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ABSTRACT

In @ modern environment in which cloud computing is distributed globally, optimizing the placements of
user data in the different cloud locations would ensure that the data can be accessed with minimum latency
and fast access. Traditional heuristic and machine-learning methods are often prohibitively expensive to
scale and have a hard time adjusting to a dynamic cloud environment. Scalable and adaptive optimization
strategies are required when user demands and data volumes grow very fast. There is a fair likelihood that
quantum-based methods, particularly, the metaheuristic methods, are an alternative that can effectively
react to dynamic conditions. The proposed model will be based on Quantum Particle Swarm Optimization
when moving user data to the most suitable places within distributed cloud canters. Through quantum-
inspired probabilistic search, the algorithm becomes more adaptive and more efficient than traditional ones.
Experiments, based on these simulations of the user request in the case of a geo-distributed cloud, have
shown a significant reduction in latency up to 28 % and better load balancing compared to the traditional
approaches. Altogether, these results highlight the prospects of quantum computing when it comes to
improving the efficiency and responsiveness of cloud infrastructure. The primary strength of the QPSO is that
it can be easily modified to facilitate the rapid response to the rapidly changing environment to allow access
to the distributed cloud systems in an efficient way and with a low latency.

Keywords: Quantum Optimization; Data Placement; Distributed Cloud Computing; Latency Reduction;
Quantum-Inspired Algorithms.

RESUMEN

En un entorno moderno donde la computacion en la nube se distribuye globalmente, optimizar la ubicacion
de los datos de usuario en las diferentes ubicaciones de la nube garantizaria un acceso rapido y con minima
latencia. Los métodos tradicionales de heuristica y aprendizaje automatico suelen ser prohibitivamente
costosos de escalar y presentan dificultades para adaptarse a un entorno de nube dinamico. Se requieren
estrategias de optimizacion escalables y adaptativas cuando las demandas de los usuarios y los volimenes de
datos crecen rapidamente. Es muy probable que los métodos cuanticos, en particular los metaheuristicos,
sean una alternativa que pueda reaccionar eficazmente a las condiciones dinamicas. El modelo propuesto
se basara en la optimizacion por enjambre de particulas cuanticas al trasladar los datos de usuario a las
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ubicaciones mas adecuadas dentro de los centros de nube distribuidos. Mediante la bisqueda probabilistica
de inspiracion cuantica, el algoritmo se vuelve mas adaptativo y eficiente que los tradicionales. Experimentos
basados en estas simulaciones de la solicitud del usuario en una nube geodistribuida han demostrado una
reduccion significativa de la latencia de hasta un 28 % y un mejor equilibrio de carga en comparacion con los
enfoques tradicionales. En conjunto, estos resultados resaltan las perspectivas de la computacion cuantica
para mejorar la eficiencia y la capacidad de respuesta de la infraestructura en la nube. La principal ventaja
del QPSO es su facil modificacion para facilitar una respuesta rapida a un entorno en constante cambio y
permitir el acceso a los sistemas de nube distribuida de forma eficiente y con baja latencia.

Palabras clave: Optimizacion Cuantica; Ubicacion de Datos; Computacion en la Nube Distribuida; Reduccion
de Latencia; Algoritmos de Inspiracion Cuantica.

INTRODUCTION

Cloud-based applications are expanding at an unprecedented rate, propelled by digital transformation
and the Internet of Things (loT). Users now expect virtually immediate access to services that include video
streaming, e-commerce, real-time analytics, and Al-driven systems. Such expectations intensify the necessity
of minimizing latency and maximizing data accessibility in geo-distributed cloud environments.™ To meet these
needs, cloud service providers implement a data centre at more than one geographic location, which increases
fault tolerance and expandability at the cost of new challenges. Where and how the user data should be stored
to be accessible in the best way is still an intricate and dynamic issue. Traditional data placement and load-
balancing strategies, often based on heuristic algorithms or static rules, are inadequate for managing rapidly
changing user demands, varying workloads, and heterogeneous network conditions.® The main drawback of
these methods is that they do not process the combinatorial complexity of decisions on optimal placement.
They are also challenged in striking the trade-offs between latency, bandwidth consumption, and load spread
across the servers. With data requests arriving from diverse global regions, suboptimal placement can lead to
delayed access, increased network congestion, and degraded quality of service (QoS).

In dealing with these challenges, the proposed paper has adopted a new strategy that uses quantum
optimization techniques in allocating user data to the most ideal cloud data centres in an intelligent method.
Quantum-inspired algorithms such as Quantum Particle Swarm Optimization (QPSO) offer promising solutions by
exploiting quantum superposition, entanglement, and probabilistic search mechanisms to explore vast solution
spaces efficiently.® Such methods offer a paradigm shift to optimization, dramatically speeding up convergence
and enhancing the quality of placement decision-making in distributed problems.

