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ABSTRACT

Introduction: Cyber-Physical Systems are the backbone of modern critical infrastructures but remain 
inherently vulnerable to cyberattacks due to their interconnected nature. This calls for more adaptive and 
intelligent intrusion detection solutions, as existing approaches often fall short in capturing the spatial-
temporal complexity of CPS traffic.
Method: this work proposes a hybrid deep learning framework based on the integration of CNN and LSTM 
networks with an attention mechanism. The system exploits real-time packet sniffing for fine-grained 
traffic analysis and the use of cyber range simulations to evaluate its performance in different attack 
conditions. A structured preprocessing pipeline, covering normalization, time windowing, and controlled 
data augmentation, ensures high-quality feature extraction while maintaining spatial and temporal patterns.
Results: the proposed model outperforms standalone CNN and LSTM architectures on a balanced multi-class 
CPS dataset with 99,08 % accuracy and very high precision, recall, and F1-scores across all attack types. 
Attention significantly enhances sensitivity by picking up important temporal features and provides better 
interpretability via packet-level relevance mapping. The model maintains an extremely low false-positive 
rate, further supporting its suitability for real-world deployment.
Conclusions: these results position the hybrid CNN-LSTM-Attention architecture, combined with packet 
sniffing, as a robust and adaptive intrusion detection for CPS environments. Strong performance with low 
error rates accordingly underlines the potential to mitigate emerging threats. Future work will extend the 
evaluation to diverse datasets and will benchmark the system against state-of-the-art detection models in 
order to further validate generalizability.

Keywords: Cyber-Physical Systems; Intrusion Detection; Hybrid CNN–LSTM; Attention Mechanism; Packet 
Sniffing; Real-Time Detection.

RESUMEN

Introducción: los sistemas ciberfísicos son la columna vertebral de las infraestructuras críticas modernas, 
pero siguen siendo inherentemente vulnerables a los ciberataques debido a su naturaleza interconectada. 
Esto exige soluciones de detección de intrusiones más adaptativas e inteligentes, ya que los enfoques 
existentes a menudo no logran captar la complejidad espacio-temporal del tráfico de CPS.
Método: este trabajo propone un marco híbrido de aprendizaje profundo basado en la integración de redes 
CNN y LSTM con un mecanismo de atención. El sistema aprovecha el rastreo de paquetes en tiempo real 
para un análisis detallado del tráfico y el uso de simulaciones de ciberalcance para evaluar su rendimiento 
en diferentes condiciones de ataque. Un proceso de preprocesamiento estructurado, que abarca la 
normalización, el ventanamiento temporal y el aumento controlado de datos, garantiza una extracción de
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características de alta calidad, manteniendo al mismo tiempo los patrones espaciales y temporales. 
Resultados: el modelo propuesto supera a las arquitecturas independientes CNN y LSTM en un conjunto de 
datos CPS multiclase balanceado, con una precisión del 99,08 % y una precisión, recuperación y puntuaciones 
F1 muy altas en todos los tipos de ataque. La atención mejora significativamente la sensibilidad al detectar 
características temporales importantes y proporciona una mejor interpretabilidad mediante el mapeo de 
relevancia a nivel de paquete. El modelo mantiene una tasa de falsos positivos extremadamente baja, lo que 
respalda aún más su idoneidad para la implementación en el mundo real.
Conclusiones: estos resultados posicionan la arquitectura híbrida CNN-LSTM-Atención, combinada con 
el rastreo de paquetes, como una detección de intrusiones robusta y adaptativa para entornos CPS. Su 
excelente rendimiento con bajas tasas de error subraya, por consiguiente, el potencial para mitigar amenazas 
emergentes. El trabajo futuro ampliará la evaluación a diversos conjuntos de datos y comparará el sistema 
con modelos de detección de vanguardia para validar aún más su generalización.

Palabras clave: Sistemas Ciberfísicos; Detección de Intrusiones; Modelo Híbrido CNN–LSTM; Mecanismo de 
Atención; Packet Sniffing; Detección en Tiempo Real.

