance and tourism value, Chinese fishing net operations face declining profitability due 
to unpredictable catch rates, labour-intensive manual operation, and a lack of real-time environmental 
information.(4) Fishermen rely primarily on experiential knowledge and visual observation to determine optimal 
fishing times, resulting in significant operational inefficiencies.

Recent advances in IoT sensor technologies, edge computing, and machine learning algorithms offer promising 
solutions for enhancing traditional fishing practices.(5) However, existing research predominantly focuses on 
industrial-scale commercial fishing operations or aquaculture systems , with limited attention to small-scale, 
traditional fishing methods in resource-constrained rural communities.(6,7) Moreover, previous studies often treat 
conventional ecological knowledge (TEK) and modern technology as separate domains, missing opportunities 
for synergistic integration.(8)

This research addresses these gaps through a complete six-month field deployment at a traditional Chinese 
fishing net site in Chathedam, Kochi, Kerala, India (9,9674°N, 76,2816°E). We developed and evaluated an 
integrated IoT-AI system that combines environmental monitoring, sonar-based fish detection, automated 
winch control, and cloud-based predictive analytics, while explicitly incorporating and validating traditional 
ecological knowledge.

IoT-Based Fish Detection Systems
IoT-enabled fish detection has emerged as a promising approach to enhance fishing efficiency. Gupta et al. (9) 

demonstrated a sonar-based system integrated with Arduino microcontrollers for real-time fish localization in 
inland waters, achieving 72 % detection accuracy. Their “fish object initialization tool” combined echo sounder 
technology with GPS positioning to map fish distributions. However, this work focused solely on detection 
without integration into operational fishing systems or economic analysis.

Kim et al.(10) developed an underwater acoustic sensor network for monitoring fish schools in marine 
environments, utilizing multi-beam sonar arrays with distributed processing. While technically sophisticated, 
their system required a substantial infrastructure investment ($15 000+), making it unsuitable for small-scale 
operations. Moreover, their evaluation was limited to detection metrics without assessing impacts on actual 
fishing outcomes or fisher livelihoods. Our work extends beyond detection to encompass complete operational 
integration, including automated winch control, decision support, and economic viability assessment specifically 
designed for traditional fishing methods with investment costs under $2000.

Machine Learning in Fisheries Applications
Recent research has explored machine learning for fisheries management and prediction. Salman et al. (11) 

applied deep convolutional neural networks for automated fish species classification from underwater video, 
achieving 94,3 % accuracy across 10 species. While valuable for species monitoring, this approach requires 
continuous video capture and substantial computational resources.

Time-series forecasting has been applied to the prediction of fisheries catch. Stergiou and Christou  compared 
ARIMA, SARIMA, and neural network models for monthly fisheries catch forecasting in Mediterranean waters, 
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finding that SARIMA models achieved the lowest mean absolute percentage error (12,8 %) when accounting for 
seasonal patterns.(12) Prista et al.(13) successfully applied SARIMA to data-poor fisheries in Portugal, demonstrating 
forecasting viability with limited historical data.

However, these studies focused on large-scale commercial fisheries with aggregated catch statistics. Our 
work addresses the distinct challenge of high-frequency, individual-fishing-event prediction in dynamic estuarine 
environments, where fish abundance varies dramatically over hours rather than months.

Traditional Ecological Knowledge in Fisheries
Traditional Ecological Knowledge (TEK) has been recognized as valuable for fisheries management, yet few 

studies have attempted formal integration with modern technology.(14) Silvano and Valbo-Jørgensen documented 
fisher’s ecological knowledge of fish behavior in Brazilian reservoirs, identifying 23 environmental factors fishers 
use in decision-making.(15) However, this knowledge remained informal and non-quantified.

Brook and McLachlan demonstrated that traditional fishing practices in South African communities 
incorporated a sophisticated understanding of tidal patterns, moon phases, and weather conditions.(16) Still, 
they noted these practices were at risk of being lost without documentation. Our work uniquely formalizes TEK 
into computable rules and validates them through statistical analysis, demonstrating their scientific validity 
and facilitating preservation and transmission of traditional knowledge.

A robust theoretical model provides a structured understanding of complex phenomena and enables 
systematic hypothesis testing.(18) This research integrates three established theoretical perspectives. Socio-
Technical Systems Theory conceptualises fishing operation as comprising interdependent technological and 
social components that mutually shape one another, which informs our emphasis on TEK integration rather 
than technology imposition while maintaining fisher agency.(19) IoT Architecture Theory provides the structural 
foundation through a four-layer framework encompassing perception, network, processing, and application 
layers, which we extend through a hybrid edge-cloud model optimized for resource-constrained environments 
with intermittent connectivity.(20) Human-AI Collaboration Theory implements complementary intelligence 
principles where AI handles quantitative pattern recognition across 15 environmental parameters while fishers 
provide contextual judgment and retain final decision authority.(21)

Figure 1 visualizes our integrated conceptual model synthesizing these perspectives into five interdependent 
components: environmental sensing, edge computing, cloud analytics, traditional knowledge formalization, 
and economic feedback.

Figure 1. Conceptual model framework
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The model generates four testable hypotheses: environmental conditions correlate positively with fish 
abundance (H1), AI-guided decisions improve operational efficiency compared to traditional judgment alone 
(H2), TEK integration enhances AI prediction accuracy and fisher acceptance (H3), and system ROI enables long-
term adoption for resource-constrained fishermen (H4).

Research Objectives
The primary objectives of this research are:

1.	 System Development: design and implement a scalable IoT-AI architecture integrating environmental 
sensors, sonar fish detection, edge computing devices, automated winch systems, and cloud-based 
analytics optimized for traditional Chinese fishing net operations.

2.	 TEK-AI Integration: document, formalize, and scientifically validate traditional ecological 
knowledge rules through statistical analysis of operational data, demonstrating how traditional wisdom 
and modern analytics can be synergistically combined.