This paper introduces a quantum-classical model that combines quantum optimization with the historical
cloud resource management suites. The framework determines latency-optimal data placements by transmitting
data-centre characteristics, user access patterns, and network characteristics dynamically and determining
optimal data placements based on received results.® The major contributions of this work:

Quantum Particle Swarm Optimization (QPSO) is suggested as quantum-inspired optimization system
to efficiently locate user data in the geo-distributed cloud system. A specific dataset that represents geo-
distributed pattern of user requests is created to measure the performance of the proposed framework. It
should be mentioned that it is used on real-time data and validation is performed under dynamic and latency-
sensitive conditions. It designs a new architecture based on quantum-inspired optimization combined with
distributed cloud environments to realize ideal load distribution and access latency. It has been demonstrated
that it can scale to very large cloud environments and due to this fact, the question arises whether it is capable
of supporting real-world workloads. By combining quantum computation with cloud resource management,
the framework establishes the basis for smart and dynamic cloud infrastructures, which can scale to the
requirements of the next-generation applications.

Placing data and services efficiently in geo-distributed cloud and edge environments, has been the subject of a
decade of research. Earlier research has explored the various optimization paradigms such as classical heuristics,
evolutionary computation, reinforcement learning, and most recently quantum-inspired metaheuristics. It
discusses the most topical works in these dimensions, their problem statements, methodologies, strengths, and
limitations, as well as the open gaps that support the aim of the proposed framework.

Quantum-inspired Particle Swarm Optimization (QPSO) has proved to be an effective metaheuristic to tackle
complex, dynamic placement problems in which classical heuristics fail. An approach to the placement of loT
services in edge computing was proposed by Bey et al.®; and it was shown that the algorithm can minimize
the latency by using probabilistic search to solve the problem in highly dynamic settings. On the same note,
Wang et al.® used QPSO to schedule the tasks in the device-edge-cloud cooperative networks and reported
better adaptability to the fixed heuristics. Both papers are convinced of the better convergence properties and
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robustness of QPSO in heterogeneous infrastructures, but are only restricted to the service/task placement,
and have not investigated the large-scale geo-distributed cloud data placement.

Other variants generalize QPSO to the domain of specific situations. Jmal et al.” suggested Guided QPSO
to the traveling repairman problem and emphasized that the algorithm is flexible to allow the inclusion
of combinatorial optimization. Naik et al.® applied QPSO to the energy-saving offloading of tasks in edge
computing as a tradeoff of performance with energy usage. A many-objective QPSO to place virtual machines
was also presented by Balicki®, allowing to coordinate various QoS metrics. Although these methods have their
advantages, little research has been done to examine latency sensitive, large-scale distributed cloud data
distribution.

Both algorithmic and heuristic frameworks have been used to deal with low-latency service placement. We
have described a user-aware service placement model introduced by Centofanti et al." in which edge service
deployment is dynamically adjusted to minimize the response time, and a PageRank-inspired placement scheme
proposed by Wang et al." where regional value estimation balances cost and latency. Latency minimization is
a key goal in both works, but is based on deterministic or graph-inspired heuristics, which can be hard to scale
in very dynamic workloads.

Cui et al.? designed in containerized settings a deep reinforcement learning (DRL) container scheduling
framework that could adapt to cluster upgrades with latency guarantees, but Li et al."®¥ concentrated on low
startup time and resource-efficient container scheduling. Jin et al.” also pursued this line but modelled the
latency-reliability trade-off of industrial loT container migration. These works highlight the computational
complexity of edge/cloud scheduling but typically have high computational overhead because of model training
or environment exploration.

Another direction has been resource-conscious placement. Abdullah et al. " suggested a resource-conscious
task placement mechanism to improve query latency in an loT-fog environment, and Elsedimy et al.("® proposed
an energy and QoS conscious VM placement scheme in cloud laaS. Sharon et al.(” addressed the problem
of efficient energy offloading of data through data grouping that optimized system throughput within finite
resources and also consolidated this research line by implementing QPSO to realize the effectiveness of joint
resource allocation and offloading tasks. Even though these works manage to optimize the use of energy and
resources, they focus mostly on fog/edge loT environment or on the VM placement scenario.The special issues
of geo-distributed data distribution, such as the need to minimize latency, efficiency of replication, and load
balancing between many cloud locations, are not sufficiently studied.

Other approaches that have been studied extensively are classical heuristics and nature-inspired approaches.
Chitra"® devised an ideal placement and replication algorithm of SloT systems between data locality and edge
efficiency. The research by Li et al.(® suggests the best placement policy based on capacity constraints and
load balance in distributed clouds over geographical locations and provides useful information regarding the
significance of replication and fairness. Najmusher et al.?? also applied nature-based paradigms further and
developed a distributed cloud data-placement strategy inspired by firefly algorithms. They are computationally
efficient and typically not as adaptive as quantum-inspired or reinforcement learning paradigms, which prevents
their use in highly turbulent, large-scale systems.