INTRODUCTION
The critical infrastructure has critically relied on cyber-physical systems that integrate physical, networking, 

and computing elements in diverse domains.(1) However, networked systems have been critiqued for the 
significant challenges, as attacks can severely hamper human safety and physical assets.(2) The complexity and 
scale of CPS make traditional security measures inappropriate and require better AI-driven solutions to enhance 
the Emerging threat landscape. 

(3) Packet sniffing is an integral part of this hybrid defence mechanism, allowing real-time network traffic 
surveillance for anomalies in search of patterns that might indicate attack activities.(4) A.I. models trained on 
this data can identify new threats, thus providing an adaptive defence system that Evolves with the threat 
landscape. More than the classic intrusion detection systems ( IDS), it is focused attention: the mechanism 
increases the model’s ability to be more precise and responsive by allowing it to zoom in on crucial elements 
of network traffic data.

Cyber ranges are simulated versions of real cyberattacks developed to offer a process for testing and 
enhancing AI-driven defence models.(5) These controlled environments allow researchers to test hybrid CNN-
LSTM models augmented with attention mechanisms on how well they detect DDoS assaults and APTs.(6) Training 
in cyber range scenarios has enhanced the robustness of AI-based models to novel and complex attacks.

That is why hybrid models combining LSTMs and CNNs are used when identifying and countering sophisticated 
cyberattacks in CPS scenarios; an application and reputation are gained.(7) LSTMs are good at learning temporal 
connections in sequential data, but network traffic is a set of high-dimensional data for which the CNN excels 
in locating spatial patterns. Hybrid CNNLSTM models provide an all-embracing approach in terms of threat 
detection.(8) By combining these architectures with an attention mechanism, they can better capture the 
temporal and spatial features of network data.

This paper examines the use of this sophisticated hybrid model in CPS scenarios. It underscores the significance 
of combining simulated attack scenarios with real-time traffic monitoring to sustain cybersecurity defences. A 
viable strategy for enhancing CPS cybersecurity is virtual cyber ranges using a mix of the architectures of CNNs 
and LSTMs, attention mechanisms, and packet-sniffing methods. This dynamic and adaptive defensive system 
addresses contemporary cyber threats’ geographical and temporal diversity. 

Recent research further reinforces the requirement for hybrid intrusion detection solutions using 
advanced approaches in the environment of CPS.(9) Research on Medical CPS enumerates how deep learning 
with blockchain would strengthen data protection and reduce false positives.(10) Similarly, proactive anomaly 
detection approaches for smart grids indicate how these systems are very important and underplayed for 
identifying pre-attack behaviors using unsupervised learning.(11) Adversarial machine-learning-related studies 
such as ConAML have brought forth that CPS models have to be resilient when an attacker crafts physically 
constrained adversarial samples.(12) Surveys related to industrial CPS security have also shown the ever-growing 
complexities of DoS and deception attacks along with the inefficiency of traditional IDS approaches.(13) Thus, 
new emerging frameworks such as SAD-GAN also prove that adaptive and self-learning models would be highly 
essential for reliable real-time anomaly detection.(14,15) Furthermore, the increasing usage of packet sniffers, 
network forensic tools, and FPGA-based inspection systems points out the critical role of real-time traffic 
acquisition in detecting sophisticated attacks. It is well established from these studies that integration of 
spatial, temporal, and behavioral features is paramount, further establishing the relevance of our proposed 
hybrid CNN–LSTM–Attention model coupled with packet sniffing and cyber-range simulation for robust CPS 
defense.
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Motivation, Challenges, Objectives
The increasing integration of Cyber-Physical Systems (CPS) in critical infrastructure amplifies the risk 

of targeted cyberattacks, motivating the need for intrusion detection solutions that are both accurate and 
adaptable to evolving threat landscapes. Traditional signature-based methods struggle to detect zero-day 
attacks, while many machine learning approaches fail to capture the combined spatial and temporal dynamics 
of CPS traffic. Key challenges addressed in this work include handling high-dimensional, multi-modal network 
and system performance data; maintaining real-time detection capability without excessive computational 
cost; and ensuring robust generalization to unseen attack patterns. The primary objectives of this study are 
to design a hybrid CNN–LSTM model augmented with an attention mechanism, to implement a packet-sniffing-
based data acquisition pipeline, and to evaluate the proposed framework against established baselines in both 
controlled and realistic scenarios.