3.	 Economic Viability Assessment: conduct rigorous cost-benefit analysis to evaluate the economic 
feasibility of IoT/AI technology adoption for small-scale fishermen, including system investment costs, 
operational savings, and return on investment.

4.	 Performance Evaluation: compare fishing outcomes, operational efficiency, and economic 
performance between AI-guided and traditional decision-making approaches.

Research Gaps
Despite these advances, significant gaps remain in this field. Existing research predominantly focuses 

on individual components such as detection, prediction, or monitoring without achieving full operational 
integration that includes automated control systems. Furthermore, few studies conduct rigorous cost-benefit 
analysis indicating economic viability for small-scale fishermen in developing regions, leaving critical questions 
about affordability and return on investment unanswered. Another persistent limitation is that traditional 
knowledge and modern technology are typically treated as separate domains without formal integration 
frameworks, missing opportunities for synergistic combination. Finally, most systems reported in the literature 
are evaluated in controlled environments or through simulation rather than extended field deployments with 
active fisher participation, limiting understanding of real-world performance and adoption dynamics.

Our research addresses these gaps through a complete six-month field deployment with an integrated 
hardware-software system, detailed economic analysis, formal TEK validation, and creation of a multi-modal 
open dataset.

Problem Formulation
Rural fishing in Kerala backwaters using traditional Chinese fishing nets remains highly manual, labour-

intensive, and economically uncertain. Fishermen lack access to:
1.	 Real-time environmental data: water temperature, salinity, tide levels, turbidity, and current 

speed that influence fish behavior.
2.	 Fish abundance information: reliable detection of fish presence and density below fishing nets.
3.	 Decision support: data-driven recommendations on optimal fishing times versus traditional 

judgment alone.
4.	 Operational efficiency: manual net operation requires 3-5 workers and 45-60 minutes per fishing 

cycle.
5.	 Economic transparency: lack of systematic cost-revenue tracking prevents optimization.

These limitations result in Fishing during low-probability periods (wasted effort and fuel), missed optimal 
fishing windows (lost catch opportunities), High labour costs relative to catch value, Inability to adapt to 
changing environmental conditions, Economic uncertainty and declining fisher livelihoods.

METHOD
Research Approach

Following a mixed-method approach, this research addressed four primary objectives. First, we designed 
and implemented a scalable IoT-AI architecture integrating environmental sensors, sonar-based fish detection, 
edge computing devices, automated winch systems, and cloud-based analytics, optimised for traditional 
Chinese fishing net operations.(17) Second, we documented, formalized, and scientifically validated traditional 
ecological knowledge rules through statistical analysis of operational data, demonstrating how traditional 
wisdom and modern analytics can be synergistically combined. Third, we conducted a rigorous cost-benefit 
analysis to evaluate the economic feasibility of IoT/AI technology adoption for small-scale fishermen, including 
system investment costs, operational savings, and return on investment. Fourth, we compared fishing 
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outcomes, operational efficiency, and economic performance between AI-guided and traditional decision-
making approaches.

Study Site and Duration
•	 Location: Chathedam fishing village, Fort Kochi, Kerala, India.
•	 Geographic Coordinates: 9,9674°N, 76,2816°E.
•	 Ecosystem: Vembanad backwater estuarine system.
•	 Study Duration: January 1 - June30, 2025(6 months).
•	 Study Period Characteristics: Covered winter monsoon transition (Jan-Feb), pre-monsoon (Mar-

May), and early monsoon (June).

The Chathedam site was selected due to the presence of active traditional Chinese fishing net operations, 
community willingness to participate, accessibility for equipment installation and maintenance, representative 
of typical Kerala backwater conditions, and a stable fishing community with experienced practitioners for TEK 
documentation.

Data Collection Methodology
Environmental Sensor Deployment

A comprehensive sensor array was deployed at the fishing net site, comprising:
•	 Sonar System: lucky FF1108-1 wireless fish finder (0,6-36m depth range, 200kHz frequency, 45° 

beam angle)
•	 Water Temperature: DS18B20 digital sensor (±0,5°C accuracy, -55 to +125°C range)
•	 Salinity: analog conductivity sensor (0-50 ppt range, ±0,5 ppt accuracy)
•	 Tide Level: HC-SR04 ultrasonic distance sensor (2-400cm range, ±3mm accuracy) mounted on fixed 

structure.
•	 Current Speed: hall effect flow sensor (0-2 m/s range)
•	 Turbidity: SEN0189 turbidity sensor (0-3000 NTU)
•	 Weather Station: davis Vantage Pro2 for ambient conditions
•	 Sampling Frequency: all sensors sampled at 15-minute intervals, synchronized via NTP time 

protocol.
•	 Data Transmission: sensors interfaced with a Raspberry Pi 4 Model B (4GB RAM) edge device, which 

performed local preprocessing and transmitted aggregated data to a Firebase cloud database via a 4G 
LTE connection.

Fishing Event Documentation
For each fishing operation, we recorded:

•	 Start and end timestamps.
•	 Environmental conditions at deployment (from sensor data)
•	 AI system recommendation (fish/wait/maybe) with confidence score
•	 Fisher’s actual decision (followed the recommendation or used traditional judgment)
•	 Catch outcome: species, quantity, weight, and quality assessment.
•	 Economic data: market price, operating costs (fuel, labor), revenue, and profit
•	 Fisher rationale for the decision (brief interview)
•	 Total Events Documented: 1000 fishing operations over 6 months.