Table 1. Comparative analysis for different data placement methods

Author Technique Optimization Environment / Key Metric ] Principal
(Year) Category Method Scope Improved SEEEIREE CET Limitation
Bey et al.® Quantum-inspired QPSO loT service Service Reduced Limited scalability
metaheuristics placement in latency, energy latency by to large-scale
edge computing efficiency ~22% heterogeneous loT
Wang et Quantum QPSO Device-Edge- Task completion  19-24 % faster ~ Higher complexity
al.® optimization for Cloud task time execution under multi-user
scheduling scheduling load
Jmal et Combinatorial Guided QPSO Traveling Route efficiency Faster Problem-specific
al.® optimization Repairman convergence tuning required
Problem
Naik et Energy-aware QPSO Edge computing Energy 21 % lower Narrow scope, lacks
al.® edge optimization task offloading efficiency, energy latency analysis
resource use
Balicki © Cloud resource  Many-objective VM placement in  Multi-objective  Better Pareto Computational
allocation QPSO smart cloud efficiency spread overhead high
Abdullah Resource-aware Heuristic Fog computing Query latency ~18 % reduction No quantum
et al.("® task placement loT query techniques applied
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The review of the literature table 1 shows that, although quantum-inspired and heuristic-based algorithms
realize latency, energy, and cost improvement, most methods are limited to the environment that is either
stationary or semi-stationary. Existing solutions cannot cope with real-time workload bursts, multi-purpose
trade-offs and large-scale distributed deployments in combination. In addition, not many approaches use
real-time data to validate their results, thus restricting their practical use. Such gaps drive the systematic
development of a new framework that will combine quantum-inspired optimization with dynamic real-time
data placement strategies to maintain scalability, flexibility, and high-performance in distributed cloud-edge-
loT infrastructures.

METHOD
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Figure 1. System Architecture Diagram for Quantum Optimized Data Allocation
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In this work, it is also introduced that the quantum-motivated optimization algorithms are matched to use
geo-distributed cloud data layout to place data in data centres in an optimum way. Its key task is to reduce the
latency and maximize the efficiency of data access through quantum-enhanced decision-making abilities during
dynamic workloads of concurrent users.

Figure 1 illustrates the scalable and adaptability to process the data of users on the heterogeneous cloud
infrastructures. The Dynamic Network Model is central to the design since it is a centralized controller that
also provides a medium of communication between all the elements in the system. User requests, issued
from dispersed locations and characterized by variable latency, bandwidth, and data quality of service (QoS)
requirements, are routed through this model as they arise. The Dynamic Network Model makes constant decision
adjustments based on the current situation in the network.

Monitoring Agents service monitors gather and inject data into the dynamic model on bandwidth utilization,
latency, jitter, and data traffic patterns. This loop of live monitoring makes the system implement inter-node
data routing according to the up-to-date network and data centre status. Simultaneously, the Optimisation
Engine, powered by Quantum Particle Swarm Optimisation (QPSO), operates in concert with the network model.
QPSO applies quantum mechanics principles to combine the possibility of covering the whole search space that
is limited by traditional optimization methods. It explores all possible data-user-data-centres configurations
and picks the one that offers the minimum latency with the balanced workload of data centres.

Data Centres (DC+ to DC,) constitute the distributed storage and compute nodes of the cloud infrastructure.
Each DC reports the available bandwidth, storage, and latency to the dynamic model, which is central in deciding
the viability and the cost of provisioning user data at a site. Variations in load capacities and performance charges
among centres are considered, whereby the system takes care that none of the data centres is overloaded and
at the same time user proximity conditions and performance assurances are maintained.

The QPSO engine communicates with a network model, which provides performance figures and information
about the allocation, and then makes the allocation decision and feeds that back to the dynamic model.?"
These decisions outline the methods through which replication or movement of user data is to be achieved,
exploiting the placement of data within the whole enterprise infrastructure as an optimization. Figure 1 shows
the feedback nature of the looped control flow and decision-making sequence between the dynamic network
model and QPSO engine, further highlighting the feedback base and iterative nature of the system.

In the further phases, decisions lead to the movement of data to relevant data centres. The current
framework is designed such that it works continuously, constantly dynamically adapting the placement of data
based on changes in user behaviour, network health, and the availability of hardware. This architecture, in
turn, enhances the efficiency of data distribution, reduces access latency, and builds fault tolerance, which is
considered to be essential to operations critical to the financial, healthcare, and loT industries.

System Model

The quantum-optimized data placement framework is placed in a setting where one can consider some
aspects, including the cloud infrastructure, user profiles, monitoring, dynamic network topology, and data
placement. Altogether, these aspects define the decision space and constraints that were considered in latency-
aware optimization.

Cloud Infrastructure
We consider a globally distributed cloud containing a finite set of data centres:

D ={DC,DC, DCp} (1)

Each DC, is characterized by four resource vectors that are objects of change with time t:
1. Storage capacity Sj(t): available gigabytes for housing user objects or replicas.
2. Outbound bandwidth Bj(t): the maximum sustained throughput (in Mbps) that the centre can
deliver to the wide area network without SLA penalties.
3. Inbound bandwidth B,"(t)Ingress capacity, relevant during replica creation or migration.
4. Service latency baseline L : the sum of queuing, processing, and local network delay internal to
the facility, treated as constant over short horizons.

These values are collected by resource monitoring agents and reported by them to the optimization engine
at At seconds intervals. As in the case of a new replica being created, we have the corresponding capabilities
decrease in real time, thus maintaining consistency between the decision model and the physical environment
of the system .
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User Profiles
The Active workload is a set of users or an application tenant.

U={u,uy o, Uy} (2)

A profile for each user u, contains:
e Geolocation € =(lat,lng), converted to networkdistance estimates through real-time latency probes.

e Access frequency f (t)(req - s™'): a slidingwindow average of read/write operations directed at the

user’s primary dataset.
o Data size s, (GB) and mutability rate m, (updates - s™'), influencing replication overhead.
e Servicelevel objective L__' The upper bound on round-trip delay acceptable to the application;

violations result in penalty costs or SLA breaches.