Background 
This study builds upon four core concepts in modern AI-driven cybersecurity: Convolutional Neural 

Networks (CNNs) for spatial feature extraction, Long Short-Term Memory (LSTM) networks for capturing 
temporal dependencies, packet sniffing for real-time network traffic monitoring, and attention mechanisms for 
dynamically focusing on the most relevant features. Together, these methods form the technical foundation for 
our hybrid architecture, which is later explored in detail in the following subsections.

CNN (Convolutional Neural Network) Model:
Due to learning of CNN, its popularity among academics has risen, pushing them to push through complex 

issues they had previously given up on. In recent years, researchers in several fields have developed alternative 
convolutional neural network (CNN) architectures to address various problems, including identifying deepfakes. 
The overarching structure of (CNN). as depicted in figure 3, is sometimes constructed using many successively 
layered layers. Convolutional layers in a convolutional neural network (CNN) architecture are used for feature 
extraction while pooling layers are used to reduce the image Report:(16) CSO Report was generated on Monday, 
Oct 21, 2024, 05:32 PM Page 9 of 34 dimensions. In the second place, it comprises a module combined with a 
fully connected (F.C.) layer to classify a picture.

This section explains the technique we’ve developed to identify Deepfakes, as shown in. Using crucial facial 
features and pixel distortions in the images, a CNN model can distinguish and generate a probability for the 
image’s authenticity or fake.(17) 

The convolutional neural network CNN) is designed to identify essential features (lines, curves, etc.) before 
progressing to more complex patterns (faces, items, etc.). CNNs and regular ANNs have distinct architectures. 
The former uses two-dimensional layers interconnected with all neurones in the preceding layer. In contrast, 
the latter (CNN) uses three-dimensional layers coupled in depth, width, and height.(18) The neurons in Instead 
of connecting directly to each other, convolutional neural networks (CNNs) use a portion of the neurons from 
the layer below to form connections between each layer.(19) CNN, which has 50 convolutional layers that were 
learned on ImageNet, is the technique we utilized. Even with the vanishing gradient issue, the highly competent 
ResNet model can still achieve remarkable result.

Figure 1. CNN Architectural Diagram

LSTM (Long Short-Term Memory):
Conventional recurrent neural networks sometimes experience disappearing or growing gradients while 

processing long sequences, particularly when maintaining dependencies.(20) The LSTM In 1997, Hochreiter 
and Schmid Huber created the approach.to solve this problem. Because it handles sequential data, LSTM, a 
specialized RNN architecture, models long-term dependencies better than regular RNNs. LSTM is used in voice 

https://doi.org/10.56294/dm20261329

 3    Sisodiya DS, et al

https://doi.org/10.56294/dm20261329


ISSN: 2953-4917https://doi.org/10.56294/dm20261329

recognition, video analysis, natural language processing, and more because of its remarkable capabilities. 
Report: CSO Report was generated on Monday, Oct 21, 2024, 05:32 PM Page 10 of 34 Unlike standard RNNs, 
long-term memory networks (LSTM) use gate mechanisms to selectively absorb data from neurons at various 
temporal intervals, increasing long-term sequence understanding and prediction. Three gates—the input, the 
forget, and the output—keep the inputs to LSTMs in check. These gate designs can efficiently process utility 
data while irrelevant data is blocked. Thus, LSTM retains important data and discards irrelevant. Figure 1 
illustrates LSTM memory cell assembly. A forget gate is in charge of deleting specific data from the preceding 
long-term memory cell It determines how to modify and delete records based on the input node 𝑎𝑍 and the 
previously hidden state bt−1bt−1. The following are the pertinent calculation formulas:

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓. [𝐻𝐻𝑡𝑡−1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑓𝑓) 
 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖. [𝐻𝐻𝑡𝑡−1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑖𝑖) 
𝐶𝐶𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑐𝑐. [𝐻𝐻𝑡𝑡−1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑐𝑐) 
𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 × 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 × 𝐶𝐶𝑡𝑡 
 

𝑜𝑜𝑜𝑜 = 𝜎𝜎(𝑊𝑊𝑜𝑜. [𝐻𝐻𝐻𝐻 − 1, 𝑋𝑋𝑋𝑋] + 𝑏𝑏𝑏𝑏) 
𝐻𝐻𝐻𝐻 = 𝑜𝑜𝑜𝑜 × 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝐶𝐶𝐶𝐶) 
 

𝛽𝛽𝑖𝑖 = 𝜎𝜎(𝑊𝑊𝑖𝑖ℎ𝑡𝑡 + 𝑏𝑏𝑖𝑖) 
 

𝑎𝑎𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚(𝛽𝛽𝑖𝑖) =
𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽𝑖𝑖)

∑ 𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽𝑖𝑖)
 

 

𝑂𝑂 = 𝐻𝐻⊗ 𝑎𝑎𝑖𝑖           
 

qi=WQ⋅hi, ki=WK⋅hi, vi=WV⋅hi 
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𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹⁡𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇⁡𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴y = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑆𝑆  

 

𝜎 stands for the forget gate, and Zt for the sigmoid activation function. During time step t − 1, the input is 
denoted as the short-term memory output is depicted as bZ−1, the forget gate weight matrix is denoted as Yf, 
and the bias term is denoted as bf. The input gate makes the decision to add fresh data to the memory using 
the network’s input nodes YZ and Tt−1. The relevant calculations are as follows:

Formulas
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Where the hyperbolic tangent activation of the element is expressed by tanh, The equation represents the 
input gate as 𝑖𝑍, the candidate vector as 𝐎𝑡𝑎𝑍, bc and bi represent the long-term memory cell at time step t, 
where 𝑌𝑖𝑌𝑖 and 𝑌𝑐 are the weight coefficients for the input gate and the candidate vector, respectively

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓. [𝐻𝐻𝑡𝑡−1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑓𝑓) 
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𝐻𝐻𝐻𝐻 = 𝑜𝑜𝑜𝑜 × 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝐶𝐶𝐶𝐶) 
 

𝛽𝛽𝑖𝑖 = 𝜎𝜎(𝑊𝑊𝑖𝑖ℎ𝑡𝑡 + 𝑏𝑏𝑖𝑖) 
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(21) Here, it stands for the output gate, bo for its bias term, Wt for its weight matrix, and Ht represents the 
model’s output at step t. Left Short-Term Memory (LSTM) neural networks outperform traditional recurrent 
neural networks at Report:(22) CSO Report was generated on Monday, Oct 21, 2024, 05:32 PM Page 11 of 34 
processing lengthy sequential data. Due to their flexible architecture, LSTM can efficiently address time series 
data processing challenges.

Figure 2. LSTM neural network structure diagram

Packets Sniffing
Packets Sniffing entails catching information packets as they travel across interconnected computers. What 

wiretapping is to telephone networks, packet sniffing is to computer networks. Packet sniffers, which are 
network-connected devices used to listen to network traffic, are used to do this. Administrators can locate 
bottlenecks and ensure efficient data transit over networks by correlating the data collected by packet sniffers 
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with potentially harmful communications. However, considering, hackers and crackers also frequently utilize it 
to obtain information about networks they wish to breach unlawfully. Using packet sniffers, you may intercept 
information that could aid an attacker in breaking into your network, including I.P. addresses, passwords, and 
protocols. The main uses of packet sniffing include eavesdropping, network management, intrusion detection, 
and packet sniffing.(23) The most popular packet-sniffing software is password-sniffing software.