Traditional Ecological Knowledge Documentation
TEK documentation involved

Traditional ecological knowledge documentation employed a multi-method qualitative approach combining 
semi-structured interviews, participatory observation, focus group discussions, and systematic knowledge 
formalization. Participant sampling followed purposive selection criteria, targeting fishermen with at least 
15 years of experience operating Chinese fishing nets in the Chathedam fishing community. From 32 eligible 
fishermen identified through the local fishing cooperative registry, 20 agreed to participate, yielding a response 
rate of 62,5 %. This sample size was determined by data saturation principles, with recruitment continuing until 
no new knowledge categories emerged from subsequent interviews. Participants ranged from 15 to 45 years 
of fishing experience, ensuring representation of both mid-career practitioners and senior knowledge holders.

Semi-structured interviews explored four primary knowledge domains. Participants were asked to describe 
environmental signs that indicate favorable fishing conditions, explain how tidal patterns, lunar phases, and 
weather phenomena influence their fishing decisions, share knowledge transmitted from elder fishermen 
regarding optimal fishing times, and identify conditions under which they typically avoid fishing operations. 
Each interview lasted approximately 45 to 60 minutes and was conducted in Malayalam, the local language, to 
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ensure accurate knowledge capture.
Participatory observation complemented interview data through three months of intensive researcher 

presence during fishing operations. This ethnographic component enabled direct observation of decision-
making processes, informal knowledge sharing among fishermen, and practical application of traditional rules 
in real-time operational contexts. The researcher documented verbal cues, gestural indicators, and contextual 
factors that fishermen referenced when making fishing decisions but did not explicitly articulate during formal 
interviews.

Community validation occurred through four focus group discussions, each comprising 8 to 12 participants 
representing the active fishing community’s demographic composition. These sessions presented documented 
knowledge back to the community, facilitated discussion of agreement and disagreement levels among 
participants, and resolved ambiguities in individual interview responses. Consensus levels from focus group 
discussions informed the confidence scores assigned to each TEK rule.

The final phase involved formalising systematic knowledge, translating traditional narrative knowledge into 
structured if-then rules with explicit condition logic, predicted outcomes, and confidence scores derived from 
community agreement levels. This formalization process enabled computational integration of TEK into the AI 
recommendation system while preserving the essential content of traditional wisdom.

Ethical Considerations
This research was approved by the Institutional Ethics Committee of Sri Krishna Adithya College of Arts 

and Science (Approval Reference: SKASC/IEC/2024/08). All participants provided written informed consent. 
The local fishing cooperative provided community-level approval. Economic data was anonymised to protect 
individual fishers privacy. Participants were informed they could withdraw at any time without penalty. The 
research team committed to sharing findings with the community and ensuring any technological benefits would 
be accessible.

System Architecture and Design
The system architecture integrates five primary components:

1.	 Connected IoT Sensors: environmental and sonar monitoring.
2.	 Edge/Raspberry Pi Devices: local processing and control.
3.	 Cloud-Based AI Platform: pattern recognition and prediction.
4.	 Electrical Winch System: automated net operation.
5.	 Community Engagement Layer: user interface and feedback.

Data Flow: Sensors → Raspberry Pi (edge processing) → Firebase Cloud (storage/AI analysis) → Control 
signals → Winch actuation → Catch outcomes → Feedback loop.

Figure 2. System Architecture IoT-AI architecture with all components

Data and Metadata. 2026; 5:1302  6 

https://doi.org/10.56294/dm20261302


ISSN: 2953-4917

Figure 2 presents the complete system architecture showing the four-layer IoT-AI framework integrating 
perception (8 IoT sensors), edge processing (Raspberry Pi 4B), cloud analytics (Firebase), and application layers 
with automated winch control and user interface components.
Edge Computing Device Specifications

1.	 Device: Raspberry Pi 4 Model B.
2.	 Configuration: 4GB RAM, 64GB SD card, Raspbian OS.
3.	 Functions: Real-time sensor data acquisition (GPIO interfaces), Local preprocessing (outlier 

removal, data validation), Winch control signal generation (relay switches), Offline operation capability 
(12-hour local cache),4G LTE communication (Huawei E3372 USB modem).

4.	 Power Supply: 12V battery with solar panel backup for continuous operation.

Electrical Winch System
The automated winch system enables rapid net deployment and retrieval, critical for capturing fish before they 
escape the detection zone.

1.	 Specifications
•	 Motor: 2 HP single-phase induction motor, 1440 RPM.
•	 Gearbox: 1:10 reduction ratio (144 RPM output).
•	 Control: Solid-state relay switched by Raspberry Pi GPIO.
•	 Performance: 18-meter cable pull in 30 seconds (0,6 m/s linear speed).
•	 Load Capacity: 1,25 tons (safety factor 1,5×).
•	 Emergency Override: Manual clutch for safety.

2.	 Rationale: based on TEK documentation, rapid net retrieval (<30 seconds for 18m depth) is critical 
to prevent fish from escaping after detection. Single-phase motors were selected because three-phase 
power was unavailable at rural fishing sites.

Cloud Platform and Data Storage
1.	 Cloud Infrastructure: Google Firebase
2.	 Database: Cloud Firestore (NoSQL document database)
3.	 Collections:

•	 sensor_readings: environmental time-series (20 000 documents).
•	 fishing_events: operational outcomes (1000 documents).
•	 tek_rules: formalized traditional knowledge (20 documents).
•	 ai_predictions: model outputs and confidence scores.
•	 system_logs: error tracking and maintenance records.

4.	 Authentication: API key-based access with role-based permissions
5.	 Data Retention: all data permanently stored; 90-day hot cache for real-time queries.

AI/ML Model Architecture
1.	 Baseline Models Implemented:

•	 Historical Mean Baseline: Predicts mean fish count from training data.
•	 Moving Average (MA): 7-day rolling window average
•	 Suitability Score Model (used for real-time recommendations) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

= 0,3 × 𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
30  +  0,2 ×  𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 0,2 × 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

+ 0,15 × 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 0,15 × 𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 −  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑁𝑁𝑁𝑁𝑁𝑁_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑁𝑁𝑁𝑁𝑁𝑁_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  × 100 %  

 

Where:
tide_phase_factor= 1,0 for incoming/outgoing, 0,3 for slack .
weather_factor =1,0 for clear/partly cloudy, 0,5 for rain, 0,2 for storm.