In the framework, the dataset of each user is abstracted as a single unit that cannot be further broken, and
extension to an object of multiple shards is achieved by creating an entry for each shard against a profile.

Monitoring and Feedback Module
This module continuously gathers real-time network metrics, bandwidth B,(t), latency Lij(t), and available

storage (t) from each data centre DC, at time t. The obtained data are standardized to make the inputs
consistent during the optimization process in egs (3):

B(t)=—29 1 .t)=—3d9 _g1)=—20_ (3

maxyB(t)’ maxLyj(t)’ maxgSk(t)

These metrics form the feedback vector:

F(t) = [E(t)rzij(t):gi(t)] 4)
Which is sent to the QPSO engine to evaluate fitness:

Fitness(U; » DC;) = wy - Eij(t) +w, - (1=B(t) +ws-A=5,() (5

The obtained data are standardized to make the inputs consistent during the optimization process.

Dynamic Network Topology
A directed graph that is time-varying represents wide-area connectivity among the users and data centres

and links among data centres.

Gt)=(V,E(t)),V=UuUD.) (6)
For every edge ((v,w)€E(t) we maintain a composite weight:
Wy (£) = alyy (t) + B [1/Buw (O] + vPuw(t)  (7)

Where:
e |, (t)is one way propagation + queuing delay,
) is residual bandwidth.

By (t
p,. (t) is the recent packet loss probability.

[ ]
u

Equations (6 and 7) Operators demonstrate preference between latency, throughput, and reliability by
encoding their relative values in coefficients refer table 2 in a+B+y=1, and active probing and passive flows
continuously update these weights by adding them to or subtracting them from edge costs, hence guaranteeing
that as congestion or routing changes, these values can be reflected urgently in optimization.
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Integrated Placement Formulation
Given the above entities, a binary decision variable x,€{0,1} is defined: x,=1 if user u, is served from DC,.

The per-user round-trip latency is:

Li(t) = Zx, (Lj? + WuiDCj(t)) (8)

And must satisfy L. (t)<sL__'. Data center capacities impose.

%'Sixij < S5 (®), %’fi(t)xij < B;(t) %)

The optimization engine implemented via quantum-inspired or quantumnative algorithms seeks an equ (8,9)
assignment matrix X=[x; Jminimizes the weighted average latency 2, L. Plus a replica count penalty, while
respecting all capacity and SLA constraints. Because the decision landscape changes with G(t) fi (t), the solver
executes periodically and on-demand triggers, allowing the system to adapt continuously to shifting traffic and
network conditions.

Table 2. Notation Descriptions

Notation Explanation

B The contraction-expansion coefficient controlling the
quantum step size (0 < B < 1)

[0} Random value in (0, 1) used to balance the influence
between pBest, and gBest

a The weight assigned to latency in the objective
function.

Y The weight assigned to load balance in the objective
function.

€ An element of an object

L Latency (or delay)
p Packetloss probability
A Intervals

Quantum Optimization Technique

The difficulty in placing user data in a global distribution of clouds, as well as the combinatorial explosion
of configurable parameters, is directly connected. Every user request has to be placed with a suitable data
centre, and the limitation in the form of latency, network bandwidth, storage availability, and quality of service
also has to be remembered. Geographically distributed infrastructures, as well as the dynamic behaviour of the
users, add to the complexity of this multi-dimensional task to form a non-linear and multi-modal optimization
landscape. In this, classical methods of optimization typically suffer from limited scalability and a propensity
for premature convergence to local optima, particularly when confronted with extensive and rapidly changing
solution spaces.

To alleviate these challenges, we propose a hybrid quantum optimization framework that integrates Quantum
Particle Swarm Optimization (QPSO). Inspired by quantum mechanics and founded upon classical Particle
Swarm Optimization (PSO), QPSO strengthens global search capability by employing a probabilistic model of
particle movement. Through the foregoing reliance on velocity vectors and relying on quantum delta potential
wells instead, the technique yields better exploration diversity and convergence stability.®? Such qualities are
essential within the modern, globally dispersed cloud infrastructures. A useful structure for placing the data
should not be able to reduce the average latency so far, have to assist in distributing the load, fault recovery,
and responses towards variations in user demand and/or system conditions. QPSO meets these requirements by
dynamically reprogramming user-to-data-centre mappings, live, in a way that maximizes overall performance
measures of the whole system.

Overall, the technique mimics the quantum mechanics phenomena, which has been proven to be scalable,
adaptive, and globally convergent, interpreting cloud data allocation problems with a much higher performance
than the traditional approaches in complex, distributed computing scenarios.
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Quantum Particle Swarm Optimization (QPSO)

In order to address the aforementioned constraints, our investigation employs Quantum Particle Swarm
Optimization (QPSO), a quantum-inspired extension of the established Particle Swarm Optimization (PSO)
methodology. By integrating quantum-mechanical principles, QPSO replaces the deterministic position-update
rules of classical PSO with probabilistic motion governed by quantum-delta potential wells.? The peculiar
behaviour model of the algorithm (as opposed to varying velocities by each particle, they are introduced into
the search space by random jumps) explains the satisfactory results in complex, nonlinear, and multimodal
optimization. This mixed behaviour encourages movements between the adjacent areas and controls the
likelihood of premature convergence to local optima.

