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ABSTRACT

In a modern environment in which cloud computing is distributed globally, optimizing the placements of 
user data in the different cloud locations would ensure that the data can be accessed with minimum latency 
and fast access. Traditional heuristic and machine-learning methods are often prohibitively expensive to 
scale and have a hard time adjusting to a dynamic cloud environment. Scalable and adaptive optimization 
strategies are required when user demands and data volumes grow very fast. There is a fair likelihood that 
quantum-based methods, particularly, the metaheuristic methods, are an alternative that can effectively 
react to dynamic conditions. The proposed model will be based on Quantum Particle Swarm Optimization 
when moving user data to the most suitable places within distributed cloud canters. Through quantum-
inspired probabilistic search, the algorithm becomes more adaptive and more efficient than traditional ones. 
Experiments, based on these simulations of the user request in the case of a geo-distributed cloud, have 
shown a significant reduction in latency up to 28 % and better load balancing compared to the traditional 
approaches. Altogether, these results highlight the prospects of quantum computing when it comes to 
improving the efficiency and responsiveness of cloud infrastructure. The primary strength of the QPSO is that 
it can be easily modified to facilitate the rapid response to the rapidly changing environment to allow access 
to the distributed cloud systems in an efficient way and with a low latency.

Keywords: Quantum Optimization; Data Placement; Distributed Cloud Computing; Latency Reduction; 
Quantum-Inspired Algorithms.

RESUMEN

En un entorno moderno donde la computación en la nube se distribuye globalmente, optimizar la ubicación 
de los datos de usuario en las diferentes ubicaciones de la nube garantizaría un acceso rápido y con mínima 
latencia. Los métodos tradicionales de heurística y aprendizaje automático suelen ser prohibitivamente 
costosos de escalar y presentan dificultades para adaptarse a un entorno de nube dinámico. Se requieren 
estrategias de optimización escalables y adaptativas cuando las demandas de los usuarios y los volúmenes de 
datos crecen rápidamente. Es muy probable que los métodos cuánticos, en particular los metaheurísticos, 
sean una alternativa que pueda reaccionar eficazmente a las condiciones dinámicas. El modelo propuesto 
se basará en la optimización por enjambre de partículas cuánticas al trasladar los datos de usuario a las
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ubicaciones más adecuadas dentro de los centros de nube distribuidos. Mediante la búsqueda probabilística 
de inspiración cuántica, el algoritmo se vuelve más adaptativo y eficiente que los tradicionales. Experimentos 
basados ​​en estas simulaciones de la solicitud del usuario en una nube geodistribuida han demostrado una 
reducción significativa de la latencia de hasta un 28 % y un mejor equilibrio de carga en comparación con los 
enfoques tradicionales. En conjunto, estos resultados resaltan las perspectivas de la computación cuántica 
para mejorar la eficiencia y la capacidad de respuesta de la infraestructura en la nube. La principal ventaja 
del QPSO es su fácil modificación para facilitar una respuesta rápida a un entorno en constante cambio y 
permitir el acceso a los sistemas de nube distribuida de forma eficiente y con baja latencia.

Palabras clave: Optimización Cuántica; Ubicación de Datos; Computación en la Nube Distribuida; Reducción 
de Latencia; Algoritmos de Inspiración Cuántica.

INTRODUCTION
Cloud-based applications are expanding at an unprecedented rate, propelled by digital transformation 

and the Internet of Things (IoT). Users now expect virtually immediate access to services that include video 
streaming, e-commerce, real-time analytics, and AI-driven systems. Such expectations intensify the necessity 
of minimizing latency and maximizing data accessibility in geo-distributed cloud environments.(1) To meet these 
needs, cloud service providers implement a data centre at more than one geographic location, which increases 
fault tolerance and expandability at the cost of new challenges. Where and how the user data should be stored 
to be accessible in the best way is still an intricate and dynamic issue. Traditional data placement and load-
balancing strategies, often based on heuristic algorithms or static rules, are inadequate for managing rapidly 
changing user demands, varying workloads, and heterogeneous network conditions.(2) The main drawback of 
these methods is that they do not process the combinatorial complexity of decisions on optimal placement. 
They are also challenged in striking the trade-offs between latency, bandwidth consumption, and load spread 
across the servers. With data requests arriving from diverse global regions, suboptimal placement can lead to 
delayed access, increased network congestion, and degraded quality of service (QoS).

In dealing with these challenges, the proposed paper has adopted a new strategy that uses quantum 
optimization techniques in allocating user data to the most ideal cloud data centres in an intelligent method. 
Quantum-inspired algorithms such as Quantum Particle Swarm Optimization (QPSO) offer promising solutions by 
exploiting quantum superposition, entanglement, and probabilistic search mechanisms to explore vast solution 
spaces efficiently.(3) Such methods offer a paradigm shift to optimization, dramatically speeding up convergence 
and enhancing the quality of placement decision-making in distributed problems.

This paper introduces a quantum-classical model that combines quantum optimization with the historical 
cloud resource management suites. The framework determines latency-optimal data placements by transmitting 
data-centre characteristics, user access patterns, and network characteristics dynamically and determining 
optimal data placements based on received results.(4) The major contributions of this work:

Quantum Particle Swarm Optimization (QPSO) is suggested as quantum-inspired optimization system 
to efficiently locate user data in the geo-distributed cloud system. A specific dataset that represents geo-
distributed pattern of user requests is created to measure the performance of the proposed framework. It 
should be mentioned that it is used on real-time data and validation is performed under dynamic and latency-
sensitive conditions. It designs a new architecture based on quantum-inspired optimization combined with 
distributed cloud environments to realize ideal load distribution and access latency. It has been demonstrated 
that it can scale to very large cloud environments and due to this fact, the question arises whether it is capable 
of supporting real-world workloads. By combining quantum computation with cloud resource management, 
the framework establishes the basis for smart and dynamic cloud infrastructures, which can scale to the 
requirements of the next-generation applications.

Placing data and services efficiently in geo-distributed cloud and edge environments, has been the subject of a 
decade of research. Earlier research has explored the various optimization paradigms such as classical heuristics, 
evolutionary computation, reinforcement learning, and most recently quantum-inspired metaheuristics. It 
discusses the most topical works in these dimensions, their problem statements, methodologies, strengths, and 
limitations, as well as the open gaps that support the aim of the proposed framework.

Quantum-inspired Particle Swarm Optimization (QPSO) has proved to be an effective metaheuristic to tackle 
complex, dynamic placement problems in which classical heuristics fail. An approach to the placement of IoT 
services in edge computing was proposed by Bey et al.(5), and it was shown that the algorithm can minimize 
the latency by using probabilistic search to solve the problem in highly dynamic settings. On the same note, 
Wang et al.(6) used QPSO to schedule the tasks in the device-edge-cloud cooperative networks and reported 
better adaptability to the fixed heuristics. Both papers are convinced of the better convergence properties and 
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robustness of QPSO in heterogeneous infrastructures, but are only restricted to the service/task placement, 
and have not investigated the large-scale geo-distributed cloud data placement.

Other variants generalize QPSO to the domain of specific situations. Jmal et al.(7) suggested Guided QPSO 
to the traveling repairman problem and emphasized that the algorithm is flexible to allow the inclusion 
of combinatorial optimization. Naik et al.(8) applied QPSO to the energy-saving offloading of tasks in edge 
computing as a tradeoff of performance with energy usage. A many-objective QPSO to place virtual machines 
was also presented by Balicki(9), allowing to coordinate various QoS metrics. Although these methods have their 
advantages, little research has been done to examine latency sensitive, large-scale distributed cloud data 
distribution.

Both algorithmic and heuristic frameworks have been used to deal with low-latency service placement. We 
have described a user-aware service placement model introduced by Centofanti et al.(10), in which edge service 
deployment is dynamically adjusted to minimize the response time, and a PageRank-inspired placement scheme 
proposed by Wang et al.(11), where regional value estimation balances cost and latency. Latency minimization is 
a key goal in both works, but is based on deterministic or graph-inspired heuristics, which can be hard to scale 
in very dynamic workloads.

Cui et al.(12) designed in containerized settings a deep reinforcement learning (DRL) container scheduling 
framework that could adapt to cluster upgrades with latency guarantees, but Li et al.(13) concentrated on low 
startup time and resource-efficient container scheduling. Jin et al.(14) also pursued this line but modelled the 
latency-reliability trade-off of industrial IoT container migration. These works highlight the computational 
complexity of edge/cloud scheduling but typically have high computational overhead because of model training 
or environment exploration.

Another direction has been resource-conscious placement. Abdullah et al.(15) suggested a resource-conscious 
task placement mechanism to improve query latency in an IoT-fog environment, and Elsedimy et al.(16) proposed 
an energy and QoS conscious VM placement scheme in cloud IaaS. Sharon et al.(17) addressed the problem 
of efficient energy offloading of data through data grouping that optimized system throughput within finite 
resources and also consolidated this research line by implementing QPSO to realize the effectiveness of joint 
resource allocation and offloading tasks. Even though these works manage to optimize the use of energy and 
resources, they focus mostly on fog/edge IoT environment or on the VM placement scenario.The special issues 
of geo-distributed data distribution, such as the need to minimize latency, efficiency of replication, and load 
balancing between many cloud locations, are not sufficiently studied.

Other approaches that have been studied extensively are classical heuristics and nature-inspired approaches. 
Chitra(18) devised an ideal placement and replication algorithm of SIoT systems between data locality and edge 
efficiency. The research by Li et al.(19) suggests the best placement policy based on capacity constraints and 
load balance in distributed clouds over geographical locations and provides useful information regarding the 
significance of replication and fairness. Najmusher et al.(20) also applied nature-based paradigms further and 
developed a distributed cloud data-placement strategy inspired by firefly algorithms. They are computationally 
efficient and typically not as adaptive as quantum-inspired or reinforcement learning paradigms, which prevents 
their use in highly turbulent, large-scale systems.

Table 1. Comparative analysis for different data placement methods

Author 
(Year)

Technique 
Category

Optimization 
Method

Environment / 
Scope

Key Metric 
Improved Reported Gain Principal 

Limitation

Bey et al.(5)  Quantum-inspired 
metaheuristics

QPSO IoT service 
placement in 

edge computing

Service 
latency, energy 

efficiency

Reduced 
latency by 

~22 %

Limited scalability 
to large-scale 

heterogeneous IoT

Wang et 
al.(6) 

Quantum 
optimization for 

scheduling

QPSO Device–Edge– 
Cloud task 
scheduling

Task completion 
time

19–24 % faster 
execution

Higher complexity 
under multi-user 

load

Jmal et 
al.(7) 

Combinatorial 
optimization

Guided QPSO Traveling  
Repairman 
Problem

Route efficiency Faster 
convergence

Problem-specific 
tuning required

Naik et 
al.(8)

Energy-aware 
edge optimization

QPSO Edge computing 
task offloading

Energy 
efficiency, 

resource use

21 % lower 
energy

Narrow scope, lacks 
latency analysis

Balicki (9) Cloud resource 
allocation

Many-objective 
QPSO

VM placement in 
smart cloud

Multi-objective 
efficiency

Better Pareto 
spread

Computational 
overhead high

Abdullah 
et al.(10) 

Resource-aware 
task placement

Heuristic Fog computing 
IoT query

Query latency ~18 % reduction No quantum 
techniques applied
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Wang et 
al.(11) 

Graph-based  
optimization

PageRank- 
inspired

Edge data 
placement

Latency, cost 
efficiency

Lower latency 
by ~25 %

Static assumptions 
in network model

Cui et 
al.(12)

Deep learning 
optimization

DRL Edge cluster 
container 
scheduling

Latency during 
upgrades

Significant 
improvement

Training overhead 
high

Li et al.(13) Online scheduling Lightweight  
scheduling + 

caching

Edge containers Startup delay, 
memory

Reduced 
startup delay

Trade-off between 
memory & 
throughput

Jin et al.(14) Reliability-latency 
trade-off

Migration  
optimization

Industrial edge Latency & 
reliability

Balanced 
trade-off

Migration overhead 
still notable

Centofanti 
et al.(15) 

User-aware 
service placement

Multi-factor 
heuristic

Edge computing Latency Noticeable 
latency gain

No energy-aware 
modeling

Elsedimy 
et al.(16) 

VM placement in 
IaaS

Energy & QoS-
aware

Cloud 
datacenters

Energy 
consumption, 

QoS

Improved QoS, 
energy balance

Complexity rises 
with scale

Sharon et 
al.(17) 

Data offloading Grouping-
based heuristic

IoT edge Energy 
efficiency

Lower energy 
use

Limited real-time 
adaptability

Chitra(18) Data replication & 
placement

Hybrid 
heuristic

SIoT with Edge Data availability Higher 
availability

Lacks quantum/AI 
integration

Li et al.(19) Data placement 
strategy

Heuristic with 
load balance

Geo-distributed 
cloud

Load balancing, 
capacity

Balanced usage Slower for dynamic 
changes

Najmusher 
et al.(20)

Nature-inspired 
optimization

Firefly 
Algorithm

Distributed cloud Data 
placement, 

latency

Improved 
placement 

quality

Convergence slower 
than QPSO

The review of the literature table 1 shows that, although quantum-inspired and heuristic-based algorithms 
realize latency, energy, and cost improvement, most methods are limited to the environment that is either 
stationary or semi-stationary. Existing solutions cannot cope with real-time workload bursts, multi-purpose 
trade-offs and large-scale distributed deployments in combination. In addition, not many approaches use 
real-time data to validate their results, thus restricting their practical use. Such gaps drive the systematic 
development of a new framework that will combine quantum-inspired optimization with dynamic real-time 
data placement strategies to maintain scalability, flexibility, and high-performance in distributed cloud-edge-
IoT infrastructures.