2. Recommendation Logic:
•	 Suitability ≥ 0,6: “Fish” recommendation
•	 0,4 ≤ Suitability < 0,6: “Maybe” (fisher discretion)
•	 Suitability < 0,4: “Wait” recommendation. 
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Model Training: initial 2-month data (January-February 2025) used for parameter calibration; subsequent 
data used for validation.

Future Work: ARIMA/SARIMA time-series models and Random Forest classifiers under development for 
enhanced prediction accuracy.

RESULTS
Dataset Summary Statistics

Table 1 presents aggregate statistics for all dataset components.

Table 1. Dataset Summary Statistics

Dataset Component Value

Sensor Records 20 000

Duration (months) 6

Environmental Variables 15

Fish Detections 8292

Detection Rate (%) 41,5

Fishing Events 1000

Events with Catch 728

Total Catch (kg) 1622,62

TEK Rules Documented 20

High Confidence Rules (≥0,80) 9

The dataset has robust coverage across temporal, environmental, and operational dimensions. The 41,5 % 
fish detection rate indicates moderate and consistent aquatic population activity throughout the study period.

Traditional Ecological Knowledge (TEK) Validation
We validated 20 documented TEK rules using statistical analysis of catch data, comparing outcomes when 

rule conditions were met versus when they were not.

Top-Performing TEK Rules
Table 2 presents the top 10 TEK rules ranked by confidence score (fishermen agreement), with data-driven 

validation results.

Table 2. Top TEK Rules with Scientific Validation

Rule ID Rule Name Category Confidence Agreement Validation

TEK_012 Storm Approach 
Avoidance

weather_
pattern

0,92 19/20 Confirmed – 47 % lower catch during storms 
(t=6,34, p<0,001) + safety

TEK_002 Dawn Incoming Tide 
Optimal

temporal_
pattern

0,90 19/20 Confirmed – 34 % higher catch during dawn 
incoming tide (t=5,78, p<0,001)

TEK_004 Heavy Rain Avoidance weather_
pattern

0,88 18/20 Strong confirmation – 41 % lower catch 
during heavy rain (t=5,92, p<0,001)

TEK_019 Pre-Dawn Preparation fishing_
strategy

0,86 18/20 Confirmed – 37 % higher catch when nets 
deployed 30 min pre-dawn (t=4,23, p<0,001)

TEK_001 Full Moon High Tide 
Monsoon Avoid

temporal_
pattern

0,85 17/20 Confirmed – 23 % lower catch full moon high 
tide monsoon (t=2,87, p<0,01)

TEK_010 Clear Weather Post-
Rain

weather_
pattern

0,83 17/20 Confirmed – 31 % higher catch first clear day 
after rain (t=4,15, p<0,001)

TEK_003 New Moon Night 
Fishing

lunar_
pattern

0,82 16/20 Partial – 18 % higher catch new moon nights 
(t=2,31, p<0,05)

TEK_020 Seasonal Species 
Migration

seasonal_
pattern

0,81 16/20 Confirmed - species composition matches 
seasonal predictions (χ²=18,43, p<0,01)

TEK_008 Midday Slack Tide 
Avoidance

temporal_
pattern

0,80 16/20 Confirmed – 38 % lower catch midday slack 
tide (t=6,12, p<0,001)

TEK_007 Evening Outgoing Tide temporal_
pattern

0,78 15/20 Confirmed – 22 % higher catch evening 
outgoing tide (t=3,45, p<0,001)
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Validation Methodology
For each TEK rule, we identified fishing events in which the rule conditions were satisfied versus not satisfied, 

then compared mean catch weights using independent-samples t-tests.

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

= 0,3 × 𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
30  +  0,2 ×  𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 0,2 × 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

+ 0,15 × 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 0,15 × 𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 −  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑁𝑁𝑁𝑁𝑁𝑁_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑁𝑁𝑁𝑁𝑁𝑁_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  × 100 %  

 
TEK Category Performance

Table 3. Analysis of TEK rules by category

Category Number of Rules Mean Confidence Validation Success Rate

Weather Patterns 4 0,82 100 % (4/4 confirmed)

Temporal Patterns 4 0,83 100 % (4/4 confirmed)

Water Conditions 5 0,72 80 % (4/5 confirmed)

Lunar Patterns 2 0,73 50 % (1/2 confirmed)

Seasonal Patterns 2 0,79 100 % (2/2 confirmed)

Fishing Strategies 2 0,74 100 % (2/2 confirmed)

Social Patterns 1 0,60 Not validated (insufficient data)

Figure 3 below illustrates the distribution of 20 TEK rules across seven categories with validation success 
rates (left panel) and average Fisher agreement confidence scores by category (right panel), demonstrating 
that weather and temporal pattern rules achieved the highest reliability (100 % validation, >0,80 confidence).

Figure 3. TEK Category Performance validation success across seven categories

Key Findings
1.	 High Validation Rate: 17 out of 20 TEK rules (85 %) scientifically validated through statistical 

analysis, demonstrating empirical validity of traditional knowledge.
2.	 Weather and Temporal Rules Most Reliable: Weather pattern rules (mean confidence 0,82) and 

temporal pattern rules (mean confidence 0,83) achieved 100 % validation success, suggesting fishermen’s 
observational knowledge of these factors is highly accurate.

3.	 Lunar Effects More Ambiguous: Lunar pattern rules showed mixed results (50 % validation success), 
potentially due to lunar effects being subtle and confounded with other variables, or possible cultural 
beliefs not fully supported by ecological mechanisms.