Quantum Optimization
Engine (QPSO)
‘ User Requests ]—» [ In|t|aI|zat|on ] »  Edge Cloud J
Quantum State f Regional Data
Update Center
) Fltness Evau-
Preprocessing lation N Core Cloud
& Feature 1 ;
Extraction [ D - ]
: ecisio
| Feedback J

Figure 2. Quantum Optimization Engin

The figure 2 shows a quantum-inspired optimization model on smart allocation of user data in distributed
cloud infrastructures. The user requests are initially fed into the Quantum Optimization Engine (QPSO) where
they are initialized, updated with the quantum state and with fitness. According to these processes, allocation
decisions are taken in order to distribute the workloads between the edge cloud, the regional data centers or
the core cloud in order to have an optimal utilization of resources. This process is aided by a preprocessing
and feature extraction module which refines the input data as well as providing performance feedback into the
optimization cycle. The architecture is more scalable, with less latency and is more energy efficient to support
next generation distributed cloud services.

Therefore, QPSO can be proven to be resistant to local minima and provide a methodology particularly
suitable to problems of multi-objective cloud data allocation that also require low latency, an equal load
distribution, and responsiveness to fluctuating environmental conditions.

Problem Context and Encoding
It presented the user-data allocation problem as an instance of combinatorial optimization.
Given:
e Aset of users U={u,,u,,....,u }.
e Aset of data centres D={d,,d,,....,d }.
e Alatency matrix Lij representing the communication cost between user ui and data centre dj

The input includes a user set U and a data centre set D, with the corresponding objective function being to
identify a mapping A: U—D mapping that minimizes the total latency at which cloud resources must be used
efficiently among the data centres without the constraint of any imbalanced utilization of cloud resources.

Formally, the goal can be stated as:

Apin(a - AverageLatency(A) + y - LoadVariance(A)) (10)

Where o and y are scalar weights controlling the equ (10) trade-off between latency minimization and
balanced usage of cloud resources.®

The quantum particle swarm optimization (QPSO) algorithm is employed to tackle this problem. Every
particle in the swarm represents a full assignment of all user-centred mapping. Consequently, the search space
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is combinatorially dense, and QPSO to its probabilistic nature, proves an effective explorer of such complex
spaces.®

Mathematical Model
At the outset, the swarm populates a set of particles randomly distributed within the solution space, with
each particle recording its own best solution (pBest) and broadcasting the swarm’s overall best solution (gBest).
Unlike classical PSO, QPSO does not use velocities. Instead, each dimension of a particle is updated using:

Xig(t+1)=piq £ I mbest; —x;4(t) |- 1In (711) (11)

Where:

X, 4(t): position of particle i in dimension d at iteration t.

P, .. attractor point between pBest, , and gBest , calculated as ¢-pBest, ;+(1-¢)-gBest,
mbest : mean best position across all particles for dimension d.

B: contraction-expansion coefficient (typically 0,5-1,0).

u: random number uniformly distributed in (0,1).

¢: random coefficient in (0,1).

In equation (11), during successive iterations, each particle updates its location stochastically in accord
with a quantum delta potential model rather than velocities, thereby facilitating balanced exploitation of local
improvements and exploration of unexplored regions of the search space, a strategy inspired by the Heisenberg
Uncertainty Principle. This updated algorithm has the advantage of allowing exploitation and exploration
simultaneously; therefore, it traverses the multimodal search landscape effectively.?

Algorithm: Quantum Particle Swarm Optimization for Data Allocation
Input: Number of particles N, user set U, data centre set D, latency matrix Lij, maximum iterations T.
Output: Optimal user-to-data centre allocation A*
Initialize particle positions Xi randomly.
Set personal bests pBesti = Xi, global best gBest;
Set control parameter g € (0, 1);
for each iteration t = 1to T do
Evaluate the fitness of each particle Xi using:
Fitness (Xi) = a - Latency (Xi) + y - Load Variance (Xi);
Update pBesti and gBest based on fitness; Compute mean best position mbest ;
for each particle Xi do
for each dimension d do
Generate random numbers ¢, u € (0, 1);
Compute p = ¢ - pBesti[d] + (1 — ¢) - gBest[d];
Update position: Xi[d] =p + - |mbest[d] - Xi[d]| - n(1/u)
end
end
end
return gBest as the optimal allocation

Quantum particle swarm optimization, thus, is a metaheuristic algorithm based on quantum mechanics
aimed at the solution of complex, high-dimensional tasks, User-to-data centre mapping in the cloud being
one possible solution. Every particle has a content mapping, most of which are updated iteratively using both
individual-best as well as global-best information. In the case of the absence of velocities, the formula based
on quantum potential favours balanced exploration and global convergence. QPSO reduces the problem of
latency and load imbalance by successively revising the assignment in a probabilistic manner. The adaptability,
avoidance of local minima, and scalability of QPSO make it especially fit for large-scale dynamic environments
in cloud environments. @

RESULTS

The Quantum Particle Swarm Optimization (QPSO) based data allocation algorithm was evaluated by employing
both synthetic user distribution datasets and real-world internet traffic traces. The synthetic simulated 1000
users equally spread in various geographical locations, and each location had a different frequency of requests
and latency pattern. The real data were based on the real internet traffic data that had been gathered by CAIDA
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for the public and, therefore, presented a suitable representation of the real demand and latency conditions.
An open-source Python 3.10 implementation was executed on a high-performance hardware platform (Intel i9,
64 GB RAM, NVIDIA RTX 3090). The Qiskit was used to emulate quantum dynamics, and Docker containers were
used to replicate globally distributed cloud servers.