METHOD

 
Figure 1. System Architecture Diagram for Quantum Optimized Data Allocation
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In this work, it is also introduced that the quantum-motivated optimization algorithms are matched to use 
geo-distributed cloud data layout to place data in data centres in an optimum way. Its key task is to reduce the 
latency and maximize the efficiency of data access through quantum-enhanced decision-making abilities during 
dynamic workloads of concurrent users.

Figure 1 illustrates the scalable and adaptability to process the data of users on the heterogeneous cloud 
infrastructures. The Dynamic Network Model is central to the design since it is a centralized controller that 
also provides a medium of communication between all the elements in the system. User requests, issued 
from dispersed locations and characterized by variable latency, bandwidth, and data quality of service (QoS) 
requirements, are routed through this model as they arise. The Dynamic Network Model makes constant decision 
adjustments based on the current situation in the network.

Monitoring Agents service monitors gather and inject data into the dynamic model on bandwidth utilization, 
latency, jitter, and data traffic patterns. This loop of live monitoring makes the system implement inter-node 
data routing according to the up-to-date network and data centre status. Simultaneously, the Optimisation 
Engine, powered by Quantum Particle Swarm Optimisation (QPSO), operates in concert with the network model. 
QPSO applies quantum mechanics principles to combine the possibility of covering the whole search space that 
is limited by traditional optimization methods. It explores all possible data-user-data-centres configurations 
and picks the one that offers the minimum latency with the balanced workload of data centres.

Data Centres (DC₁ to DCₙ) constitute the distributed storage and compute nodes of the cloud infrastructure. 
Each DC reports the available bandwidth, storage, and latency to the dynamic model, which is central in deciding 
the viability and the cost of provisioning user data at a site. Variations in load capacities and performance charges 
among centres are considered, whereby the system takes care that none of the data centres is overloaded and 
at the same time user proximity conditions and performance assurances are maintained.

The QPSO engine communicates with a network model, which provides performance figures and information 
about the allocation, and then makes the allocation decision and feeds that back to the dynamic model.(21) 
These decisions outline the methods through which replication or movement of user data is to be achieved, 
exploiting the placement of data within the whole enterprise infrastructure as an optimization. Figure 1 shows 
the feedback nature of the looped control flow and decision-making sequence between the dynamic network 
model and QPSO engine, further highlighting the feedback base and iterative nature of the system.

In the further phases, decisions lead to the movement of data to relevant data centres. The current 
framework is designed such that it works continuously, constantly dynamically adapting the placement of data 
based on changes in user behaviour, network health, and the availability of hardware. This architecture, in 
turn, enhances the efficiency of data distribution, reduces access latency, and builds fault tolerance, which is 
considered to be essential to operations critical to the financial, healthcare, and IoT industries.

System Model
The quantum-optimized data placement framework is placed in a setting where one can consider some 

aspects, including the cloud infrastructure, user profiles, monitoring, dynamic network topology, and data 
placement. Altogether, these aspects define the decision space and constraints that were considered in latency-
aware optimization.

Cloud Infrastructure
We consider a globally distributed cloud containing a finite set of data centres:

𝐷𝐷 = {𝐷𝐷𝐶𝐶1,𝐷𝐷𝐶𝐶2,…..,𝐷𝐷𝐶𝐶|𝐷𝐷|}        (1) 
 
𝑈𝑈 = {𝑢𝑢1, 𝑢𝑢2, . . . . , 𝑢𝑢|𝑢𝑢|}          (2) 
 

𝐵𝐵𝑖̂𝑖(𝑡𝑡) = 𝐵𝐵𝑖𝑖(𝑡𝑡)
𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝐵𝐵𝑘𝑘(𝑡𝑡) , 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝐿𝐿𝑖𝑖𝑖𝑖(𝑡𝑡)

𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝐿𝐿𝑘𝑘𝑘𝑘(𝑡𝑡) , 𝑆̂𝑆𝑖𝑖(𝑡𝑡) = 𝑆𝑆𝑖𝑖(𝑡𝑡)
𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝑆𝑆𝑘𝑘(𝑡𝑡)         (3) 

 
𝐹𝐹(𝑡𝑡) = [𝐵𝐵𝑖̂𝑖(𝑡𝑡), 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡), 𝑆̂𝑆𝑖𝑖(𝑡𝑡)]         (4) 
 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑈𝑈𝑗𝑗 → 𝐷𝐷𝐶𝐶𝑖𝑖) = 𝑤𝑤1 ⋅ 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡) + 𝑤𝑤2 ⋅ (1 − 𝐵𝐵𝑖̂𝑖(𝑡𝑡)) + 𝑤𝑤3 ⋅ (1 − 𝑆̂𝑆𝑖𝑖(𝑡𝑡))     (5) 
 
𝐺𝐺(𝑡𝑡) = (𝑉𝑉, 𝐸𝐸(𝑡𝑡)), 𝑉𝑉 = 𝑈𝑈 ∪ 𝐷𝐷. )         (6) 
 
𝜔𝜔𝑢𝑢𝑢𝑢(𝑡𝑡) = 𝑎𝑎ℓ𝑢𝑢𝑢𝑢(𝑡𝑡) + 𝛽𝛽 [1/𝛽𝛽𝑢𝑢𝑢𝑢(𝑡𝑡)] + 𝛾𝛾𝜌𝜌𝑢𝑢𝑢𝑢(𝑡𝑡)    (7) 
 

𝐿𝐿𝑖𝑖(𝑡𝑡) = 𝛴𝛴
𝑗𝑗

𝑥𝑥𝑖𝑖𝑖𝑖 (𝐿𝐿𝑗𝑗
0 + 𝑤𝑤𝑢𝑢𝑖𝑖𝐷𝐷𝐶𝐶𝑗𝑗(𝑡𝑡))         (8) 

 
𝛴𝛴
𝑖𝑖

𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑆𝑆𝑖𝑖(𝑡𝑡), 𝛴𝛴
𝑖𝑖

𝑓𝑓𝑖𝑖(𝑡𝑡)𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝐵𝐵𝑗𝑗(𝑡𝑡)       (9) 

 
𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚(𝛼𝛼 ⋅ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴) + 𝛾𝛾 ⋅ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐴𝐴))               (10) 
 

𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡 + 1) = 𝑝𝑝𝑖𝑖,𝑑𝑑 ± 𝛽𝛽 ⋅∣ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑑𝑑 − 𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡) ∣⋅ 1𝑛𝑛 (1
𝑛𝑛)                      (11) 

 

𝐿𝐿 = 𝑁𝑁1𝑖𝑖 = 1
𝑁𝑁 ∑𝐿𝐿𝑖𝑖, 𝐴𝐴(𝑖𝑖)              (12) 

 

𝐴𝐴𝐴𝐴 = 1
𝑁𝑁 ∑ (𝑁𝑁

𝑖𝑖=1 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖 + 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖)   (13) 

 

𝐿𝐿𝐿𝐿𝐿𝐿 = 1
𝑀𝑀 ∑ (𝑀𝑀

𝑗𝑗=1 𝐿𝐿𝑗𝑗 − 𝐿̅𝐿)2          (14) 

 
𝐶𝐶𝐶𝐶 = 𝑡𝑡∗                     (15) 
 
𝐸𝐸𝐸𝐸 = 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠     (16) 
 

𝑆𝑆 = 𝛥𝛥Metric
𝛥𝛥𝛥𝛥+𝛥𝛥𝛥𝛥                               (17) 

 

Each DCj​ is characterized by four resource vectors that are objects of change with time t:
1.	 Storage capacity Sj(t): available gigabytes for housing user objects or replicas.
2.	 Outbound bandwidth Bj(t): the maximum sustained throughput (in Mbps) that the centre can 

deliver to the wide area network without SLA penalties.
3.	 Inbound bandwidth Bj

in(t)Ingress capacity, relevant during replica creation or migration.
4.	 Service latency baseline Lj

0 : the sum of queuing, processing, and local network delay internal to 
the facility, treated as constant over short horizons.

These values are collected by resource monitoring agents and reported by them to the optimization engine 
at Δt seconds intervals. As in the case of a new replica being created, we have the corresponding capabilities 
decrease in real time, thus maintaining consistency between the decision model and the physical environment 
of the system .
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User Profiles
The Active workload is a set of users or an application tenant. 𝐷𝐷 = {𝐷𝐷𝐶𝐶1,𝐷𝐷𝐶𝐶2,…..,𝐷𝐷𝐶𝐶|𝐷𝐷|}        (1) 

 
𝑈𝑈 = {𝑢𝑢1, 𝑢𝑢2, . . . . , 𝑢𝑢|𝑢𝑢|}          (2) 
 

𝐵𝐵𝑖̂𝑖(𝑡𝑡) = 𝐵𝐵𝑖𝑖(𝑡𝑡)
𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝐵𝐵𝑘𝑘(𝑡𝑡) , 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝐿𝐿𝑖𝑖𝑖𝑖(𝑡𝑡)

𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝐿𝐿𝑘𝑘𝑘𝑘(𝑡𝑡) , 𝑆̂𝑆𝑖𝑖(𝑡𝑡) = 𝑆𝑆𝑖𝑖(𝑡𝑡)
𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝑆𝑆𝑘𝑘(𝑡𝑡)         (3) 

 
𝐹𝐹(𝑡𝑡) = [𝐵𝐵𝑖̂𝑖(𝑡𝑡), 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡), 𝑆̂𝑆𝑖𝑖(𝑡𝑡)]         (4) 
 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑈𝑈𝑗𝑗 → 𝐷𝐷𝐶𝐶𝑖𝑖) = 𝑤𝑤1 ⋅ 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡) + 𝑤𝑤2 ⋅ (1 − 𝐵𝐵𝑖̂𝑖(𝑡𝑡)) + 𝑤𝑤3 ⋅ (1 − 𝑆̂𝑆𝑖𝑖(𝑡𝑡))     (5) 
 
𝐺𝐺(𝑡𝑡) = (𝑉𝑉, 𝐸𝐸(𝑡𝑡)), 𝑉𝑉 = 𝑈𝑈 ∪ 𝐷𝐷. )         (6) 
 
𝜔𝜔𝑢𝑢𝑢𝑢(𝑡𝑡) = 𝑎𝑎ℓ𝑢𝑢𝑢𝑢(𝑡𝑡) + 𝛽𝛽 [1/𝛽𝛽𝑢𝑢𝑢𝑢(𝑡𝑡)] + 𝛾𝛾𝜌𝜌𝑢𝑢𝑢𝑢(𝑡𝑡)    (7) 
 

𝐿𝐿𝑖𝑖(𝑡𝑡) = 𝛴𝛴
𝑗𝑗

𝑥𝑥𝑖𝑖𝑖𝑖 (𝐿𝐿𝑗𝑗
0 + 𝑤𝑤𝑢𝑢𝑖𝑖𝐷𝐷𝐶𝐶𝑗𝑗(𝑡𝑡))         (8) 

 
𝛴𝛴
𝑖𝑖

𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑆𝑆𝑖𝑖(𝑡𝑡), 𝛴𝛴
𝑖𝑖

𝑓𝑓𝑖𝑖(𝑡𝑡)𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝐵𝐵𝑗𝑗(𝑡𝑡)       (9) 

 
𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚(𝛼𝛼 ⋅ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴) + 𝛾𝛾 ⋅ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐴𝐴))               (10) 
 

𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡 + 1) = 𝑝𝑝𝑖𝑖,𝑑𝑑 ± 𝛽𝛽 ⋅∣ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑑𝑑 − 𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡) ∣⋅ 1𝑛𝑛 (1
𝑛𝑛)                      (11) 

 

𝐿𝐿 = 𝑁𝑁1𝑖𝑖 = 1
𝑁𝑁 ∑𝐿𝐿𝑖𝑖, 𝐴𝐴(𝑖𝑖)              (12) 

 

𝐴𝐴𝐴𝐴 = 1
𝑁𝑁 ∑ (𝑁𝑁

𝑖𝑖=1 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖 + 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖)   (13) 

 

𝐿𝐿𝐿𝐿𝐿𝐿 = 1
𝑀𝑀 ∑ (𝑀𝑀

𝑗𝑗=1 𝐿𝐿𝑗𝑗 − 𝐿̅𝐿)2          (14) 

 
𝐶𝐶𝐶𝐶 = 𝑡𝑡∗                     (15) 
 
𝐸𝐸𝐸𝐸 = 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠     (16) 
 

𝑆𝑆 = 𝛥𝛥Metric
𝛥𝛥𝛥𝛥+𝛥𝛥𝛥𝛥                               (17) 

 

A profile for each user ui contains:
•	 Geolocation ℓi=(lat,lng), converted to networkdistance estimates through real-time latency probes.
•	 Access frequency fi(t)(req · s−1): a slidingwindow average of read/write operations directed at the 

user’s primary dataset.
•	 Data size si​ (GB) and mutability rate mi​ (updates · s−1), influencing replication overhead.
•	 Servicelevel objective Lmax

i The upper bound on round-trip delay acceptable to the application; 
violations result in penalty costs or SLA breaches.

In the framework, the dataset of each user is abstracted as a single unit that cannot be further broken, and 
extension to an object of multiple shards is achieved by creating an entry for each shard against a profile.