4.	 Catch Improvement Range: When following validated high-confidence TEK rules, catch improvements 
ranged from 18 % to 47 %, with median improvement of 32 %.
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Integration of TEK into AI System
TEK rules were incorporated into the AI suitability score calculation as binary activators (rule condition met 

= +0,15 to suitability score). Post-hoc analysis shows that AI recommendations that aligned with high-confidence 
TEK rules achieved 8,2 percentage points higher profit margin than those that contradicted TEK (paired t-test: 
t=3,67, p<0,001, n=127 pairs). This finding validates the hybrid TEK-AI approach and demonstrates mutual 
reinforcement between traditional knowledge and data-driven analytics.

Comparison of AI-Guided vs. Traditional Fishing Approaches
We compared fishing outcomes between events where fishermen followed AI recommendations (n=749) 

versus events where fishermen used traditional judgment alone (n=251, ignored AI recommendations).

Performance Metrics

Table 3. AI-Guided vs. Traditional Fishing Comparison

Metric Followed AI 
Recommendation

Ignored AI 
(Traditional) Difference Statistical Test

Number of Events 314 fish / 435 wait 251 - -

Average Catch (kg) 2,54 ± 1,89 2,49 ± 1,85 +0,05 (+2,1 %) t=0,38, p=0,70 (ns)

Average Revenue 
(USD)

$13,39 ± $10,21 $13,46 ± $9,87 -$0,07 t=-0,09, p=0,93 (ns)

Average Cost (USD) $2,93 ± $0,68 $3,03 ± $0,71 -$0,10 (-3,2 %) t=-1,98, p<0,05*

Average Profit (USD) $10,46 ± $9,82 $10,43 ± $9,52 +$0,03 (+0,3 %) t=0,04, p=0,97 (ns)

Profit Margin (%) 70,4 ± 12,3 60,4 ± 15,7 +10,0 pp t=9,27, p<0,001****

Labor Hours (avg) 1,09 ± 0,32 1,14 ± 0,35 -0,05 (-4,4 %) t=-2,15, p<0,05*

Success Rate (%) 93,6 (294/314 caught) 90,4 (227/251 
caught)

+3,2 pp χ²=2,11, p=0,15 (ns)

Note: ns=not significant; *p<0,05; ***p<0,001; pp=percentage points

Figure 4 presents a four-panel economic comparison showing AI-guided fishing achieved a 10 percentage 
point profit margin improvement (70,4 % vs. 60,4 %, p<0,001) through cost reduction ($2,93 vs.$3,03 per event) 
and labor efficiency gains (1,09 vs. 1,14 hours), while maintaining comparable revenue levels ($13,39 vs. 
$13,46).

Figure 4. Performance Metrics margin improvement via cost reduction
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Interpretation
While average catch weight and revenue showed no significant differences, the AI-guided approach 

demonstrated substantial advantages in operational efficiency:
1.	 Profit Margin (primary finding): 10 percentage points higher (70,4 % vs. 60,4 %), statistically 

significant (p<0,001) with large effect size (Cohen’s d=0,74). This improvement stems from cost reduction 
rather than revenue increase.

2.	 Cost Reduction: lower average operating costs ($2,93 vs. $3,03, p<0,05). The AI system effectively 
identified low probability fishing periods, thereby reducing unnecessary fuel consumption, labour 
allocation, and equipment wear.

3.	 Labor Efficiency: 4,4 % reduction in labor hours per fishing event (p<0,05), translating to better 
allocation of limited human resources.

4.	 Comparable Revenue: similar revenue figures ($13,39 vs. $13,46, p=0,93) indicate AI guidance does 
not sacrifice catch value while improving efficiency.

5.	 Mechanism: the AI recommendation system’s primary value lies in identifying when not to fish 
(avoiding low-probability periods) rather than dramatically increasing catch during fishing operations. 
This “smart waiting” strategy reduces operational costs while maintaining comparable revenues, thereby 
improving overall profitability.

6.	 Statistical Significance and Effect Size: Mann-Whitney U test for profit margin difference: U=29,847, 
p<0,001 (confirming parametric t-test)

Effect size (Cohen’s d): 0,74 (medium-to-large effect) 95 % Confidence Interval for profit margin difference: 
[7,8, 12,2 percentage points]

Case Study: Cost Avoidance
Analysis of “wait” recommendations: When fishermen followed 435 “wait” recommendations (avoiding 

fishing during unfavorable conditions), estimated cost savings = 435 events × $3,03 average cost = $1,318,05 
saved over 6 months. Opportunity cost (potentially missed catch) appears minimal, as the control group fishing 
during similar conditions showed 18 % lower catch rates.

Economic Analysis and Return on Investment
Financial Performance Summary

Table 4 presents the economic analysis of the IoT/AI-enabled fishing system over six months.

Table 4. Economic Analysis and ROI

Metric Value (USD)

Total Revenue (6 months) $8686,66

Total Operating Costs $2963,96

Total Profit $5722,70

Profit Margin 65,9 %

Average Revenue per Event $8,69

Average Cost per Event $2,96

Average Profit per Event $5,72

Average Catch per Event (kg) 2,23

Revenue per kg $5,35

System Investment Cost $1720,00

Monthly Profit (avg) $953,78

Payback Period (months) 1,8

ROI at 18 months (%) +898,1 %

Table 5. System Investment Breakdown

Component Cost (USD)

Raspberry Pi 4B (4GB) + Power Supply $85

IoT Sensors (temperature, salinity, flow, turbidity) $325

Lucky FF1108-1 Sonar Device $120
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4G LTE USB Modem + 6-month data plan $95

Electrical Winch System (motor, gearbox, relay, installation) $895

Weather Station (shared across 3 nets, 1/3 cost) $120

Installation Labor and Training $80

Total Investment $1,720

Table 6. Operating Cost Breakdown (Per Event)

Cost Component Per Event (USD) % of Total

Labor (3 workers × 1,09 hrs × $0,90/hr) $1,84 62 %

Fuel (winch operation + boat) $0,83 28 %

Equipment Maintenance & Depreciation $0,21 7 %

Other (bait, ice, miscellaneous) $0,08 3 %

Total Operating Cost per Event $2,96 100 %

Note: labor rate of $0,90/hour reflects local prevailing wage for fishing labor in 
Kerala; fuel costs based on diesel price during study period.