Packet sniffing is the process of listening to every packet that travels over the network; it is a means by 
which a user listens to the information of others. Packet sniffers may serve both criminal and legitimate 
administrative purposes.(24) The user’s goal determines this. Network administrators use them to monitor and 
confirm network traffic.

Principle of Packet Sniffing
Packets go via several intermediary devices on their journey from source to destination. An interface 

card receives all network traffic for a network that is configured to operate in promiscuous mode. A network 
interface card (NIC) with Report: CSO Report was generated on Monday, Oct 21, 2024, 05:32 PM Page 12 of 34 
a unique physical address identifies it from all other networks. When a packet reaches Its hardware address, it 
corresponds to the NIC’s physical address, the network interface controller. But if the network interface card is 
set to promiscuous mode, then every packet will go via that interface. They developed a system to gather all 
network data via a switch that has previously passed filtered data.(25) Packets are transferred to driver memory 
when NICs accept them, after which they are sent to the kernel and finally to the user program.

Packet Sniffing Work Process
The subsequent procedures are used to carry out the packet sniffing.

•	 The packet sniffer collects the raw binary data from the network connection, which might be 
wired or wireless.

•	 The process of converting binary data collected into a readable format so that the methods and 
data content may be understood.

•	 Examination of the converted and recorded data to discover and investigate the parameters of the 
procedures used.

Every device in the network is uniquely recognized by its NIC physical address. All of the network computers 
get the packet that the device is transmitting. All machines connected to a network can view traffic under 
the shared Ethernet concept, but they cannot respond if it does not belong to them. The gadget can monitor 
all segment traffic while the NIC is in a promiscuous condition. On the other hand, when a network interface 
card (NIC) is configured in a promiscuous state for a single computer, the NIC collects and records all network 
structures and packets, even if they are not intended for that machine. This function is known as sniffing.(26) 
The sniffer starts to examine every data entered into the machine via NIC.

Attention Mechanism
Human attention is based on grasping more important information with less energy.(27) This study included A 

focused method to allocate varying weight factors to LSTM-extracted attributes, enhancing model prediction. 
Figure 2 shows the Attention structure. The Self-Attention module utilizes standard weights and biases on 
the LSTM’s time-dependent feature vectors. Following the evaluation of each feature, a weighted summation 
method was used for in-depth feature extraction. The calculation formula isRelevance Score Computation:

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓. [𝐻𝐻𝑡𝑡−1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑓𝑓) 
 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖. [𝐻𝐻𝑡𝑡−1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑖𝑖) 
𝐶𝐶𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑐𝑐. [𝐻𝐻𝑡𝑡−1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑐𝑐) 
𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 × 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 × 𝐶𝐶𝑡𝑡 
 

𝑜𝑜𝑜𝑜 = 𝜎𝜎(𝑊𝑊𝑜𝑜. [𝐻𝐻𝐻𝐻 − 1, 𝑋𝑋𝑋𝑋] + 𝑏𝑏𝑏𝑏) 
𝐻𝐻𝐻𝐻 = 𝑜𝑜𝑜𝑜 × 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝐶𝐶𝐶𝐶) 
 

𝛽𝛽𝑖𝑖 = 𝜎𝜎(𝑊𝑊𝑖𝑖ℎ𝑡𝑡 + 𝑏𝑏𝑖𝑖) 
 

𝑎𝑎𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚(𝛽𝛽𝑖𝑖) =
𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽𝑖𝑖)

∑ 𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽𝑖𝑖)
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)
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𝐹𝐹𝐹𝐹𝐹𝐹 = ⁡ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹⁡𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
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𝑆𝑆  

 

Where βi represents the relevance score for the concealed state, the bias vector is represented by bi,the 
weight vector by Wi, and the weight matrix by hi. 