Experimental findings reveal that QPSO performed better as compared to other methods. It decreased the
average latency by as much as 28 % and represented a 60 % improvement in load balance compared to classical
heuristics. The QPSO type took the decisions in allocation even further, thus showing the viability and scalability
aspect of the algorithm in the contemporary cloud infrastructure. To evaluate the effectiveness of the given
QPSO allocation algorithm, it was contrasted against five baseline algorithms. Classical Heuristic Placement
(CHP) uses greedy selection to assign users to the nearest data centres. Dynamic Reinforcement Learning (DRL)
employs a deterministic Q-learning agent to optimize latency. Hybrid Heuristic + Clustering (HHC) combines
K-means user grouping with greedy placement. Simulated Annealing (SA) probabilistically explores the solution
space to mitigate local optima. Finally, the proposed Quantum Particle Swarm Optimization (QPSO) leverages
quantum behaviour for superior exploration and convergence. The methods have been judged on the grounds
of latency, access time, and load balancing.

The outcomes show that the QPSO is commonly better in all the measures compared to the other approaches.
It is capable of attaining minimum latency, the greatest balance of loads, and consistency in access times.
These results support the hopefulness and efficiency of quantum-motivated optimization on the geographical
scale of cloud-based dispatches.

Parameters and Metrics

QPSO-based user data-allocating scheme is critically analysed using a set of performance measures.
Average latency measures the average time delay that users take to access or deposit their information in
their designated data centres. The time it takes to access or put information is called the access time, and the
index evaluates the degree to which the data is evenly distributed across the centres, and this is done by the
computation of the load-variance value. Speed of convergence refers to how many steps the algorithm would
take before it could converge to a stationary solution. The execution time determines the run time of the QPSO
process. Lastly, the scalability will test the effectiveness of the algorithm as the user base increases gradually
and the set of data centres also grows accordingly.

Metrics Measured
Average Latency (AL) In equation (12), represents the mean delay experienced by users when accessing data
centres and is expressed as:

L=N1i=~3L;,A(0) (12)

Where N is the total number of users, L, A(i) is the latency between user iii and the data centre A(i) to which
the user is assigned. Lower values of AL indicate more productive places of allocation.

Access Time (AT)
In equation (13), captures the total time required for a user to complete data retrieval or upload and
includes transmission and processing delays. It is given by:

1

N
AT = N Zi=1( Treq.i + Tresp,i) (13)

Where T_ . and T__ . Denote the request and response times for user i, respectively.

req,i resp,i

Load Balancing Index (LBI)
In equation (14), evaluates the variance in load across data centres, indicating the fairness of distribution:

LBl =+ 3" (L~ L) (14)

Where M is the number of data centres, L, is the load of data centre j, and a L Itis an average load. A lower
LBI thus means more balance.

Convergence Speed (CS)
In equation (15), measures how quickly the QPSO algorithm reaches an optimal or stable solution. It is
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quantified as:
CS=t* (15)

Where t* is the number of iterations taken to reach convergence, defined by a negligible improvement in
fitness over successive iterations.

Execution Time (ET)
is the computational time the algorithm takes to complete the allocation task, equation (16):

ET = Tena — Tstare (16)

Where T and T_ , Denote the timestamps at the beginning and end of the algorithm’s execution.
Scalability (S)

Analyses the behaviour of performance metrics as the problem size grows. In equation (17), putting the
algorithm into operation with different N of users and M of data centres and monitoring the respective changes
in essential metrics, one will produce an index of scalability:

__ AMetric
T AN+4AM

(17)

In equation (17), which Delta Metric are the changes in the selected metric. This ratio shows how well
the algorithm can maintain tolerable performance as the system scale grows, and thus shows the robustness
needed to be deployed in practice.

Performance Evaluation

The experimental findings are presented and analysed in this section for the proposed Quantum Particle
Swarm Optimization (QPSO) algorithm applied to user data allocation in distributed cloud environments. The
intention is to test the capabilities of QPSO to reduce the latency and enhance access time, data centre load
balancing, and scale relative to traditional and modern baseline approaches. The following comparisons are
made with Classical Heuristic-Based Placement (CHP), Dynamic Reinforcement Learning (DRL), and Hybrid
Heuristic + Clustering (HHC) techniques under varied user and data centre scenarios. Some of the metrics
are the average latency, access time, load balancing index, and convergence behaviour, which measure and
validate performance.

Figure 2 presents the Load Balancing Index (LBI) values across multiple baseline methods are summarised
on a user count scale. The LBI displays the difference in the distribution of workload between data centres;
the lower the difference, the more balanced it is. A good load balancing system will ensure that none of the
data centres is a bottleneck in the sense that it causes failure of service quality, even at different loads.
QPSO incurred the lowest LBI as shown by the following table 3, starting at 82 on 100 users up to 103 on
1000 users with a slight increase. Classical heuristic methods such as CHP exhibit higher values (e.g., 110 to
148), indicating less optimal distribution. Its global optimization nature and quantum behaviour give QPSO
exceptionally high balancing capabilities since, when appropriately constructed, it can consider the dynamics
of the whole system, rather than make greedy local decisions. Using both historical and information knowledge
available in the swarm, QPSO can effectively distribute user loads to various data centres, thereby increasing
the robustness of the system, de-risking the possibility of overloading in any central post. All these findings
attest to the fact that QPSO is not only efficient in reducing latency and access times, but it is also vital in
ensuring long-term system health due to its ability to ensure workloads that are distributed evenly in a dynamic
cloud-based environment setup.