Monitoring and Feedback Module
This module continuously gathers real-time network metrics, bandwidth Bi(t), latency Lij(t), and available 

storage Si​(t) from each data centre DCi​ at time t. The obtained data are standardized to make the inputs 
consistent during the optimization process in eqs (3):

𝐷𝐷 = {𝐷𝐷𝐶𝐶1,𝐷𝐷𝐶𝐶2,…..,𝐷𝐷𝐶𝐶|𝐷𝐷|}        (1) 
 
𝑈𝑈 = {𝑢𝑢1, 𝑢𝑢2, . . . . , 𝑢𝑢|𝑢𝑢|}          (2) 
 

𝐵𝐵𝑖̂𝑖(𝑡𝑡) = 𝐵𝐵𝑖𝑖(𝑡𝑡)
𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝐵𝐵𝑘𝑘(𝑡𝑡) , 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝐿𝐿𝑖𝑖𝑖𝑖(𝑡𝑡)

𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝐿𝐿𝑘𝑘𝑘𝑘(𝑡𝑡) , 𝑆̂𝑆𝑖𝑖(𝑡𝑡) = 𝑆𝑆𝑖𝑖(𝑡𝑡)
𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝑆𝑆𝑘𝑘(𝑡𝑡)         (3) 

 
𝐹𝐹(𝑡𝑡) = [𝐵𝐵𝑖̂𝑖(𝑡𝑡), 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡), 𝑆̂𝑆𝑖𝑖(𝑡𝑡)]         (4) 
 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑈𝑈𝑗𝑗 → 𝐷𝐷𝐶𝐶𝑖𝑖) = 𝑤𝑤1 ⋅ 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡) + 𝑤𝑤2 ⋅ (1 − 𝐵𝐵𝑖̂𝑖(𝑡𝑡)) + 𝑤𝑤3 ⋅ (1 − 𝑆̂𝑆𝑖𝑖(𝑡𝑡))     (5) 
 
𝐺𝐺(𝑡𝑡) = (𝑉𝑉, 𝐸𝐸(𝑡𝑡)), 𝑉𝑉 = 𝑈𝑈 ∪ 𝐷𝐷. )         (6) 
 
𝜔𝜔𝑢𝑢𝑢𝑢(𝑡𝑡) = 𝑎𝑎ℓ𝑢𝑢𝑢𝑢(𝑡𝑡) + 𝛽𝛽 [1/𝛽𝛽𝑢𝑢𝑢𝑢(𝑡𝑡)] + 𝛾𝛾𝜌𝜌𝑢𝑢𝑢𝑢(𝑡𝑡)    (7) 
 

𝐿𝐿𝑖𝑖(𝑡𝑡) = 𝛴𝛴
𝑗𝑗

𝑥𝑥𝑖𝑖𝑖𝑖 (𝐿𝐿𝑗𝑗
0 + 𝑤𝑤𝑢𝑢𝑖𝑖𝐷𝐷𝐶𝐶𝑗𝑗(𝑡𝑡))         (8) 

 
𝛴𝛴
𝑖𝑖

𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑆𝑆𝑖𝑖(𝑡𝑡), 𝛴𝛴
𝑖𝑖

𝑓𝑓𝑖𝑖(𝑡𝑡)𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝐵𝐵𝑗𝑗(𝑡𝑡)       (9) 

 
𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚(𝛼𝛼 ⋅ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴) + 𝛾𝛾 ⋅ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐴𝐴))               (10) 
 

𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡 + 1) = 𝑝𝑝𝑖𝑖,𝑑𝑑 ± 𝛽𝛽 ⋅∣ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑑𝑑 − 𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡) ∣⋅ 1𝑛𝑛 (1
𝑛𝑛)                      (11) 

 

𝐿𝐿 = 𝑁𝑁1𝑖𝑖 = 1
𝑁𝑁 ∑𝐿𝐿𝑖𝑖, 𝐴𝐴(𝑖𝑖)              (12) 

 

𝐴𝐴𝐴𝐴 = 1
𝑁𝑁 ∑ (𝑁𝑁

𝑖𝑖=1 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖 + 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖)   (13) 

 

𝐿𝐿𝐿𝐿𝐿𝐿 = 1
𝑀𝑀 ∑ (𝑀𝑀

𝑗𝑗=1 𝐿𝐿𝑗𝑗 − 𝐿̅𝐿)2          (14) 

 
𝐶𝐶𝐶𝐶 = 𝑡𝑡∗                     (15) 
 
𝐸𝐸𝐸𝐸 = 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠     (16) 
 

𝑆𝑆 = 𝛥𝛥Metric
𝛥𝛥𝛥𝛥+𝛥𝛥𝛥𝛥                               (17) 

 

These metrics form the feedback vector:

𝐷𝐷 = {𝐷𝐷𝐶𝐶1,𝐷𝐷𝐶𝐶2,…..,𝐷𝐷𝐶𝐶|𝐷𝐷|}        (1) 
 
𝑈𝑈 = {𝑢𝑢1, 𝑢𝑢2, . . . . , 𝑢𝑢|𝑢𝑢|}          (2) 
 

𝐵𝐵𝑖̂𝑖(𝑡𝑡) = 𝐵𝐵𝑖𝑖(𝑡𝑡)
𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝐵𝐵𝑘𝑘(𝑡𝑡) , 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝐿𝐿𝑖𝑖𝑖𝑖(𝑡𝑡)

𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝐿𝐿𝑘𝑘𝑘𝑘(𝑡𝑡) , 𝑆̂𝑆𝑖𝑖(𝑡𝑡) = 𝑆𝑆𝑖𝑖(𝑡𝑡)
𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝑆𝑆𝑘𝑘(𝑡𝑡)         (3) 

 
𝐹𝐹(𝑡𝑡) = [𝐵𝐵𝑖̂𝑖(𝑡𝑡), 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡), 𝑆̂𝑆𝑖𝑖(𝑡𝑡)]         (4) 
 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑈𝑈𝑗𝑗 → 𝐷𝐷𝐶𝐶𝑖𝑖) = 𝑤𝑤1 ⋅ 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡) + 𝑤𝑤2 ⋅ (1 − 𝐵𝐵𝑖̂𝑖(𝑡𝑡)) + 𝑤𝑤3 ⋅ (1 − 𝑆̂𝑆𝑖𝑖(𝑡𝑡))     (5) 
 
𝐺𝐺(𝑡𝑡) = (𝑉𝑉, 𝐸𝐸(𝑡𝑡)), 𝑉𝑉 = 𝑈𝑈 ∪ 𝐷𝐷. )         (6) 
 
𝜔𝜔𝑢𝑢𝑢𝑢(𝑡𝑡) = 𝑎𝑎ℓ𝑢𝑢𝑢𝑢(𝑡𝑡) + 𝛽𝛽 [1/𝛽𝛽𝑢𝑢𝑢𝑢(𝑡𝑡)] + 𝛾𝛾𝜌𝜌𝑢𝑢𝑢𝑢(𝑡𝑡)    (7) 
 

𝐿𝐿𝑖𝑖(𝑡𝑡) = 𝛴𝛴
𝑗𝑗

𝑥𝑥𝑖𝑖𝑖𝑖 (𝐿𝐿𝑗𝑗
0 + 𝑤𝑤𝑢𝑢𝑖𝑖𝐷𝐷𝐶𝐶𝑗𝑗(𝑡𝑡))         (8) 

 
𝛴𝛴
𝑖𝑖

𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑆𝑆𝑖𝑖(𝑡𝑡), 𝛴𝛴
𝑖𝑖

𝑓𝑓𝑖𝑖(𝑡𝑡)𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝐵𝐵𝑗𝑗(𝑡𝑡)       (9) 

 
𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚(𝛼𝛼 ⋅ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴) + 𝛾𝛾 ⋅ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐴𝐴))               (10) 
 

𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡 + 1) = 𝑝𝑝𝑖𝑖,𝑑𝑑 ± 𝛽𝛽 ⋅∣ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑑𝑑 − 𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡) ∣⋅ 1𝑛𝑛 (1
𝑛𝑛)                      (11) 

 

𝐿𝐿 = 𝑁𝑁1𝑖𝑖 = 1
𝑁𝑁 ∑𝐿𝐿𝑖𝑖, 𝐴𝐴(𝑖𝑖)              (12) 

 

𝐴𝐴𝐴𝐴 = 1
𝑁𝑁 ∑ (𝑁𝑁

𝑖𝑖=1 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖 + 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖)   (13) 

 

𝐿𝐿𝐿𝐿𝐿𝐿 = 1
𝑀𝑀 ∑ (𝑀𝑀

𝑗𝑗=1 𝐿𝐿𝑗𝑗 − 𝐿̅𝐿)2          (14) 

 
𝐶𝐶𝐶𝐶 = 𝑡𝑡∗                     (15) 
 
𝐸𝐸𝐸𝐸 = 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠     (16) 
 

𝑆𝑆 = 𝛥𝛥Metric
𝛥𝛥𝛥𝛥+𝛥𝛥𝛥𝛥                               (17) 

 

Which is sent to the QPSO engine to evaluate fitness:

𝐷𝐷 = {𝐷𝐷𝐶𝐶1,𝐷𝐷𝐶𝐶2,…..,𝐷𝐷𝐶𝐶|𝐷𝐷|}        (1) 
 
𝑈𝑈 = {𝑢𝑢1, 𝑢𝑢2, . . . . , 𝑢𝑢|𝑢𝑢|}          (2) 
 

𝐵𝐵𝑖̂𝑖(𝑡𝑡) = 𝐵𝐵𝑖𝑖(𝑡𝑡)
𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝐵𝐵𝑘𝑘(𝑡𝑡) , 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝐿𝐿𝑖𝑖𝑖𝑖(𝑡𝑡)

𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝐿𝐿𝑘𝑘𝑘𝑘(𝑡𝑡) , 𝑆̂𝑆𝑖𝑖(𝑡𝑡) = 𝑆𝑆𝑖𝑖(𝑡𝑡)
𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝑆𝑆𝑘𝑘(𝑡𝑡)         (3) 

 
𝐹𝐹(𝑡𝑡) = [𝐵𝐵𝑖̂𝑖(𝑡𝑡), 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡), 𝑆̂𝑆𝑖𝑖(𝑡𝑡)]         (4) 
 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑈𝑈𝑗𝑗 → 𝐷𝐷𝐶𝐶𝑖𝑖) = 𝑤𝑤1 ⋅ 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡) + 𝑤𝑤2 ⋅ (1 − 𝐵𝐵𝑖̂𝑖(𝑡𝑡)) + 𝑤𝑤3 ⋅ (1 − 𝑆̂𝑆𝑖𝑖(𝑡𝑡))     (5) 
 
𝐺𝐺(𝑡𝑡) = (𝑉𝑉, 𝐸𝐸(𝑡𝑡)), 𝑉𝑉 = 𝑈𝑈 ∪ 𝐷𝐷. )         (6) 
 
𝜔𝜔𝑢𝑢𝑢𝑢(𝑡𝑡) = 𝑎𝑎ℓ𝑢𝑢𝑢𝑢(𝑡𝑡) + 𝛽𝛽 [1/𝛽𝛽𝑢𝑢𝑢𝑢(𝑡𝑡)] + 𝛾𝛾𝜌𝜌𝑢𝑢𝑢𝑢(𝑡𝑡)    (7) 
 

𝐿𝐿𝑖𝑖(𝑡𝑡) = 𝛴𝛴
𝑗𝑗

𝑥𝑥𝑖𝑖𝑖𝑖 (𝐿𝐿𝑗𝑗
0 + 𝑤𝑤𝑢𝑢𝑖𝑖𝐷𝐷𝐶𝐶𝑗𝑗(𝑡𝑡))         (8) 

 
𝛴𝛴
𝑖𝑖

𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑆𝑆𝑖𝑖(𝑡𝑡), 𝛴𝛴
𝑖𝑖

𝑓𝑓𝑖𝑖(𝑡𝑡)𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝐵𝐵𝑗𝑗(𝑡𝑡)       (9) 

 
𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚(𝛼𝛼 ⋅ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴) + 𝛾𝛾 ⋅ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐴𝐴))               (10) 
 

𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡 + 1) = 𝑝𝑝𝑖𝑖,𝑑𝑑 ± 𝛽𝛽 ⋅∣ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑑𝑑 − 𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡) ∣⋅ 1𝑛𝑛 (1
𝑛𝑛)                      (11) 

 

𝐿𝐿 = 𝑁𝑁1𝑖𝑖 = 1
𝑁𝑁 ∑𝐿𝐿𝑖𝑖, 𝐴𝐴(𝑖𝑖)              (12) 

 

𝐴𝐴𝐴𝐴 = 1
𝑁𝑁 ∑ (𝑁𝑁

𝑖𝑖=1 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖 + 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖)   (13) 

 

𝐿𝐿𝐿𝐿𝐿𝐿 = 1
𝑀𝑀 ∑ (𝑀𝑀

𝑗𝑗=1 𝐿𝐿𝑗𝑗 − 𝐿̅𝐿)2          (14) 

 
𝐶𝐶𝐶𝐶 = 𝑡𝑡∗                     (15) 
 
𝐸𝐸𝐸𝐸 = 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠     (16) 
 

𝑆𝑆 = 𝛥𝛥Metric
𝛥𝛥𝛥𝛥+𝛥𝛥𝛥𝛥                               (17) 

 

The obtained data are standardized to make the inputs consistent during the optimization process.

Dynamic Network Topology
A directed graph that is time-varying represents wide-area connectivity among the users and data centres 

and links among data centres.