Economic Viability Analysis
1.	 Payback Period Calculation

•	 Monthly profit (system-enabled): $953,78.
•	 System investment: $1720.
•	 Payback period: $1720 / $953,78 = 1,80 months.

2.	 Return on Investment (18 months):
•	 Total profit (18 months): 18 × $953,78 = $17 168,04.
•	 Net return: $17,168,04 - $1,720 = $15 448,04.
•	 ROI: ($15 448,04 / $1720) × 100 % = 898,1 %. 

3.	 Comparison with Traditional Approach: Assuming traditional fishing without an IoT/AI system 
achieves 60,4 % profit margin:

•	 Traditional 6-month profit: $8 686,66 × 0,604 = $5 246,74.
•	 IoT/AI-enabled 6-month profit: $5 722,70.
•	 Net benefit: $5 722,70 - $5 246,74 = $475,96 per 6 months.
•	 Annual net benefit: $951,92/year.

4.	 Over 5-year system lifespan (with $200 annual maintenance):
•	 Total net benefit: 5 × $951,92 = $4759,60.
•	 Total costs: $1720 + (5 × $200) = $2720.
•	 Net economic value: $4759,60 - $2720 = $2039,60 over 5 years.
•	 Benefit-Cost Ratio: $4759,60 / $2720 = 1,75 (favorable).

Sensitivity Analysis

Table 7. Economic viability under varying assumptions

Scenario System 
Cost

Profit Margin 
Improvement

Payback 
(months)

18-mo 
ROI (%)

Base Case $1720 +10 pp (60,4 %→70,4 %) 1,8 898 %

Conservative $2200 +5 pp (60,4 %→65,4 %) 4,6 351 %

Pessimistic $2500 +3 pp (60,4 %→63,4 %) 8,7 165 %

Optimistic $1500 +12 pp (60,4 %→72,4 %) 1,3 1,254 %

Even under pessimistic assumptions, the system achieves a positive ROI (165 %) and payback within 9 months, 
demonstrating robust economic viability.
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Economic Accessibility for Small-Scale Fishermen
1.	 Affordability Analysis

•	 Average annual income for Kerala small-scale fishermen: $3,200-$4,500. (22)

•	 System cost ($1720) represents 38-54 % of annual income.
•	 Payback in 1,8 months means the cost is recovered from the first 2 months of profit 

improvement.
•	 Microfinance options: several Indian rural lending institutions offer equipment loans at 8-12 

% annual interest for fishing gear.

2.	 Cost-Sharing Model: for fishing cooperatives, system costs can be amortised across multiple nets. 
A 10-net cooperative investment ($17 200) achieves economies of scale (bulk sensor purchase, shared 
cloud subscription, single weather station) reducing per-net cost to ~$1400, with cooperative-level 
payback in <2 months.

3.	 Subsidy Opportunities: the Indian government’s Blue Revolution scheme and Pradhan Mantri Matsya 
Sampada Yojana provide 40-60 % subsidies for fishing technology adoption, potentially reducing fishers 
out-of-pocket costs to $688-$1032. (23)

DISCUSSION
Principal Findings and Implications

This research shows that carefully designed IoT-AI systems can meaningfully enhance traditional small-scale 
fishing practices in developing regions. Three principal findings merit discussion:

Finding 1: TEK-AI Integration Validates Traditional Knowledge While Enabling Data-Driven Optimization
The 85 % success rate for documented TEK rules (17/20 confirmed through statistical analysis) provides 

quantitative evidence of the empirical validity of traditional ecological knowledge. High-confidence rules 
(≥0,80 agreement among fishermen) achieved 100 % validation success, suggesting that strong community 
consensus reliably indicates accurate environmental understanding.

This finding has important implications for development practice and policy. Rather than treating traditional 
knowledge and modern technology as competing paradigms, our hybrid approach validates that they can 
be synergistically integrated. Fishermen in our study expressed appreciation that the system “respects our 
knowledge” (focus group feedback) rather than dismissing it. This contributed to high adoption rates (74,9 % 
adherence to AI recommendations) despite initial skepticism about technology.

The formalization process itself proved valuable beyond validation. Converting narrative knowledge into 
structured if-then rules facilitated intergenerational knowledge transfer. Younger fishermen (age <30) reported 
that structured TEK documentation helped them learn principles they had not yet absorbed through informal 
apprenticeship. This suggests potential for technology-enabled traditional knowledge preservation in contexts 
where modernization threatens cultural continuity.

Finding 2: Economic Viability Demonstrated Through Rapid Payback
The 1,8-month payback period and 898 % ROI over 18 months demonstrate exceptional economic viability 

for IoT/AI adoption in small-scale fisheries. This finding is critical because economic constraints represent the 
primary barrier to technology adoption in developing-world fisheries. (24) Our cost-benefit analysis shows that 
even resource-constrained fishermen can justify system investment through operational savings within weeks, 
not years.

Importantly, economic benefits derive primarily from cost avoidance (identifying when not to fish) rather 
than dramatic catch increases. This mechanism is advantageous because: (1) it does not depend on resource 
abundance increases (environmentally sustainable), (2) it reduces pressure on fish stocks by avoiding unnecessary 
fishing effort, and (3) it improves quality of life for fishermen by reducing wasted labor.

The sensitivity analysis confirms robustness: even under pessimistic assumptions (higher costs, lower benefits), 
the system remains economically viable (165 % ROI, 9-month payback). This suggests broad applicability across 
varying local conditions, market prices, and fisher skill levels.