Table 3. Input Size vs Average Latency (ms)
Users CHP DRL HHC SA QPSO
100 110 100 105 95 82
300 125 112 118 102 88
500 135 118 124 110 93
1000 148 130 135 122 103

https://doi.org/10.56294/dm20261328 ISSN: 2953-4917


https://doi.org/10.56294/dm20261328

Data and Metadata. 2026; 5:1328 12

Average Latency (ms)
—3—CHP —#—DRL HHC SA —&—QPSO

"o 150
€
= 130
Q
]
4]
— g0 r//
Q
?!?0 70
a
Z 50
100 300 500 1000
No of Users
Figure 2. Input Size vs Average Latency (ms)
Table 4. Input Size vs Access Time (ms)
Users CHP DRL HHC SA QPSO
100 210 195 200 185 170
300 240 210 220 198 180
500 270 230 245 210 192
1000 305 255 270 238 208
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Figure 3. Input Size vs Average Latency (ms)

Figure 3 shows the Average Access Time (in milliseconds) of various algorithms with different loads of users.
The smaller the values, the faster the interactions of usage to the cloud infrastructure. Quantum Particle
Swarm Optimization (QPSO) in general gives minimal access times as compared to any of its methods; thus, it
turns out to be the best method of reducing the data retrieval and transmission delay.

In table 4, a 100-user QPSO shows 170 ms, which beats CHP (210 ms) and DRL (195 ms) among others. At
a user increment of 1000, QPSO is still scalable in just 208 ms, but DRL increases to 255 ms and CHP to 305
ms. Such a performance improvement can be attributed to the quantum-inspired global optimization strategy
employed by QPSO, where important data centre placements are dynamically discovered as a combination of
latency and load-balancing considerations.

Probabilistic movement and memory of global best solutions in the algorithm allow for exploring a large and
complex search space effectively and a reduction of access bottlenecks. Such findings highlight the scalability
and performance of QPSO in real-world distributed systems, whose low latency and access speed are of
importance to their performance and user satisfaction.
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Table 5. Input Size vs Load Balancing Index

Users CHP DRL HHC SA QPsSO
100 0,30 0,24 0,27 0,20 0,14
300 0,35 0,27 0,30 0,23 0,16
500 0,39 0,30 0,33 0,25 0,18
1000 0,42 0,33 0,36 0,29 0,20

Load Balancing Index

—3—CHP —=—DRL

Load Balancing

Figure 4. Input Size vs Average Latency (ms)
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Figure 4 below displays the Load Balancing Index (LBI) attained by a set of allocation strategies under
varied user densities. When LBI is lower, it means that the workload is distributed more evenly among the
data centres. Notably, Quantum Particle Swarm Optimization (QPSO) consistently outperforms the baseline
techniques, including Classical Heuristic Placement (CHP), Dynamic Reinforcement Learning (DRL), Hybrid
Heuristic + Clustering (HHC), and Simulated Annealing (SA).

Table 6. Input Size vs Execution Time (s)

Users CHP DRL HHC SA QPSO
100 1,2 2,4 1,8 2,0 1,1
300 2,5 3,8 2,9 3,4 1,8
500 4,0 5,6 4,3 5,0 2,5
1000 7,8 9,2 8,1 8,5 4,2
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Figure 5. Input Size vs Average Latency (ms)
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In table 5, for the 100 users, the minimum LBI is 0,14 recorded by QPSO, 0,30 by CHP, and 0,24 by DRL. When
the number of users is increased up to 1000, QPSO manages to stay stable with the value of 0,20, but the other
methods have values higher than 0,29. The trend indicates that QPSO provides meaningful load balancing that
eliminates the chance of information overload or inactivation at the data centre.

The empirical findings presented in the accompanying figure 5 reveal that the proposed Quantum Particle
Swarm Optimization (QPSO) method exhibits superior average latency performance across a range of simulated
user loads. With table 6 user counts ranging from 100 to 1000, QPSO consistently achieves the lowest latency
for every experimental condition, outperforming baseline alternatives: Classical Heuristic Placement (CHP),
Dynamic Reinforcement Learning (DRL), Hybrid Heuristic + Clustering (HHC), and Simulated Annealing (SA).

When the number of users goes to 100, QPSO has the lowest latency value of 1,1 ms. This advantage holds
even at increased scale (number of users), where 1000 users are involved, QPSO provides 4,2 ms, compared
to DRL and SA, which provide above 8 ms. These findings reiterate the soundness and elasticity of QPSO in
optimization modelling that is both high-dimensional as well as time-varying. The probabilistic exploration
scheme with quantum-inspired inspiration in QPSO helps the algorithm escape local minima and converges
faster to mappings that are globally optimal than in competing algorithms, hence its high level of performance.
Reductions of latency by orders of magnitude, as found in these experiments, are essential to distributed cloud
environments since they have a direct effect on improving user experiences and system turnaround times. This
makes QPSO more adaptable and efficient, which would make the latter a good choice in intelligent cloud
resource management.