𝐷𝐷 = {𝐷𝐷𝐶𝐶1,𝐷𝐷𝐶𝐶2,…..,𝐷𝐷𝐶𝐶|𝐷𝐷|}        (1) 
 
𝑈𝑈 = {𝑢𝑢1, 𝑢𝑢2, . . . . , 𝑢𝑢|𝑢𝑢|}          (2) 
 

𝐵𝐵𝑖̂𝑖(𝑡𝑡) = 𝐵𝐵𝑖𝑖(𝑡𝑡)
𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝐵𝐵𝑘𝑘(𝑡𝑡) , 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝐿𝐿𝑖𝑖𝑖𝑖(𝑡𝑡)

𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝐿𝐿𝑘𝑘𝑘𝑘(𝑡𝑡) , 𝑆̂𝑆𝑖𝑖(𝑡𝑡) = 𝑆𝑆𝑖𝑖(𝑡𝑡)
𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝑆𝑆𝑘𝑘(𝑡𝑡)         (3) 

 
𝐹𝐹(𝑡𝑡) = [𝐵𝐵𝑖̂𝑖(𝑡𝑡), 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡), 𝑆̂𝑆𝑖𝑖(𝑡𝑡)]         (4) 
 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑈𝑈𝑗𝑗 → 𝐷𝐷𝐶𝐶𝑖𝑖) = 𝑤𝑤1 ⋅ 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡) + 𝑤𝑤2 ⋅ (1 − 𝐵𝐵𝑖̂𝑖(𝑡𝑡)) + 𝑤𝑤3 ⋅ (1 − 𝑆̂𝑆𝑖𝑖(𝑡𝑡))     (5) 
 
𝐺𝐺(𝑡𝑡) = (𝑉𝑉, 𝐸𝐸(𝑡𝑡)), 𝑉𝑉 = 𝑈𝑈 ∪ 𝐷𝐷. )         (6) 
 
𝜔𝜔𝑢𝑢𝑢𝑢(𝑡𝑡) = 𝑎𝑎ℓ𝑢𝑢𝑢𝑢(𝑡𝑡) + 𝛽𝛽 [1/𝛽𝛽𝑢𝑢𝑢𝑢(𝑡𝑡)] + 𝛾𝛾𝜌𝜌𝑢𝑢𝑢𝑢(𝑡𝑡)    (7) 
 

𝐿𝐿𝑖𝑖(𝑡𝑡) = 𝛴𝛴
𝑗𝑗

𝑥𝑥𝑖𝑖𝑖𝑖 (𝐿𝐿𝑗𝑗
0 + 𝑤𝑤𝑢𝑢𝑖𝑖𝐷𝐷𝐶𝐶𝑗𝑗(𝑡𝑡))         (8) 

 
𝛴𝛴
𝑖𝑖

𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑆𝑆𝑖𝑖(𝑡𝑡), 𝛴𝛴
𝑖𝑖

𝑓𝑓𝑖𝑖(𝑡𝑡)𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝐵𝐵𝑗𝑗(𝑡𝑡)       (9) 

 
𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚(𝛼𝛼 ⋅ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴) + 𝛾𝛾 ⋅ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐴𝐴))               (10) 
 

𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡 + 1) = 𝑝𝑝𝑖𝑖,𝑑𝑑 ± 𝛽𝛽 ⋅∣ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑑𝑑 − 𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡) ∣⋅ 1𝑛𝑛 (1
𝑛𝑛)                      (11) 

 

𝐿𝐿 = 𝑁𝑁1𝑖𝑖 = 1
𝑁𝑁 ∑𝐿𝐿𝑖𝑖, 𝐴𝐴(𝑖𝑖)              (12) 

 

𝐴𝐴𝐴𝐴 = 1
𝑁𝑁 ∑ (𝑁𝑁

𝑖𝑖=1 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖 + 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖)   (13) 

 

𝐿𝐿𝐿𝐿𝐿𝐿 = 1
𝑀𝑀 ∑ (𝑀𝑀

𝑗𝑗=1 𝐿𝐿𝑗𝑗 − 𝐿̅𝐿)2          (14) 

 
𝐶𝐶𝐶𝐶 = 𝑡𝑡∗                     (15) 
 
𝐸𝐸𝐸𝐸 = 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠     (16) 
 

𝑆𝑆 = 𝛥𝛥Metric
𝛥𝛥𝛥𝛥+𝛥𝛥𝛥𝛥                               (17) 

 

For every edge ((v,w)∈E(t) we maintain a composite weight:

𝐷𝐷 = {𝐷𝐷𝐶𝐶1,𝐷𝐷𝐶𝐶2,…..,𝐷𝐷𝐶𝐶|𝐷𝐷|}        (1) 
 
𝑈𝑈 = {𝑢𝑢1, 𝑢𝑢2, . . . . , 𝑢𝑢|𝑢𝑢|}          (2) 
 

𝐵𝐵𝑖̂𝑖(𝑡𝑡) = 𝐵𝐵𝑖𝑖(𝑡𝑡)
𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝐵𝐵𝑘𝑘(𝑡𝑡) , 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝐿𝐿𝑖𝑖𝑖𝑖(𝑡𝑡)

𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝐿𝐿𝑘𝑘𝑘𝑘(𝑡𝑡) , 𝑆̂𝑆𝑖𝑖(𝑡𝑡) = 𝑆𝑆𝑖𝑖(𝑡𝑡)
𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝑆𝑆𝑘𝑘(𝑡𝑡)         (3) 

 
𝐹𝐹(𝑡𝑡) = [𝐵𝐵𝑖̂𝑖(𝑡𝑡), 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡), 𝑆̂𝑆𝑖𝑖(𝑡𝑡)]         (4) 
 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑈𝑈𝑗𝑗 → 𝐷𝐷𝐶𝐶𝑖𝑖) = 𝑤𝑤1 ⋅ 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡) + 𝑤𝑤2 ⋅ (1 − 𝐵𝐵𝑖̂𝑖(𝑡𝑡)) + 𝑤𝑤3 ⋅ (1 − 𝑆̂𝑆𝑖𝑖(𝑡𝑡))     (5) 
 
𝐺𝐺(𝑡𝑡) = (𝑉𝑉, 𝐸𝐸(𝑡𝑡)), 𝑉𝑉 = 𝑈𝑈 ∪ 𝐷𝐷. )         (6) 
 
𝜔𝜔𝑢𝑢𝑢𝑢(𝑡𝑡) = 𝑎𝑎ℓ𝑢𝑢𝑢𝑢(𝑡𝑡) + 𝛽𝛽 [1/𝛽𝛽𝑢𝑢𝑢𝑢(𝑡𝑡)] + 𝛾𝛾𝜌𝜌𝑢𝑢𝑢𝑢(𝑡𝑡)    (7) 
 

𝐿𝐿𝑖𝑖(𝑡𝑡) = 𝛴𝛴
𝑗𝑗

𝑥𝑥𝑖𝑖𝑖𝑖 (𝐿𝐿𝑗𝑗
0 + 𝑤𝑤𝑢𝑢𝑖𝑖𝐷𝐷𝐶𝐶𝑗𝑗(𝑡𝑡))         (8) 

 
𝛴𝛴
𝑖𝑖

𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑆𝑆𝑖𝑖(𝑡𝑡), 𝛴𝛴
𝑖𝑖

𝑓𝑓𝑖𝑖(𝑡𝑡)𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝐵𝐵𝑗𝑗(𝑡𝑡)       (9) 

 
𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚(𝛼𝛼 ⋅ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴) + 𝛾𝛾 ⋅ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐴𝐴))               (10) 
 

𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡 + 1) = 𝑝𝑝𝑖𝑖,𝑑𝑑 ± 𝛽𝛽 ⋅∣ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑑𝑑 − 𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡) ∣⋅ 1𝑛𝑛 (1
𝑛𝑛)                      (11) 

 

𝐿𝐿 = 𝑁𝑁1𝑖𝑖 = 1
𝑁𝑁 ∑𝐿𝐿𝑖𝑖, 𝐴𝐴(𝑖𝑖)              (12) 

 

𝐴𝐴𝐴𝐴 = 1
𝑁𝑁 ∑ (𝑁𝑁

𝑖𝑖=1 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖 + 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖)   (13) 

 

𝐿𝐿𝐿𝐿𝐿𝐿 = 1
𝑀𝑀 ∑ (𝑀𝑀

𝑗𝑗=1 𝐿𝐿𝑗𝑗 − 𝐿̅𝐿)2          (14) 

 
𝐶𝐶𝐶𝐶 = 𝑡𝑡∗                     (15) 
 
𝐸𝐸𝐸𝐸 = 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠     (16) 
 

𝑆𝑆 = 𝛥𝛥Metric
𝛥𝛥𝛥𝛥+𝛥𝛥𝛥𝛥                               (17) 

 

Where:
•	 luw (t) is one way propagation + queuing delay,
•	 βuw (t) is residual bandwidth.
•	 ρuw (t) is the recent packet loss probability.

Equations (6 and 7) Operators demonstrate preference between latency, throughput, and reliability by 
encoding their relative values in coefficients refer table 2 in  α+β+γ=1, and active probing and passive flows 
continuously update these weights by adding them to or subtracting them from edge costs, hence guaranteeing 
that as congestion or routing changes, these values can be reflected urgently in optimization.

Data and Metadata. 2026; 5:1328  6 

https://doi.org/10.56294/dm20261328 ISSN: 2953-4917

https://doi.org/10.56294/dm20261328


 Integrated Placement Formulation
Given the above entities, a binary decision variable xij∈{0,1} is defined: xij=1 if user ui is served from DCj.

The per-user round-trip latency is:

𝐷𝐷 = {𝐷𝐷𝐶𝐶1,𝐷𝐷𝐶𝐶2,…..,𝐷𝐷𝐶𝐶|𝐷𝐷|}        (1) 
 
𝑈𝑈 = {𝑢𝑢1, 𝑢𝑢2, . . . . , 𝑢𝑢|𝑢𝑢|}          (2) 
 

𝐵𝐵𝑖̂𝑖(𝑡𝑡) = 𝐵𝐵𝑖𝑖(𝑡𝑡)
𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝐵𝐵𝑘𝑘(𝑡𝑡) , 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝐿𝐿𝑖𝑖𝑖𝑖(𝑡𝑡)

𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝐿𝐿𝑘𝑘𝑘𝑘(𝑡𝑡) , 𝑆̂𝑆𝑖𝑖(𝑡𝑡) = 𝑆𝑆𝑖𝑖(𝑡𝑡)
𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝑆𝑆𝑘𝑘(𝑡𝑡)         (3) 

 
𝐹𝐹(𝑡𝑡) = [𝐵𝐵𝑖̂𝑖(𝑡𝑡), 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡), 𝑆̂𝑆𝑖𝑖(𝑡𝑡)]         (4) 
 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑈𝑈𝑗𝑗 → 𝐷𝐷𝐶𝐶𝑖𝑖) = 𝑤𝑤1 ⋅ 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡) + 𝑤𝑤2 ⋅ (1 − 𝐵𝐵𝑖̂𝑖(𝑡𝑡)) + 𝑤𝑤3 ⋅ (1 − 𝑆̂𝑆𝑖𝑖(𝑡𝑡))     (5) 
 
𝐺𝐺(𝑡𝑡) = (𝑉𝑉, 𝐸𝐸(𝑡𝑡)), 𝑉𝑉 = 𝑈𝑈 ∪ 𝐷𝐷. )         (6) 
 
𝜔𝜔𝑢𝑢𝑢𝑢(𝑡𝑡) = 𝑎𝑎ℓ𝑢𝑢𝑢𝑢(𝑡𝑡) + 𝛽𝛽 [1/𝛽𝛽𝑢𝑢𝑢𝑢(𝑡𝑡)] + 𝛾𝛾𝜌𝜌𝑢𝑢𝑢𝑢(𝑡𝑡)    (7) 
 

𝐿𝐿𝑖𝑖(𝑡𝑡) = 𝛴𝛴
𝑗𝑗

𝑥𝑥𝑖𝑖𝑖𝑖 (𝐿𝐿𝑗𝑗
0 + 𝑤𝑤𝑢𝑢𝑖𝑖𝐷𝐷𝐶𝐶𝑗𝑗(𝑡𝑡))         (8) 

 
𝛴𝛴
𝑖𝑖

𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑆𝑆𝑖𝑖(𝑡𝑡), 𝛴𝛴
𝑖𝑖

𝑓𝑓𝑖𝑖(𝑡𝑡)𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝐵𝐵𝑗𝑗(𝑡𝑡)       (9) 

 
𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚(𝛼𝛼 ⋅ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴) + 𝛾𝛾 ⋅ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐴𝐴))               (10) 
 

𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡 + 1) = 𝑝𝑝𝑖𝑖,𝑑𝑑 ± 𝛽𝛽 ⋅∣ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑑𝑑 − 𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡) ∣⋅ 1𝑛𝑛 (1
𝑛𝑛)                      (11) 

 

𝐿𝐿 = 𝑁𝑁1𝑖𝑖 = 1
𝑁𝑁 ∑𝐿𝐿𝑖𝑖, 𝐴𝐴(𝑖𝑖)              (12) 

 

𝐴𝐴𝐴𝐴 = 1
𝑁𝑁 ∑ (𝑁𝑁

𝑖𝑖=1 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖 + 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖)   (13) 

 

𝐿𝐿𝐿𝐿𝐿𝐿 = 1
𝑀𝑀 ∑ (𝑀𝑀

𝑗𝑗=1 𝐿𝐿𝑗𝑗 − 𝐿̅𝐿)2          (14) 

 
𝐶𝐶𝐶𝐶 = 𝑡𝑡∗                     (15) 
 
𝐸𝐸𝐸𝐸 = 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠     (16) 
 

𝑆𝑆 = 𝛥𝛥Metric
𝛥𝛥𝛥𝛥+𝛥𝛥𝛥𝛥                               (17) 

 

And must satisfy Li (t)≤Lmax
i. Data center capacities impose.