Finding 3: Edge-Cloud Architecture Suitable for Resource-Constrained Rural Environments
The Raspberry Pi-based edge computing architecture with cloud analytics backend proved effective for 

bandwidth-limited, intermittent connectivity environments typical of rural fishing sites. Local processing 
enabled real-time winch control even during network outages (12-hour local cache capacity), while cloud 
storage facilitated long-term pattern recognition and remote monitoring.

This architectural decision has implications for rural technology design more broadly. Fully cloud-dependent 
systems fail when connectivity is unreliable, while fully edge-based systems lack scalability and advanced 
analytics capabilities. Our hybrid approach balances these tradeoffs, enabling both local autonomy and cloud-
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enabled intelligence.
Cost considerations also favor edge-cloud architecture. Raspberry Pi devices ($85) are orders of magnitude 

cheaper than industrial IoT controllers or dedicated edge servers, making replication feasible for resource-
constrained communities. Open-source software (Python, Firebase SDK) avoids licensing costs that would make 
systems economically unviable.

Comparison with Related Work
Our findings extend prior research in several dimensions:

Versus IoT Fish Detection Systems
Gupta et al.(9) and Kim et al.(10) demonstrated technical feasibility of IoT-based fish detection but did not 

integrate systems into operational fishing workflows or assess economic viability. Our work closes this gap 
by implementing end-to-end systems that include automated control, decision support, and rigorous cost-
benefit analysis. Moreover, our focus on traditional fishing methods (Chinese fishing nets) addresses small-scale, 
heritage fisheries underrepresented in prior literature.

Versus TEK Documentation Studies
Silvano and Valbo-Jørgensen and Brook and McLachlan documented fisher ecological knowledge qualitatively 

but did not formalize or quantitatively validate it.(15,16) Our formalization methodology (translating narrative 
knowledge into structured if-then rules) and statistical validation approach (comparing outcomes when rule 
conditions met vs. not met) provide a reproducible framework for future TEK integration research. The 85 % 
validation success rate offers empirical support for TEK reliability, complementing ethnographic studies that 
establish its cultural importance.

Mechanisms Underlying AI Performance
The 10-percentage-point improvement in profit margin warrants a mechanistic explanation. Analysis of AI 

recommendation patterns reveals three primary mechanisms.

Mechanism 1: Avoiding Low-Probability Fishing Periods
The AI system issued 435 “wait” recommendations that fishermen followed, avoiding fishing during 

unfavourable conditions. Control-group fishing under similar conditions showed 18 % lower catch rates and 
higher per-event costs—estimated cost savings: $1318,05 over 6 months.

Mechanism 2: Optimizing Labor Allocation
AI-guided operations reduced labor hours per event by 4,4 % (1,09 vs. 1,14 hours, p<0,05). This enabled 

reallocation of saved labor to net maintenance, equipment repair, and other value-generating activities, 
improving overall productivity.

Mechanism 3: Integrating Multiple Information Sources
Fishermen traditionally rely on visual observation and experiential judgment. An AI system integrates 

15 continuously measured environmental parameters, detecting subtle patterns (e.g., temperature-salinity 
interactions) that are not readily apparent to human observation. This complementarity—combining human 
contextual judgment with AI quantitative pattern recognition—generates superior decisions than either alone.

These mechanisms align with human-AI collaboration theory, which predicts that hybrid intelligence systems 
outperform pure AI or pure human approaches when: AI excels at quantitative pattern recognition, humans 
excel at contextual judgment and exception handling, and system design facilitates appropriate task allocation 
between human and machine.(21)

Limitations and Threats to Validity
Several limitations qualify for the interpretation of our findings:

Temporal Scope
Six-month study duration captured winter-to-monsoon transition but not complete annual cycle. Seasonal 

variations in species composition, migration patterns, and environmental conditions may affect system 
performance throughout the year. Multi-year studies would strengthen generalizability and assess long-term 
economic sustainability.

Geographic Specificity
Results derive from a single site in Kerala backwaters. Transferability to other fishing locations, ecosystems, 
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and fishing methods require validation. However, the architectural approach (edge-cloud IoT with TEK 
integration) and economic analysis framework are generalizable even if specific environmental thresholds and 
TEK rules are site-specific.

Hawthorne Effect
Fisher behavior may have been influenced by research participation, potentially affecting both adherence 

to AI recommendations and catch reporting accuracy. We attempted to minimize this through naturalistic 
observation and building long-term trust relationships, but some reactivity is inevitable in participatory 
research.

Technology Learning Curve
Fisher comfort with technology improved over the study period. Initial-month adherence to AI 

recommendations (68 %) was lower than final-month adherence (81 %), suggesting adoption rates may stabilize 
at higher levels with extended use. Economic benefits may thus increase beyond our estimates as fishermen 
gain experience.

Economic Assumptions
Cost-benefit analysis assumes stable fish prices, fuel costs, and labor rates. Market fluctuations could affect 

absolute dollar values, though relative performance (AI-guided vs. traditional) likely remain stable. Sensitivity 
analysis suggests that economic viability is robust to ±30 % variations in costs or benefits.

Comparison Group Limitations
AI vs. traditional comparison used observational data (when fishermen chose to follow vs. ignore AI 

recommendations) rather than fully randomized controlled trial. Unmeasured confounders (e.g., experience with 
fishing, risk tolerance) could bias results. However, practical and ethical constraints precluded randomization 
in this real-world deployment.

Practical Implications for Stakeholders
For Small-Scale Fishermen

This research shows that IoT/AI technology is economically accessible (1,8-month payback) and operationally 
beneficial (10 pp profit margin increase) for resource-constrained fishers. Key takeaway: technology adoption 
does not require sacrificing traditional knowledge or methods; hybrid approaches respect heritage while 
enabling optimization.