Comprehensive testing conducted shows that the QPSO method provides the best convergence on the
basis of speed and scalability. It can converge within only 22 iterations, which is undoubtedly better than
conventional and Al-based competitors, and thus allows for this significantly shortened optimization process.
The derived scalability measure of 0,00547, which is the lowest of all methods, is an indication of robustness
with a growing user base and deployment into data centres with little loss of performance. This is because of
this favourable scaling property, which assures that the method can be applied consistently even in the more
complex, large-scale infrastructures in clouds, where optimal allocation of user data to ensure efficient and
optimal resource sharing has high importance. QPSO finds high-quality solutions quickly by cleverly trading off
between exploratory and exploitative behaviour using quantum-motivated iterative updates, and so it is well
adapted to real-time, adaptive data assignment of user requests in distributed cloud computing systems.

Table 7. Metric Comparison of Baseline Methods

Method Average .Access Load Balancing Convergenf:e Speed Exgcution
Latency (ms) Time (ms) Index (Iterations) Time (s)

CHP 120 230 0,32 30 3,2

DRL 105 200 0,25 45 6,5

HHC 110 210 0,28 35 4,1

SA 98 190 0,22 50 5,8

QPSO (Proposed) 86 168 0,15 22 2,9
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Figure 6. Input Size vs Average Latency (ms)
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An in-depth performance figure 6 has been created to review data-allocation methods on the basis of such
indicators. Quantum Particle Swarm Optimization (QPSO) emerges as the superior performer in all assessed
categories. Table 7 values achieve the lowest average latency (86 ms) and fastest access time (168 ms), thereby
enabling users to engage with cloud services with remarkable swiftness. This Load Balancing Index of 0,15
indicates a more equal distribution of data centre workload, and this translates into a lower likelihood of
bottlenecks. Besides, QPSO has the best convergence speed, 22 iterations that surpass the findings of classical
approaches being used. The fact that it takes 2,9 seconds to execute adds more weight to the efficiency of its
operations. Table 7, therefore, can support the effectiveness of QPSO as an adaptable method of intelligent
data distribution over distributed cloud environments. Its quantum-motivated search dynamics exhibit better
dexterity in the traverse of complex solution spaces than those of established or even those based on learning
techniques, hence offering a ray of hope in cases of modern optimization tasks in clouds.

Overall, experimental findings demonstrate that Quantum Particle Swarm Optimisation (QPSO) represents
the most effective strategy for allocating user data in distributed cloud environments. It is also clear that
QPSO is competitive with classical and modern baseline methods even across input sizes and metrics. QPSO has
the lowest values of mean latency: 1,1 milliseconds and 4,2 milliseconds as compared to 7,8 milliseconds and
9,2 milliseconds taken by CHP and DRL, respectively, with 100 and 1000 users, respectively. This shows how
excellent it was in minimizing the wait times in communication.

For access time, QPSO records 170 microseconds (100 users) and 208 microseconds (1000 users), whereas
other approaches, such as CHP and DRL, range from 210 to 305 microseconds, providing up to 30 % improvement.
Load Balancing Index also proves the superiority of QPSO with load ranking at 0,14 to 0,20 as compared to CHP
and DRL, which secure 0,30 to 0,42. Convergence Speed is another strong indicator: QPSO stabilizes after 22
iterations, much faster than DRL (45) or SA (50), which is crucial for dynamic environments.

Additionally, execution time is just 2,9 seconds for QPSO, outperforming CHP (3,2 s) and DRL (6,5 s). The
close scores in all the performance metrics confirm the effectiveness of QPSO and certify the fact that it is also
scalable, therefore, making it a great selection when it comes to intelligent cloud data placement.

CONCLUSIONS

This work develops an intelligent and efficient user-data allocation strategy for geographically dispersed
cloud environments, employing Quantum Particle Swarm Optimization (QPSO). The suggested method has
already shown significant promise in successfully handling some major challenges of placement algorithms,
including high latency, unequal distribution of the load, and poor convergence, which are widespread in the
traditional ones. Large-scale simulations and testing confirm that the QPSO algorithm shows a strong and stable
baseline on average latency, access time, load-balancing index, convergence speed, and execution time on
all chosen algorithms: Classical Heuristics, DRL-based model, Hybrid Heuristics, and Simulated Annealing. The
reduced latency by as much as 28 % of the experimental results, a 26 % improvement in load performance, and
an in excess of 50 % improvement in load balancing in comparison with traditional strategies are indicative. In
addition, its rapid convergence and low computation overhead make QPSO very applicable in real-time complex
situations where dynamic dealing of resources is done in a large cloud environment.

Some modifications have been suggested to increase the capabilities of QPSO. Further improvement may be
achieved by implementing quantum circuit-based optimizers, e.g., QAOA, on real hardware. The incorporation
of multi-objective QPSO would enable the trade-off between energy consumption, cost, and reliability. In reality,
QPSO would be useful to combine with adaptive monitoring systems that immediately recognize the changes
in the behaviour of the users, thus triggering redirections. Lastly, federated learning or privacy-preserving
solutions might be included to perform a secure data placement according to the regulatory framework of data
sovereignty. These improvements seek to transfer QPSO into real-life and scalable cloud optimization toolsets.
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