𝐷𝐷 = {𝐷𝐷𝐶𝐶1,𝐷𝐷𝐶𝐶2,…..,𝐷𝐷𝐶𝐶|𝐷𝐷|}        (1) 
 
𝑈𝑈 = {𝑢𝑢1, 𝑢𝑢2, . . . . , 𝑢𝑢|𝑢𝑢|}          (2) 
 

𝐵𝐵𝑖̂𝑖(𝑡𝑡) = 𝐵𝐵𝑖𝑖(𝑡𝑡)
𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝐵𝐵𝑘𝑘(𝑡𝑡) , 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝐿𝐿𝑖𝑖𝑖𝑖(𝑡𝑡)

𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝐿𝐿𝑘𝑘𝑘𝑘(𝑡𝑡) , 𝑆̂𝑆𝑖𝑖(𝑡𝑡) = 𝑆𝑆𝑖𝑖(𝑡𝑡)
𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝑆𝑆𝑘𝑘(𝑡𝑡)         (3) 

 
𝐹𝐹(𝑡𝑡) = [𝐵𝐵𝑖̂𝑖(𝑡𝑡), 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡), 𝑆̂𝑆𝑖𝑖(𝑡𝑡)]         (4) 
 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑈𝑈𝑗𝑗 → 𝐷𝐷𝐶𝐶𝑖𝑖) = 𝑤𝑤1 ⋅ 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡) + 𝑤𝑤2 ⋅ (1 − 𝐵𝐵𝑖̂𝑖(𝑡𝑡)) + 𝑤𝑤3 ⋅ (1 − 𝑆̂𝑆𝑖𝑖(𝑡𝑡))     (5) 
 
𝐺𝐺(𝑡𝑡) = (𝑉𝑉, 𝐸𝐸(𝑡𝑡)), 𝑉𝑉 = 𝑈𝑈 ∪ 𝐷𝐷. )         (6) 
 
𝜔𝜔𝑢𝑢𝑢𝑢(𝑡𝑡) = 𝑎𝑎ℓ𝑢𝑢𝑢𝑢(𝑡𝑡) + 𝛽𝛽 [1/𝛽𝛽𝑢𝑢𝑢𝑢(𝑡𝑡)] + 𝛾𝛾𝜌𝜌𝑢𝑢𝑢𝑢(𝑡𝑡)    (7) 
 

𝐿𝐿𝑖𝑖(𝑡𝑡) = 𝛴𝛴
𝑗𝑗

𝑥𝑥𝑖𝑖𝑖𝑖 (𝐿𝐿𝑗𝑗
0 + 𝑤𝑤𝑢𝑢𝑖𝑖𝐷𝐷𝐶𝐶𝑗𝑗(𝑡𝑡))         (8) 

 
𝛴𝛴
𝑖𝑖

𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑆𝑆𝑖𝑖(𝑡𝑡), 𝛴𝛴
𝑖𝑖

𝑓𝑓𝑖𝑖(𝑡𝑡)𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝐵𝐵𝑗𝑗(𝑡𝑡)       (9) 

 
𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚(𝛼𝛼 ⋅ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴) + 𝛾𝛾 ⋅ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐴𝐴))               (10) 
 

𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡 + 1) = 𝑝𝑝𝑖𝑖,𝑑𝑑 ± 𝛽𝛽 ⋅∣ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑑𝑑 − 𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡) ∣⋅ 1𝑛𝑛 (1
𝑛𝑛)                      (11) 

 

𝐿𝐿 = 𝑁𝑁1𝑖𝑖 = 1
𝑁𝑁 ∑𝐿𝐿𝑖𝑖, 𝐴𝐴(𝑖𝑖)              (12) 

 

𝐴𝐴𝐴𝐴 = 1
𝑁𝑁 ∑ (𝑁𝑁

𝑖𝑖=1 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖 + 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖)   (13) 

 

𝐿𝐿𝐿𝐿𝐿𝐿 = 1
𝑀𝑀 ∑ (𝑀𝑀

𝑗𝑗=1 𝐿𝐿𝑗𝑗 − 𝐿̅𝐿)2          (14) 

 
𝐶𝐶𝐶𝐶 = 𝑡𝑡∗                     (15) 
 
𝐸𝐸𝐸𝐸 = 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠     (16) 
 

𝑆𝑆 = 𝛥𝛥Metric
𝛥𝛥𝛥𝛥+𝛥𝛥𝛥𝛥                               (17) 

 

The optimization engine implemented via quantum-inspired or quantumnative algorithms seeks an equ (8,9) 
assignment matrix X=[xij ]minimizes the weighted average latency ∑i

0fi Li. Plus a replica count penalty, while 
respecting all capacity and SLA constraints. Because the decision landscape changes with G(t) fi (t), the solver 
executes periodically and on-demand triggers, allowing the system to adapt continuously to shifting traffic and 
network conditions.

Table 2. Notation Descriptions

Notation Explanation

β The contraction-expansion coefficient controlling the 
quantum step size (0 < β < 1)

ϕ Random value in (0, 1) used to balance the influence 
between pBesti and gBest

α The weight assigned to latency in the objective 
function.

γ The weight assigned to load balance in the objective 
function.

∈ An element of an object

l Latency (or delay) 

ρ Packetloss probability

Δ Intervals

Quantum Optimization Technique
The difficulty in placing user data in a global distribution of clouds, as well as the combinatorial explosion 

of configurable parameters, is directly connected. Every user request has to be placed with a suitable data 
centre, and the limitation in the form of latency, network bandwidth, storage availability, and quality of service 
also has to be remembered. Geographically distributed infrastructures, as well as the dynamic behaviour of the 
users, add to the complexity of this multi-dimensional task to form a non-linear and multi-modal optimization 
landscape. In this, classical methods of optimization typically suffer from limited scalability and a propensity 
for premature convergence to local optima, particularly when confronted with extensive and rapidly changing 
solution spaces.

To alleviate these challenges, we propose a hybrid quantum optimization framework that integrates Quantum 
Particle Swarm Optimization (QPSO). Inspired by quantum mechanics and founded upon classical Particle 
Swarm Optimization (PSO), QPSO strengthens global search capability by employing a probabilistic model of 
particle movement. Through the foregoing reliance on velocity vectors and relying on quantum delta potential 
wells instead, the technique yields better exploration diversity and convergence stability.(22) Such qualities are 
essential within the modern, globally dispersed cloud infrastructures. A useful structure for placing the data 
should not be able to reduce the average latency so far, have to assist in distributing the load, fault recovery, 
and responses towards variations in user demand and/or system conditions. QPSO meets these requirements by 
dynamically reprogramming user-to-data-centre mappings, live, in a way that maximizes overall performance 
measures of the whole system.

Overall, the technique mimics the quantum mechanics phenomena, which has been proven to be scalable, 
adaptive, and globally convergent, interpreting cloud data allocation problems with a much higher performance 
than the traditional approaches in complex, distributed computing scenarios.
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Quantum Particle Swarm Optimization (QPSO)
In order to address the aforementioned constraints, our investigation employs Quantum Particle Swarm 

Optimization (QPSO), a quantum-inspired extension of the established Particle Swarm Optimization (PSO) 
methodology. By integrating quantum-mechanical principles, QPSO replaces the deterministic position-update 
rules of classical PSO with probabilistic motion governed by quantum-delta potential wells.(23) The peculiar 
behaviour model of the algorithm (as opposed to varying velocities by each particle, they are introduced into 
the search space by random jumps) explains the satisfactory results in complex, nonlinear, and multimodal 
optimization. This mixed behaviour encourages movements between the adjacent areas and controls the 
likelihood of premature convergence to local optima. 

Figure 2. Quantum Optimization Engin

The figure 2 shows a quantum-inspired optimization model on smart allocation of user data in distributed 
cloud infrastructures. The user requests are initially fed into the Quantum Optimization Engine (QPSO) where 
they are initialized, updated with the quantum state and with fitness. According to these processes, allocation 
decisions are taken in order to distribute the workloads between the edge cloud, the regional data centers or 
the core cloud in order to have an optimal utilization of resources. This process is aided by a preprocessing 
and feature extraction module which refines the input data as well as providing performance feedback into the 
optimization cycle. The architecture is more scalable, with less latency and is more energy efficient to support 
next generation distributed cloud services.

Therefore, QPSO can be proven to be resistant to local minima and provide a methodology particularly 
suitable to problems of multi-objective cloud data allocation that also require low latency, an equal load 
distribution, and responsiveness to fluctuating environmental conditions.

Problem Context and Encoding
It presented the user-data allocation problem as an instance of combinatorial optimization.
Given:

•	 A set of users U={u1,u2,….,un}.
•	 A set of data centres D={d1,d2,….,dn}.
•	 A latency matrix Lij  representing the communication cost between user ui and data centre dj

The input includes a user set U and a data centre set D, with the corresponding objective function being to 
identify a mapping A: U→D mapping that minimizes the total latency at which cloud resources must be used 
efficiently among the data centres without the constraint of any imbalanced utilization of cloud resources.

 Formally, the goal can be stated as:

𝐷𝐷 = {𝐷𝐷𝐶𝐶1,𝐷𝐷𝐶𝐶2,…..,𝐷𝐷𝐶𝐶|𝐷𝐷|}        (1) 
 
𝑈𝑈 = {𝑢𝑢1, 𝑢𝑢2, . . . . , 𝑢𝑢|𝑢𝑢|}          (2) 
 

𝐵𝐵𝑖̂𝑖(𝑡𝑡) = 𝐵𝐵𝑖𝑖(𝑡𝑡)
𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝐵𝐵𝑘𝑘(𝑡𝑡) , 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝐿𝐿𝑖𝑖𝑖𝑖(𝑡𝑡)

𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝐿𝐿𝑘𝑘𝑘𝑘(𝑡𝑡) , 𝑆̂𝑆𝑖𝑖(𝑡𝑡) = 𝑆𝑆𝑖𝑖(𝑡𝑡)
𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝑆𝑆𝑘𝑘(𝑡𝑡)         (3) 

 
𝐹𝐹(𝑡𝑡) = [𝐵𝐵𝑖̂𝑖(𝑡𝑡), 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡), 𝑆̂𝑆𝑖𝑖(𝑡𝑡)]         (4) 
 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑈𝑈𝑗𝑗 → 𝐷𝐷𝐶𝐶𝑖𝑖) = 𝑤𝑤1 ⋅ 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡) + 𝑤𝑤2 ⋅ (1 − 𝐵𝐵𝑖̂𝑖(𝑡𝑡)) + 𝑤𝑤3 ⋅ (1 − 𝑆̂𝑆𝑖𝑖(𝑡𝑡))     (5) 
 
𝐺𝐺(𝑡𝑡) = (𝑉𝑉, 𝐸𝐸(𝑡𝑡)), 𝑉𝑉 = 𝑈𝑈 ∪ 𝐷𝐷. )         (6) 
 
𝜔𝜔𝑢𝑢𝑢𝑢(𝑡𝑡) = 𝑎𝑎ℓ𝑢𝑢𝑢𝑢(𝑡𝑡) + 𝛽𝛽 [1/𝛽𝛽𝑢𝑢𝑢𝑢(𝑡𝑡)] + 𝛾𝛾𝜌𝜌𝑢𝑢𝑢𝑢(𝑡𝑡)    (7) 
 

𝐿𝐿𝑖𝑖(𝑡𝑡) = 𝛴𝛴
𝑗𝑗

𝑥𝑥𝑖𝑖𝑖𝑖 (𝐿𝐿𝑗𝑗
0 + 𝑤𝑤𝑢𝑢𝑖𝑖𝐷𝐷𝐶𝐶𝑗𝑗(𝑡𝑡))         (8) 

 
𝛴𝛴
𝑖𝑖

𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑆𝑆𝑖𝑖(𝑡𝑡), 𝛴𝛴
𝑖𝑖

𝑓𝑓𝑖𝑖(𝑡𝑡)𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝐵𝐵𝑗𝑗(𝑡𝑡)       (9) 

 
𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚(𝛼𝛼 ⋅ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴) + 𝛾𝛾 ⋅ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐴𝐴))               (10) 
 

𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡 + 1) = 𝑝𝑝𝑖𝑖,𝑑𝑑 ± 𝛽𝛽 ⋅∣ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑑𝑑 − 𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡) ∣⋅ 1𝑛𝑛 (1
𝑛𝑛)                      (11) 

 

𝐿𝐿 = 𝑁𝑁1𝑖𝑖 = 1
𝑁𝑁 ∑𝐿𝐿𝑖𝑖, 𝐴𝐴(𝑖𝑖)              (12) 

 

𝐴𝐴𝐴𝐴 = 1
𝑁𝑁 ∑ (𝑁𝑁

𝑖𝑖=1 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖 + 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖)   (13) 

 

𝐿𝐿𝐿𝐿𝐿𝐿 = 1
𝑀𝑀 ∑ (𝑀𝑀

𝑗𝑗=1 𝐿𝐿𝑗𝑗 − 𝐿̅𝐿)2          (14) 

 
𝐶𝐶𝐶𝐶 = 𝑡𝑡∗                     (15) 
 
𝐸𝐸𝐸𝐸 = 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠     (16) 
 

𝑆𝑆 = 𝛥𝛥Metric
𝛥𝛥𝛥𝛥+𝛥𝛥𝛥𝛥                               (17) 

 

Where α and γ are scalar weights controlling the equ (10) trade-off between latency minimization and 
balanced usage of cloud resources.(6)

The quantum particle swarm optimization (QPSO) algorithm is employed to tackle this problem. Every 
particle in the swarm represents a full assignment of all user-centred mapping. Consequently, the search space 
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is combinatorially dense, and QPSO to its probabilistic nature, proves an effective explorer of such complex 
spaces.(24) 

Mathematical Model
At the outset, the swarm populates a set of particles randomly distributed within the solution space, with 

each particle recording its own best solution (pBest) and broadcasting the swarm’s overall best solution (gBest). 
Unlike classical PSO, QPSO does not use velocities. Instead, each dimension of a particle is updated using:

𝐷𝐷 = {𝐷𝐷𝐶𝐶1,𝐷𝐷𝐶𝐶2,…..,𝐷𝐷𝐶𝐶|𝐷𝐷|}        (1) 
 
𝑈𝑈 = {𝑢𝑢1, 𝑢𝑢2, . . . . , 𝑢𝑢|𝑢𝑢|}          (2) 
 

𝐵𝐵𝑖̂𝑖(𝑡𝑡) = 𝐵𝐵𝑖𝑖(𝑡𝑡)
𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝐵𝐵𝑘𝑘(𝑡𝑡) , 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝐿𝐿𝑖𝑖𝑖𝑖(𝑡𝑡)

𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝐿𝐿𝑘𝑘𝑘𝑘(𝑡𝑡) , 𝑆̂𝑆𝑖𝑖(𝑡𝑡) = 𝑆𝑆𝑖𝑖(𝑡𝑡)
𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝑆𝑆𝑘𝑘(𝑡𝑡)         (3) 

 
𝐹𝐹(𝑡𝑡) = [𝐵𝐵𝑖̂𝑖(𝑡𝑡), 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡), 𝑆̂𝑆𝑖𝑖(𝑡𝑡)]         (4) 
 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑈𝑈𝑗𝑗 → 𝐷𝐷𝐶𝐶𝑖𝑖) = 𝑤𝑤1 ⋅ 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡) + 𝑤𝑤2 ⋅ (1 − 𝐵𝐵𝑖̂𝑖(𝑡𝑡)) + 𝑤𝑤3 ⋅ (1 − 𝑆̂𝑆𝑖𝑖(𝑡𝑡))     (5) 
 
𝐺𝐺(𝑡𝑡) = (𝑉𝑉, 𝐸𝐸(𝑡𝑡)), 𝑉𝑉 = 𝑈𝑈 ∪ 𝐷𝐷. )         (6) 
 
𝜔𝜔𝑢𝑢𝑢𝑢(𝑡𝑡) = 𝑎𝑎ℓ𝑢𝑢𝑢𝑢(𝑡𝑡) + 𝛽𝛽 [1/𝛽𝛽𝑢𝑢𝑢𝑢(𝑡𝑡)] + 𝛾𝛾𝜌𝜌𝑢𝑢𝑢𝑢(𝑡𝑡)    (7) 
 

𝐿𝐿𝑖𝑖(𝑡𝑡) = 𝛴𝛴
𝑗𝑗

𝑥𝑥𝑖𝑖𝑖𝑖 (𝐿𝐿𝑗𝑗
0 + 𝑤𝑤𝑢𝑢𝑖𝑖𝐷𝐷𝐶𝐶𝑗𝑗(𝑡𝑡))         (8) 

 
𝛴𝛴
𝑖𝑖

𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑆𝑆𝑖𝑖(𝑡𝑡), 𝛴𝛴
𝑖𝑖

𝑓𝑓𝑖𝑖(𝑡𝑡)𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝐵𝐵𝑗𝑗(𝑡𝑡)       (9) 

 
𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚(𝛼𝛼 ⋅ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴) + 𝛾𝛾 ⋅ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐴𝐴))               (10) 
 

𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡 + 1) = 𝑝𝑝𝑖𝑖,𝑑𝑑 ± 𝛽𝛽 ⋅∣ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑑𝑑 − 𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡) ∣⋅ 1𝑛𝑛 (1
𝑛𝑛)                      (11) 

 

𝐿𝐿 = 𝑁𝑁1𝑖𝑖 = 1
𝑁𝑁 ∑𝐿𝐿𝑖𝑖, 𝐴𝐴(𝑖𝑖)              (12) 

 

𝐴𝐴𝐴𝐴 = 1
𝑁𝑁 ∑ (𝑁𝑁

𝑖𝑖=1 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖 + 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖)   (13) 

 

𝐿𝐿𝐿𝐿𝐿𝐿 = 1
𝑀𝑀 ∑ (𝑀𝑀

𝑗𝑗=1 𝐿𝐿𝑗𝑗 − 𝐿̅𝐿)2          (14) 

 
𝐶𝐶𝐶𝐶 = 𝑡𝑡∗                     (15) 
 
𝐸𝐸𝐸𝐸 = 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠     (16) 
 

𝑆𝑆 = 𝛥𝛥Metric
𝛥𝛥𝛥𝛥+𝛥𝛥𝛥𝛥                               (17) 

 

Where:
•	 xi,d(t): position of particle i in dimension d at iteration t.
•	 pi,d​: attractor point between pBesti,d and gBestd, calculated as ϕ⋅pBesti,d+(1-ϕ)⋅gBestd.
•	 ​mbestd: mean best position across all particles for dimension d.
•	 β: contraction-expansion coefficient (typically 0,5–1,0).
•	 u: random number uniformly distributed in (0,1).
•	 ϕ: random coefficient in (0,1).

In equation (11), during successive iterations, each particle updates its location stochastically in accord 
with a quantum delta potential model rather than velocities, thereby facilitating balanced exploitation of local 
improvements and exploration of unexplored regions of the search space, a strategy inspired by the Heisenberg 
Uncertainty Principle.  This updated algorithm has the advantage of allowing exploitation and exploration 
simultaneously; therefore, it traverses the multimodal search landscape effectively.(25)

Algorithm: Quantum Particle Swarm Optimization for Data Allocation
Input: Number of particles N, user set U, data centre set D, latency matrix Lij, maximum iterations T.
Output: Optimal user-to-data centre allocation A∗
Initialize particle positions Xi randomly.
Set personal bests pBesti = Xi, global best gBest; 
Set control parameter β ∈ (0, 1);
for each iteration t = 1 to T do

Evaluate the fitness of each particle Xi using:
Fitness (Xi) = α · Latency (Xi) + γ · Load Variance (Xi);

Update pBesti and gBest based on fitness; Compute mean best position mbest ;
for each particle Xi do

for each dimension d do
Generate random numbers ϕ, u ∈ (0, 1); 
Compute p = ϕ · pBesti[d] + (1 − ϕ) · gBest[d]; 
Update position:  Xi[d] = p ± β · |mbest[d] − Xi[d]| · ln(1/u)

end
     end
end
return gBest as the optimal allocation

Quantum particle swarm optimization, thus, is a metaheuristic algorithm based on quantum mechanics 
aimed at the solution of complex, high-dimensional tasks, User-to-data centre mapping in the cloud being 
one possible solution. Every particle has a content mapping, most of which are updated iteratively using both 
individual-best as well as global-best information. In the case of the absence of velocities, the formula based 
on quantum potential favours balanced exploration and global convergence. QPSO reduces the problem of 
latency and load imbalance by successively revising the assignment in a probabilistic manner. The adaptability, 
avoidance of local minima, and scalability of QPSO make it especially fit for large-scale dynamic environments 
in cloud environments.(26)

RESULTS
The Quantum Particle Swarm Optimization (QPSO) based data allocation algorithm was evaluated by employing 

both synthetic user distribution datasets and real-world internet traffic traces. The synthetic simulated 1000 
users equally spread in various geographical locations, and each location had a different frequency of requests 
and latency pattern. The real data were based on the real internet traffic data that had been gathered by CAIDA 
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for the public and, therefore, presented a suitable representation of the real demand and latency conditions. 
An open-source Python 3.10 implementation was executed on a high-performance hardware platform (Intel i9, 
64 GB RAM, NVIDIA RTX 3090). The Qiskit was used to emulate quantum dynamics, and Docker containers were 
used to replicate globally distributed cloud servers.

Experimental findings reveal that QPSO performed better as compared to other methods. It decreased the 
average latency by as much as 28 % and represented a 60 % improvement in load balance compared to classical 
heuristics. The QPSO type took the decisions in allocation even further, thus showing the viability and scalability 
aspect of the algorithm in the contemporary cloud infrastructure. To evaluate the effectiveness of the given 
QPSO allocation algorithm, it was contrasted against five baseline algorithms. Classical Heuristic Placement 
(CHP) uses greedy selection to assign users to the nearest data centres. Dynamic Reinforcement Learning (DRL) 
employs a deterministic Q-learning agent to optimize latency. Hybrid Heuristic + Clustering (HHC) combines 
K-means user grouping with greedy placement. Simulated Annealing (SA) probabilistically explores the solution 
space to mitigate local optima. Finally, the proposed Quantum Particle Swarm Optimization (QPSO) leverages 
quantum behaviour for superior exploration and convergence. The methods have been judged on the grounds 
of latency, access time, and load balancing.

The outcomes show that the QPSO is commonly better in all the measures compared to the other approaches. 
It is capable of attaining minimum latency, the greatest balance of loads, and consistency in access times. 
These results support the hopefulness and efficiency of quantum-motivated optimization on the geographical 
scale of cloud-based dispatches.

Parameters and Metrics
QPSO-based user data-allocating scheme is critically analysed using a set of performance measures. 

Average latency measures the average time delay that users take to access or deposit their information in 
their designated data centres. The time it takes to access or put information is called the access time, and the 
index evaluates the degree to which the data is evenly distributed across the centres, and this is done by the 
computation of the load-variance value. Speed of convergence refers to how many steps the algorithm would 
take before it could converge to a stationary solution. The execution time determines the run time of the QPSO 
process. Lastly, the scalability will test the effectiveness of the algorithm as the user base increases gradually 
and the set of data centres also grows accordingly.

Metrics Measured
Average Latency (AL) In equation (12), represents the mean delay experienced by users when accessing data 

centres and is expressed as:

𝐷𝐷 = {𝐷𝐷𝐶𝐶1,𝐷𝐷𝐶𝐶2,…..,𝐷𝐷𝐶𝐶|𝐷𝐷|}        (1) 
 
𝑈𝑈 = {𝑢𝑢1, 𝑢𝑢2, . . . . , 𝑢𝑢|𝑢𝑢|}          (2) 
 

𝐵𝐵𝑖̂𝑖(𝑡𝑡) = 𝐵𝐵𝑖𝑖(𝑡𝑡)
𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝐵𝐵𝑘𝑘(𝑡𝑡) , 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝐿𝐿𝑖𝑖𝑖𝑖(𝑡𝑡)

𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝐿𝐿𝑘𝑘𝑘𝑘(𝑡𝑡) , 𝑆̂𝑆𝑖𝑖(𝑡𝑡) = 𝑆𝑆𝑖𝑖(𝑡𝑡)
𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝑆𝑆𝑘𝑘(𝑡𝑡)         (3) 

 
𝐹𝐹(𝑡𝑡) = [𝐵𝐵𝑖̂𝑖(𝑡𝑡), 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡), 𝑆̂𝑆𝑖𝑖(𝑡𝑡)]         (4) 
 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑈𝑈𝑗𝑗 → 𝐷𝐷𝐶𝐶𝑖𝑖) = 𝑤𝑤1 ⋅ 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡) + 𝑤𝑤2 ⋅ (1 − 𝐵𝐵𝑖̂𝑖(𝑡𝑡)) + 𝑤𝑤3 ⋅ (1 − 𝑆̂𝑆𝑖𝑖(𝑡𝑡))     (5) 
 
𝐺𝐺(𝑡𝑡) = (𝑉𝑉, 𝐸𝐸(𝑡𝑡)), 𝑉𝑉 = 𝑈𝑈 ∪ 𝐷𝐷. )         (6) 
 
𝜔𝜔𝑢𝑢𝑢𝑢(𝑡𝑡) = 𝑎𝑎ℓ𝑢𝑢𝑢𝑢(𝑡𝑡) + 𝛽𝛽 [1/𝛽𝛽𝑢𝑢𝑢𝑢(𝑡𝑡)] + 𝛾𝛾𝜌𝜌𝑢𝑢𝑢𝑢(𝑡𝑡)    (7) 
 

𝐿𝐿𝑖𝑖(𝑡𝑡) = 𝛴𝛴
𝑗𝑗

𝑥𝑥𝑖𝑖𝑖𝑖 (𝐿𝐿𝑗𝑗
0 + 𝑤𝑤𝑢𝑢𝑖𝑖𝐷𝐷𝐶𝐶𝑗𝑗(𝑡𝑡))         (8) 

 
𝛴𝛴
𝑖𝑖

𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑆𝑆𝑖𝑖(𝑡𝑡), 𝛴𝛴
𝑖𝑖

𝑓𝑓𝑖𝑖(𝑡𝑡)𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝐵𝐵𝑗𝑗(𝑡𝑡)       (9) 

 
𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚(𝛼𝛼 ⋅ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴) + 𝛾𝛾 ⋅ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐴𝐴))               (10) 
 

𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡 + 1) = 𝑝𝑝𝑖𝑖,𝑑𝑑 ± 𝛽𝛽 ⋅∣ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑑𝑑 − 𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡) ∣⋅ 1𝑛𝑛 (1
𝑛𝑛)                      (11) 

 

𝐿𝐿 = 𝑁𝑁1𝑖𝑖 = 1
𝑁𝑁 ∑𝐿𝐿𝑖𝑖, 𝐴𝐴(𝑖𝑖)              (12) 

 

𝐴𝐴𝐴𝐴 = 1
𝑁𝑁 ∑ (𝑁𝑁

𝑖𝑖=1 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖 + 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖)   (13) 

 

𝐿𝐿𝐿𝐿𝐿𝐿 = 1
𝑀𝑀 ∑ (𝑀𝑀

𝑗𝑗=1 𝐿𝐿𝑗𝑗 − 𝐿̅𝐿)2          (14) 

 
𝐶𝐶𝐶𝐶 = 𝑡𝑡∗                     (15) 
 
𝐸𝐸𝐸𝐸 = 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠     (16) 
 

𝑆𝑆 = 𝛥𝛥Metric
𝛥𝛥𝛥𝛥+𝛥𝛥𝛥𝛥                               (17) 

 

Where N is the total number of users, Li, A(i)​ is the latency between user iii and the data centre A(i) to which 
the user is assigned. Lower values of AL indicate more productive places of allocation.