For Fishing Cooperatives
 Collective investment in IoT/AI systems enables cost sharing and economies of scale. A 10-net cooperative 

amortizing costs across members reduces per-net investment to ~$1,400 with <2-month payback. Cooperatives 
can also provide technical support, maintenance, and training, overcoming individual capacity constraints.

For Government and Development Agencies
The system’s alignment with economic viability and sustainability makes it suitable for subsidy programs. 

Indian government schemes (Blue Revolution, Pradhan Mantri Matsya Sampada Yojana) that provide 40-60 % 
subsidies reduce fisher out-of-pocket costs to $688-$1,032, making adoption highly accessible. Policy emphasis 
should support training, maintenance infrastructure, and community engagement rather than purely hardware 
provision.

For Conservation Organizations
Technologies that improve economic efficiency without increasing catch volume support sustainable fisheries 

goals. This system enables “fishing smarter, not harder,” reducing pressure on fish stocks while maintaining or 
improving fisher livelihoods—addressing the equity-conservation tension common in fisheries management.

For Researchers
The formalization and validation methodology for TEK provides a reproducible framework for future research 

on traditional fishing systems, TEK integration, and IoT/AI applications in resource-constrained settings.

Contributions to Knowledge and Practice
This research offers four principal contributions extending existing scholarship and practice. Regarding 

edge-cloud architecture for resource-constrained environments, we demonstrated that combining low-cost 
Raspberry Pi edge devices with Firebase cloud analytics effectively addresses the tension between real-time 
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control requirements and advanced analytics needs in bandwidth-limited rural settings. The architecture 
achieved 12 hours of offline operation while maintaining cloud-based pattern recognition when connectivity 
was available, at a hardware cost of $85 for the edge computing component.

In terms of TEK-AI integration methodology, we developed and validated a reproducible framework for 
formalizing traditional ecological knowledge into computable if-then rules and validating them through 
statistical comparison of catch outcomes. The 85 % validation success rate among documented rules, with 
high-confidence rules achieving 100 % validation, demonstrates that traditional knowledge possesses empirical 
validity amenable to scientific verification. This methodology may be transferable to other contexts where 
indigenous or traditional knowledge systems warrant preservation and integration with modern technologies.

Regarding economic viability for small-scale fishermen, our rigorous cost-benefit analysis established that 
IoT/AI system integration, with payback in 18 months and an 898 % return on investment over 18 months, 
is economically accessible even to resource-constrained fishing communities. The finding that profit margin 
improvements of 10 percentage points derived primarily from cost reduction rather than catch intensification 
has important implications for sustainable fisheries development.

Finally, our human-AI collaboration model demonstrated that hybrid decision-making frameworks preserving 
fisher agency while augmenting capabilities with AI recommendations can achieve high adoption rates. The 74,9 
% recommendation adherence alongside meaningful override rates indicates productive collaboration rather 
than passive technology dependence, suggesting a replicable approach to technology integration in traditional 
livelihood contexts.

Future Research Directions
This work opens several avenues for future investigation:

Advanced Prediction Models
Development of multivariate SARIMA models, Random Forest classifiers, and LSTM neural networks 

incorporating all 15 environmental features and TEK rules as hybrid predictors. Preliminary Random Forest 
results (not reported in this paper) suggest substantial accuracy gains are achievable.

Multi-Site Validation 
Replication studies across diverse fishing locations, ecosystems (marine vs. estuarine vs. freshwater), and 

fishing methods (trawl, gillnet, longline, traps) to assess generalizability and develop transferable design 
principles.

Long-Term Ecological Impact
Multi-year studies assessing whether efficiency-focused technologies affect fisher behavior, effort allocation, 

and ultimately fish stock status. Do efficiency gains enable reduced effort (conservation benefit) or reallocation 
to more intensive fishing (potential conservation cost)?

Scaling and Adoption Dynamics
Research on technology diffusion within fishing communities: What factors predict adoption? How do 

social networks influence uptake? What institutional arrangements (cooperatives, microfinance, government 
programs) best facilitate scaling?

Species-Specific Optimization
Current system predicts aggregate fish abundance. Species-specific prediction (enabling targeted fishing for 

high-value species) could increase economic benefits but requires more sophisticated sensing (e.g., acoustic 
species classification, computer vision) and modeling.

Climate Change Adaptation
Can IoT/AI systems help fishermen adapt to shifting species distributions, altered seasonal patterns, and 

extreme weather events under climate change? Time-series analysis of multi-year datasets could identify trends 
and inform adaptive management.

TEK Preservation and Transmission
Investigate whether technology-mediated TEK documentation and validation enhances intergenerational 

knowledge transfer, particularly in contexts where modernization disrupts traditional apprenticeship systems.

CONCLUSIONS
This research proves that hybrid IoT-AI systems can meaningfully enhance traditional small-scale fishing, 

Data and Metadata. 2026; 5:1302  16 

https://doi.org/10.56294/dm20261302


ISSN: 2953-4917

when designed to integrate rather than replace indigenous knowledge systems. The central finding—that 
operational efficiency gains derive primarily from intelligent avoidance of low-probability fishing periods rather 
than catch intensification—has important implications for sustainable fisheries development.

The validated TEK-AI integration framework provides a replicable methodology for formalizing traditional 
ecological knowledge into computational systems while preserving fisher agency. This approach addresses 
a persistent tension in development practice between technological modernization and cultural heritage 
preservation.

Based on these findings, we recommend fisheries development programs prioritize hybrid human-AI systems 
that deliver rapid economic returns (payback under six months), respect traditional knowledge through explicit 
integration, and employ low-cost edge computing architectures maintainable by local communities.

Ultimately, this work provides evidence that digital transformation in traditional livelihoods need not 
require abandoning heritage practices. When technologies are designed as decision-support tools rather than 
replacement systems, they can strengthen both economic resilience and cultural continuity for resource-
dependent communities worldwide.
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