Access Time (AT)
In equation (13), captures the total time required for a user to complete data retrieval or upload and 

includes transmission and processing delays. It is given by:

𝐷𝐷 = {𝐷𝐷𝐶𝐶1,𝐷𝐷𝐶𝐶2,…..,𝐷𝐷𝐶𝐶|𝐷𝐷|}        (1) 
 
𝑈𝑈 = {𝑢𝑢1, 𝑢𝑢2, . . . . , 𝑢𝑢|𝑢𝑢|}          (2) 
 

𝐵𝐵𝑖̂𝑖(𝑡𝑡) = 𝐵𝐵𝑖𝑖(𝑡𝑡)
𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝐵𝐵𝑘𝑘(𝑡𝑡) , 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝐿𝐿𝑖𝑖𝑖𝑖(𝑡𝑡)

𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝐿𝐿𝑘𝑘𝑘𝑘(𝑡𝑡) , 𝑆̂𝑆𝑖𝑖(𝑡𝑡) = 𝑆𝑆𝑖𝑖(𝑡𝑡)
𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝑆𝑆𝑘𝑘(𝑡𝑡)         (3) 

 
𝐹𝐹(𝑡𝑡) = [𝐵𝐵𝑖̂𝑖(𝑡𝑡), 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡), 𝑆̂𝑆𝑖𝑖(𝑡𝑡)]         (4) 
 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑈𝑈𝑗𝑗 → 𝐷𝐷𝐶𝐶𝑖𝑖) = 𝑤𝑤1 ⋅ 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡) + 𝑤𝑤2 ⋅ (1 − 𝐵𝐵𝑖̂𝑖(𝑡𝑡)) + 𝑤𝑤3 ⋅ (1 − 𝑆̂𝑆𝑖𝑖(𝑡𝑡))     (5) 
 
𝐺𝐺(𝑡𝑡) = (𝑉𝑉, 𝐸𝐸(𝑡𝑡)), 𝑉𝑉 = 𝑈𝑈 ∪ 𝐷𝐷. )         (6) 
 
𝜔𝜔𝑢𝑢𝑢𝑢(𝑡𝑡) = 𝑎𝑎ℓ𝑢𝑢𝑢𝑢(𝑡𝑡) + 𝛽𝛽 [1/𝛽𝛽𝑢𝑢𝑢𝑢(𝑡𝑡)] + 𝛾𝛾𝜌𝜌𝑢𝑢𝑢𝑢(𝑡𝑡)    (7) 
 

𝐿𝐿𝑖𝑖(𝑡𝑡) = 𝛴𝛴
𝑗𝑗

𝑥𝑥𝑖𝑖𝑖𝑖 (𝐿𝐿𝑗𝑗
0 + 𝑤𝑤𝑢𝑢𝑖𝑖𝐷𝐷𝐶𝐶𝑗𝑗(𝑡𝑡))         (8) 

 
𝛴𝛴
𝑖𝑖

𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑆𝑆𝑖𝑖(𝑡𝑡), 𝛴𝛴
𝑖𝑖

𝑓𝑓𝑖𝑖(𝑡𝑡)𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝐵𝐵𝑗𝑗(𝑡𝑡)       (9) 

 
𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚(𝛼𝛼 ⋅ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴) + 𝛾𝛾 ⋅ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐴𝐴))               (10) 
 

𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡 + 1) = 𝑝𝑝𝑖𝑖,𝑑𝑑 ± 𝛽𝛽 ⋅∣ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑑𝑑 − 𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡) ∣⋅ 1𝑛𝑛 (1
𝑛𝑛)                      (11) 

 

𝐿𝐿 = 𝑁𝑁1𝑖𝑖 = 1
𝑁𝑁 ∑𝐿𝐿𝑖𝑖, 𝐴𝐴(𝑖𝑖)              (12) 

 

𝐴𝐴𝐴𝐴 = 1
𝑁𝑁 ∑ (𝑁𝑁

𝑖𝑖=1 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖 + 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖)   (13) 

 

𝐿𝐿𝐿𝐿𝐿𝐿 = 1
𝑀𝑀 ∑ (𝑀𝑀

𝑗𝑗=1 𝐿𝐿𝑗𝑗 − 𝐿̅𝐿)2          (14) 

 
𝐶𝐶𝐶𝐶 = 𝑡𝑡∗                     (15) 
 
𝐸𝐸𝐸𝐸 = 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠     (16) 
 

𝑆𝑆 = 𝛥𝛥Metric
𝛥𝛥𝛥𝛥+𝛥𝛥𝛥𝛥                               (17) 

 

Where Treq,i  and Tresp,i Denote the request and response times for user i, respectively.

Load Balancing Index (LBI)
In equation (14), evaluates the variance in load across data centres, indicating the fairness of distribution:

𝐷𝐷 = {𝐷𝐷𝐶𝐶1,𝐷𝐷𝐶𝐶2,…..,𝐷𝐷𝐶𝐶|𝐷𝐷|}        (1) 
 
𝑈𝑈 = {𝑢𝑢1, 𝑢𝑢2, . . . . , 𝑢𝑢|𝑢𝑢|}          (2) 
 

𝐵𝐵𝑖̂𝑖(𝑡𝑡) = 𝐵𝐵𝑖𝑖(𝑡𝑡)
𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝐵𝐵𝑘𝑘(𝑡𝑡) , 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝐿𝐿𝑖𝑖𝑖𝑖(𝑡𝑡)

𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝐿𝐿𝑘𝑘𝑘𝑘(𝑡𝑡) , 𝑆̂𝑆𝑖𝑖(𝑡𝑡) = 𝑆𝑆𝑖𝑖(𝑡𝑡)
𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝑆𝑆𝑘𝑘(𝑡𝑡)         (3) 

 
𝐹𝐹(𝑡𝑡) = [𝐵𝐵𝑖̂𝑖(𝑡𝑡), 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡), 𝑆̂𝑆𝑖𝑖(𝑡𝑡)]         (4) 
 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑈𝑈𝑗𝑗 → 𝐷𝐷𝐶𝐶𝑖𝑖) = 𝑤𝑤1 ⋅ 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡) + 𝑤𝑤2 ⋅ (1 − 𝐵𝐵𝑖̂𝑖(𝑡𝑡)) + 𝑤𝑤3 ⋅ (1 − 𝑆̂𝑆𝑖𝑖(𝑡𝑡))     (5) 
 
𝐺𝐺(𝑡𝑡) = (𝑉𝑉, 𝐸𝐸(𝑡𝑡)), 𝑉𝑉 = 𝑈𝑈 ∪ 𝐷𝐷. )         (6) 
 
𝜔𝜔𝑢𝑢𝑢𝑢(𝑡𝑡) = 𝑎𝑎ℓ𝑢𝑢𝑢𝑢(𝑡𝑡) + 𝛽𝛽 [1/𝛽𝛽𝑢𝑢𝑢𝑢(𝑡𝑡)] + 𝛾𝛾𝜌𝜌𝑢𝑢𝑢𝑢(𝑡𝑡)    (7) 
 

𝐿𝐿𝑖𝑖(𝑡𝑡) = 𝛴𝛴
𝑗𝑗

𝑥𝑥𝑖𝑖𝑖𝑖 (𝐿𝐿𝑗𝑗
0 + 𝑤𝑤𝑢𝑢𝑖𝑖𝐷𝐷𝐶𝐶𝑗𝑗(𝑡𝑡))         (8) 

 
𝛴𝛴
𝑖𝑖

𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑆𝑆𝑖𝑖(𝑡𝑡), 𝛴𝛴
𝑖𝑖

𝑓𝑓𝑖𝑖(𝑡𝑡)𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝐵𝐵𝑗𝑗(𝑡𝑡)       (9) 

 
𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚(𝛼𝛼 ⋅ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴) + 𝛾𝛾 ⋅ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐴𝐴))               (10) 
 

𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡 + 1) = 𝑝𝑝𝑖𝑖,𝑑𝑑 ± 𝛽𝛽 ⋅∣ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑑𝑑 − 𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡) ∣⋅ 1𝑛𝑛 (1
𝑛𝑛)                      (11) 

 

𝐿𝐿 = 𝑁𝑁1𝑖𝑖 = 1
𝑁𝑁 ∑𝐿𝐿𝑖𝑖, 𝐴𝐴(𝑖𝑖)              (12) 

 

𝐴𝐴𝐴𝐴 = 1
𝑁𝑁 ∑ (𝑁𝑁

𝑖𝑖=1 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖 + 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖)   (13) 

 

𝐿𝐿𝐿𝐿𝐿𝐿 = 1
𝑀𝑀 ∑ (𝑀𝑀

𝑗𝑗=1 𝐿𝐿𝑗𝑗 − 𝐿̅𝐿)2          (14) 

 
𝐶𝐶𝐶𝐶 = 𝑡𝑡∗                     (15) 
 
𝐸𝐸𝐸𝐸 = 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠     (16) 
 

𝑆𝑆 = 𝛥𝛥Metric
𝛥𝛥𝛥𝛥+𝛥𝛥𝛥𝛥                               (17) 

 

Where M is the number of data centres, Lj​ is the load of data centre j, and a L ̅  It is an average load. A lower 
LBI thus means more balance.

Convergence Speed (CS)
In equation (15), measures how quickly the QPSO algorithm reaches an optimal or stable solution. It is 
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quantified as:

𝐷𝐷 = {𝐷𝐷𝐶𝐶1,𝐷𝐷𝐶𝐶2,…..,𝐷𝐷𝐶𝐶|𝐷𝐷|}        (1) 
 
𝑈𝑈 = {𝑢𝑢1, 𝑢𝑢2, . . . . , 𝑢𝑢|𝑢𝑢|}          (2) 
 

𝐵𝐵𝑖̂𝑖(𝑡𝑡) = 𝐵𝐵𝑖𝑖(𝑡𝑡)
𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝐵𝐵𝑘𝑘(𝑡𝑡) , 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝐿𝐿𝑖𝑖𝑖𝑖(𝑡𝑡)

𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝐿𝐿𝑘𝑘𝑘𝑘(𝑡𝑡) , 𝑆̂𝑆𝑖𝑖(𝑡𝑡) = 𝑆𝑆𝑖𝑖(𝑡𝑡)
𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝑆𝑆𝑘𝑘(𝑡𝑡)         (3) 

 
𝐹𝐹(𝑡𝑡) = [𝐵𝐵𝑖̂𝑖(𝑡𝑡), 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡), 𝑆̂𝑆𝑖𝑖(𝑡𝑡)]         (4) 
 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑈𝑈𝑗𝑗 → 𝐷𝐷𝐶𝐶𝑖𝑖) = 𝑤𝑤1 ⋅ 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡) + 𝑤𝑤2 ⋅ (1 − 𝐵𝐵𝑖̂𝑖(𝑡𝑡)) + 𝑤𝑤3 ⋅ (1 − 𝑆̂𝑆𝑖𝑖(𝑡𝑡))     (5) 
 
𝐺𝐺(𝑡𝑡) = (𝑉𝑉, 𝐸𝐸(𝑡𝑡)), 𝑉𝑉 = 𝑈𝑈 ∪ 𝐷𝐷. )         (6) 
 
𝜔𝜔𝑢𝑢𝑢𝑢(𝑡𝑡) = 𝑎𝑎ℓ𝑢𝑢𝑢𝑢(𝑡𝑡) + 𝛽𝛽 [1/𝛽𝛽𝑢𝑢𝑢𝑢(𝑡𝑡)] + 𝛾𝛾𝜌𝜌𝑢𝑢𝑢𝑢(𝑡𝑡)    (7) 
 

𝐿𝐿𝑖𝑖(𝑡𝑡) = 𝛴𝛴
𝑗𝑗

𝑥𝑥𝑖𝑖𝑖𝑖 (𝐿𝐿𝑗𝑗
0 + 𝑤𝑤𝑢𝑢𝑖𝑖𝐷𝐷𝐶𝐶𝑗𝑗(𝑡𝑡))         (8) 

 
𝛴𝛴
𝑖𝑖

𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑆𝑆𝑖𝑖(𝑡𝑡), 𝛴𝛴
𝑖𝑖

𝑓𝑓𝑖𝑖(𝑡𝑡)𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝐵𝐵𝑗𝑗(𝑡𝑡)       (9) 

 
𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚(𝛼𝛼 ⋅ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴) + 𝛾𝛾 ⋅ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐴𝐴))               (10) 
 

𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡 + 1) = 𝑝𝑝𝑖𝑖,𝑑𝑑 ± 𝛽𝛽 ⋅∣ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑑𝑑 − 𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡) ∣⋅ 1𝑛𝑛 (1
𝑛𝑛)                      (11) 

 

𝐿𝐿 = 𝑁𝑁1𝑖𝑖 = 1
𝑁𝑁 ∑𝐿𝐿𝑖𝑖, 𝐴𝐴(𝑖𝑖)              (12) 

 

𝐴𝐴𝐴𝐴 = 1
𝑁𝑁 ∑ (𝑁𝑁

𝑖𝑖=1 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖 + 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖)   (13) 

 

𝐿𝐿𝐿𝐿𝐿𝐿 = 1
𝑀𝑀 ∑ (𝑀𝑀

𝑗𝑗=1 𝐿𝐿𝑗𝑗 − 𝐿̅𝐿)2          (14) 

 
𝐶𝐶𝐶𝐶 = 𝑡𝑡∗                     (15) 
 
𝐸𝐸𝐸𝐸 = 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠     (16) 
 

𝑆𝑆 = 𝛥𝛥Metric
𝛥𝛥𝛥𝛥+𝛥𝛥𝛥𝛥                               (17) 

 

Where t* is the number of iterations taken to reach convergence, defined by a negligible improvement in 
fitness over successive iterations.

Execution Time (ET)
is the computational time the algorithm takes to complete the allocation task, equation (16):

𝐷𝐷 = {𝐷𝐷𝐶𝐶1,𝐷𝐷𝐶𝐶2,…..,𝐷𝐷𝐶𝐶|𝐷𝐷|}        (1) 
 
𝑈𝑈 = {𝑢𝑢1, 𝑢𝑢2, . . . . , 𝑢𝑢|𝑢𝑢|}          (2) 
 

𝐵𝐵𝑖̂𝑖(𝑡𝑡) = 𝐵𝐵𝑖𝑖(𝑡𝑡)
𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝐵𝐵𝑘𝑘(𝑡𝑡) , 𝐿̂𝐿𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝐿𝐿𝑖𝑖𝑖𝑖(𝑡𝑡)

𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝐿𝐿𝑘𝑘𝑘𝑘(𝑡𝑡) , 𝑆̂𝑆𝑖𝑖(𝑡𝑡) = 𝑆𝑆𝑖𝑖(𝑡𝑡)
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𝑛𝑛)                      (11) 

 

𝐿𝐿 = 𝑁𝑁1𝑖𝑖 = 1
𝑁𝑁 ∑𝐿𝐿𝑖𝑖, 𝐴𝐴(𝑖𝑖)              (12) 

 

𝐴𝐴𝐴𝐴 = 1
𝑁𝑁 ∑ (𝑁𝑁

𝑖𝑖=1 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖 + 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖)   (13) 
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𝑆𝑆 = 𝛥𝛥Metric
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Where Tstart and Tend Denote the timestamps at the beginning and end of the algorithm’s execution.

Scalability (S)
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in essential metrics, one will produce an index of scalability:
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In equation (17), which Delta Metric are the changes in the selected metric. This ratio shows how well 

the algorithm can maintain tolerable performance as the system scale grows, and thus shows the robustness 
needed to be deployed in practice.

Performance Evaluation
The experimental findings are presented and analysed in this section for the proposed Quantum Particle 

Swarm Optimization (QPSO) algorithm applied to user data allocation in distributed cloud environments. The 
intention is to test the capabilities of QPSO to reduce the latency and enhance access time, data centre load 
balancing, and scale relative to traditional and modern baseline approaches. The following comparisons are 
made with Classical Heuristic-Based Placement (CHP), Dynamic Reinforcement Learning (DRL), and Hybrid 
Heuristic + Clustering (HHC) techniques under varied user and data centre scenarios. Some of the metrics 
are the average latency, access time, load balancing index, and convergence behaviour, which measure and 
validate performance.

Figure 2 presents the Load Balancing Index (LBI) values across multiple baseline methods are summarised 
on a user count scale. The LBI displays the difference in the distribution of workload between data centres; 
the lower the difference, the more balanced it is. A good load balancing system will ensure that none of the 
data centres is a bottleneck in the sense that it causes failure of service quality, even at different loads. 
QPSO incurred the lowest LBI as shown by the following table 3, starting at 82 on 100 users up to 103 on 
1000 users with a slight increase. Classical heuristic methods such as CHP exhibit higher values (e.g., 110 to 
148), indicating less optimal distribution. Its global optimization nature and quantum behaviour give QPSO 
exceptionally high balancing capabilities since, when appropriately constructed, it can consider the dynamics 
of the whole system, rather than make greedy local decisions. Using both historical and information knowledge 
available in the swarm, QPSO can effectively distribute user loads to various data centres, thereby increasing 
the robustness of the system, de-risking the possibility of overloading in any central post. All these findings 
attest to the fact that QPSO is not only efficient in reducing latency and access times, but it is also vital in 
ensuring long-term system health due to its ability to ensure workloads that are distributed evenly in a dynamic 
cloud-based environment setup.

Table 3. Input Size vs Average Latency (ms)

Users CHP DRL HHC SA QPSO

100 110 100 105 95 82

300 125 112 118 102 88

500 135 118 124 110 93

1000 148 130 135 122 103
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Figure 2.  Input Size vs Average Latency (ms)

Table 4. Input Size vs Access Time (ms)

Users CHP DRL HHC SA QPSO

100 210 195 200 185 170

300 240 210 220 198 180

500 270 230 245 210 192

1000 305 255 270 238 208

Figure 3. Input Size vs Average Latency (ms)

Figure 3 shows the Average Access Time (in milliseconds) of various algorithms with different loads of users. 
The smaller the values, the faster the interactions of usage to the cloud infrastructure. Quantum Particle 
Swarm Optimization (QPSO) in general gives minimal access times as compared to any of its methods; thus, it 
turns out to be the best method of reducing the data retrieval and transmission delay.

In table 4, a 100-user QPSO shows 170 ms, which beats CHP (210 ms) and DRL (195 ms) among others. At 
a user increment of 1000, QPSO is still scalable in just 208 ms, but DRL increases to 255 ms and CHP to 305 
ms. Such a performance improvement can be attributed to the quantum-inspired global optimization strategy 
employed by QPSO, where important data centre placements are dynamically discovered as a combination of 
latency and load-balancing considerations.

Probabilistic movement and memory of global best solutions in the algorithm allow for exploring a large and 
complex search space effectively and a reduction of access bottlenecks. Such findings highlight the scalability 
and performance of QPSO in real-world distributed systems, whose low latency and access speed are of 
importance to their performance and user satisfaction.
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Table 5. Input Size vs Load Balancing Index

Users CHP DRL HHC SA QPSO

100 0,30 0,24 0,27 0,20 0,14

300 0,35 0,27 0,30 0,23 0,16

500 0,39 0,30 0,33 0,25 0,18

1000 0,42 0,33 0,36 0,29 0,20

Figure 4. Input Size vs Average Latency (ms)

Figure 4 below displays the Load Balancing Index (LBI) attained by a set of allocation strategies under 
varied user densities. When LBI is lower, it means that the workload is distributed more evenly among the 
data centres. Notably, Quantum Particle Swarm Optimization (QPSO) consistently outperforms the baseline 
techniques, including Classical Heuristic Placement (CHP), Dynamic Reinforcement Learning (DRL), Hybrid 
Heuristic + Clustering (HHC), and Simulated Annealing (SA).

Table 6. Input Size vs Execution Time (s)

Users CHP DRL HHC SA QPSO

100 1,2 2,4 1,8 2,0 1,1

300 2,5 3,8 2,9 3,4 1,8

500 4,0 5,6 4,3 5,0 2,5

1000 7,8 9,2 8,1 8,5 4,2

Figure 5. Input Size vs Average Latency (ms)

https://doi.org/10.56294/dm20261328

 13    CV, et al

ISSN: 2953-4917

https://doi.org/10.56294/dm20261328


In table 5, for the 100 users, the minimum LBI is 0,14 recorded by QPSO, 0,30 by CHP, and 0,24 by DRL. When 
the number of users is increased up to 1000, QPSO manages to stay stable with the value of 0,20, but the other 
methods have values higher than 0,29. The trend indicates that QPSO provides meaningful load balancing that 
eliminates the chance of information overload or inactivation at the data centre.

The empirical findings presented in the accompanying figure 5 reveal that the proposed Quantum Particle 
Swarm Optimization (QPSO) method exhibits superior average latency performance across a range of simulated 
user loads. With table 6 user counts ranging from 100 to 1000, QPSO consistently achieves the lowest latency 
for every experimental condition, outperforming baseline alternatives: Classical Heuristic Placement (CHP), 
Dynamic Reinforcement Learning (DRL), Hybrid Heuristic + Clustering (HHC), and Simulated Annealing (SA).

When the number of users goes to 100, QPSO has the lowest latency value of 1,1 ms. This advantage holds 
even at increased scale (number of users), where 1000 users are involved, QPSO provides 4,2 ms, compared 
to DRL and SA, which provide above 8 ms. These findings reiterate the soundness and elasticity of QPSO in 
optimization modelling that is both high-dimensional as well as time-varying. The probabilistic exploration 
scheme with quantum-inspired inspiration in QPSO helps the algorithm escape local minima and converges 
faster to mappings that are globally optimal than in competing algorithms, hence its high level of performance. 
Reductions of latency by orders of magnitude, as found in these experiments, are essential to distributed cloud 
environments since they have a direct effect on improving user experiences and system turnaround times. This 
makes QPSO more adaptable and efficient, which would make the latter a good choice in intelligent cloud 
resource management.

Comprehensive testing conducted shows that the QPSO method provides the best convergence on the 
basis of speed and scalability. It can converge within only 22 iterations, which is undoubtedly better than 
conventional and AI-based competitors, and thus allows for this significantly shortened optimization process. 
The derived scalability measure of 0,00547, which is the lowest of all methods, is an indication of robustness 
with a growing user base and deployment into data centres with little loss of performance. This is because of 
this favourable scaling property, which assures that the method can be applied consistently even in the more 
complex, large-scale infrastructures in clouds, where optimal allocation of user data to ensure efficient and 
optimal resource sharing has high importance. QPSO finds high-quality solutions quickly by cleverly trading off 
between exploratory and exploitative behaviour using quantum-motivated iterative updates, and so it is well 
adapted to real-time, adaptive data assignment of user requests in distributed cloud computing systems.

Table 7. Metric Comparison of Baseline Methods

Method Average
Latency (ms)

Access
Time (ms)

Load Balancing
Index

Convergence Speed
(Iterations)

Execution
Time (s)

CHP 120 230 0,32 30 3,2

DRL 105 200 0,25 45 6,5

HHC 110 210 0,28 35 4,1

SA 98 190 0,22 50 5,8

QPSO (Proposed) 86 168 0,15 22 2,9

Figure 6. Input Size vs Average Latency (ms)
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An in-depth performance figure 6 has been created to review data-allocation methods on the basis of such 
indicators. Quantum Particle Swarm Optimization (QPSO) emerges as the superior performer in all assessed 
categories. Table 7 values achieve the lowest average latency (86 ms) and fastest access time (168 ms), thereby 
enabling users to engage with cloud services with remarkable swiftness. This Load Balancing Index of 0,15 
indicates a more equal distribution of data centre workload, and this translates into a lower likelihood of 
bottlenecks. Besides, QPSO has the best convergence speed, 22 iterations that surpass the findings of classical 
approaches being used. The fact that it takes 2,9 seconds to execute adds more weight to the efficiency of its 
operations. Table 7, therefore, can support the effectiveness of QPSO as an adaptable method of intelligent 
data distribution over distributed cloud environments. Its quantum-motivated search dynamics exhibit better 
dexterity in the traverse of complex solution spaces than those of established or even those based on learning 
techniques, hence offering a ray of hope in cases of modern optimization tasks in clouds.

Overall, experimental findings demonstrate that Quantum Particle Swarm Optimisation (QPSO) represents 
the most effective strategy for allocating user data in distributed cloud environments. It is also clear that 
QPSO is competitive with classical and modern baseline methods even across input sizes and metrics. QPSO has 
the lowest values of mean latency: 1,1 milliseconds and 4,2 milliseconds as compared to 7,8 milliseconds and 
9,2 milliseconds taken by CHP and DRL, respectively, with 100 and 1000 users, respectively. This shows how 
excellent it was in minimizing the wait times in communication. 

For access time, QPSO records 170 microseconds (100 users) and 208 microseconds (1000 users), whereas 
other approaches, such as CHP and DRL, range from 210 to 305 microseconds, providing up to 30 % improvement. 
Load Balancing Index also proves the superiority of QPSO with load ranking at 0,14 to 0,20 as compared to CHP 
and DRL, which secure 0,30 to 0,42. Convergence Speed is another strong indicator: QPSO stabilizes after 22 
iterations, much faster than DRL (45) or SA (50), which is crucial for dynamic environments.

Additionally, execution time is just 2,9 seconds for QPSO, outperforming CHP (3,2 s) and DRL (6,5 s). The 
close scores in all the performance metrics confirm the effectiveness of QPSO and certify the fact that it is also 
scalable, therefore, making it a great selection when it comes to intelligent cloud data placement.

CONCLUSIONS
This work develops an intelligent and efficient user-data allocation strategy for geographically dispersed 

cloud environments, employing Quantum Particle Swarm Optimization (QPSO). The suggested method has 
already shown significant promise in successfully handling some major challenges of placement algorithms, 
including high latency, unequal distribution of the load, and poor convergence, which are widespread in the 
traditional ones. Large-scale simulations and testing confirm that the QPSO algorithm shows a strong and stable 
baseline on average latency, access time, load-balancing index, convergence speed, and execution time on 
all chosen algorithms: Classical Heuristics, DRL-based model, Hybrid Heuristics, and Simulated Annealing. The 
reduced latency by as much as 28 % of the experimental results, a 26 % improvement in load performance, and 
an in excess of 50 % improvement in load balancing in comparison with traditional strategies are indicative. In 
addition, its rapid convergence and low computation overhead make QPSO very applicable in real-time complex 
situations where dynamic dealing of resources is done in a large cloud environment.

Some modifications have been suggested to increase the capabilities of QPSO. Further improvement may be 
achieved by implementing quantum circuit-based optimizers, e.g., QAOA, on real hardware. The incorporation 
of multi-objective QPSO would enable the trade-off between energy consumption, cost, and reliability. In reality, 
QPSO would be useful to combine with adaptive monitoring systems that immediately recognize the changes 
in the behaviour of the users, thus triggering redirections. Lastly, federated learning or privacy-preserving 
solutions might be included to perform a secure data placement according to the regulatory framework of data 
sovereignty. These improvements seek to transfer QPSO into real-life and scalable cloud optimization toolsets.
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