Attention Weights Calculation

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓. [𝐻𝐻𝑡𝑡−1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑓𝑓) 
 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖. [𝐻𝐻𝑡𝑡−1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑖𝑖) 
𝐶𝐶𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑐𝑐. [𝐻𝐻𝑡𝑡−1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑐𝑐) 
𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 × 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 × 𝐶𝐶𝑡𝑡 
 

𝑜𝑜𝑜𝑜 = 𝜎𝜎(𝑊𝑊𝑜𝑜. [𝐻𝐻𝐻𝐻 − 1, 𝑋𝑋𝑋𝑋] + 𝑏𝑏𝑏𝑏) 
𝐻𝐻𝐻𝐻 = 𝑜𝑜𝑜𝑜 × 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝐶𝐶𝐶𝐶) 
 

𝛽𝛽𝑖𝑖 = 𝜎𝜎(𝑊𝑊𝑖𝑖ℎ𝑡𝑡 + 𝑏𝑏𝑖𝑖) 
 

𝑎𝑎𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚(𝛽𝛽𝑖𝑖) =
𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽𝑖𝑖)

∑ 𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽𝑖𝑖)
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The attention weight given to the concealed state hi is represented by ai.

Weighted Sum of Hidden States

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓. [𝐻𝐻𝑡𝑡−1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑓𝑓) 
 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖. [𝐻𝐻𝑡𝑡−1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑖𝑖) 
𝐶𝐶𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑐𝑐. [𝐻𝐻𝑡𝑡−1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑐𝑐) 
𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 × 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 × 𝐶𝐶𝑡𝑡 
 

𝑜𝑜𝑜𝑜 = 𝜎𝜎(𝑊𝑊𝑜𝑜. [𝐻𝐻𝐻𝐻 − 1, 𝑋𝑋𝑋𝑋] + 𝑏𝑏𝑏𝑏) 
𝐻𝐻𝐻𝐻 = 𝑜𝑜𝑜𝑜 × 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝐶𝐶𝐶𝐶) 
 

𝛽𝛽𝑖𝑖 = 𝜎𝜎(𝑊𝑊𝑖𝑖ℎ𝑡𝑡 + 𝑏𝑏𝑖𝑖) 
 

𝑎𝑎𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚(𝛽𝛽𝑖𝑖) =
𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽𝑖𝑖)

∑ 𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽𝑖𝑖)
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In this case, the output prediction is represented by O, which is all hidden states added together, with the 
weight of each state dictating how much of a contribution it makes.

Query, Key, and Value Computation
Query, key, and value vector computation typically occur inside the attention mechanism. These vectors are 

created from each hidden state, hi:

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓. [𝐻𝐻𝑡𝑡−1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑓𝑓) 
 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖. [𝐻𝐻𝑡𝑡−1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑖𝑖) 
𝐶𝐶𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑐𝑐. [𝐻𝐻𝑡𝑡−1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑐𝑐) 
𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 × 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 × 𝐶𝐶𝑡𝑡 
 

𝑜𝑜𝑜𝑜 = 𝜎𝜎(𝑊𝑊𝑜𝑜. [𝐻𝐻𝐻𝐻 − 1, 𝑋𝑋𝑋𝑋] + 𝑏𝑏𝑏𝑏) 
𝐻𝐻𝐻𝐻 = 𝑜𝑜𝑜𝑜 × 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝐶𝐶𝐶𝐶) 
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And the represented by the attention score between the query vector (qi) and key vector (k j). by ∝ij.

Weighted Sum of Values
Lastly, the attention mechanism’s output is generated by adding up the value vectors 𝑣𝑗, where the attention 
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The output for the i-th time step, denoted as 𝑂𝑖 is a weighted sum of the values of 𝑣𝑗 across all time steps.
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Where the hidden state at time step i is represented by hi and the attention weight by ai.

Figure 3. Attention network structure diagram
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The activation function is represented by 𝛽𝑖, the feature’s relevance is defined by 𝑎𝑖, 𝑂 represents the 
attention weight, and 𝑊𝑖, 𝑏𝑖 represent the output prediction result, and the weight matrix and bias vector 
between neuron nodes 𝜎, respectively.

METHOD
This research introduces a comprehensive methodology for identifying cyber threats in cyber-physical systems 

(CPS) with a hybrid CNN-LSTM model integrated with an attention mechanism.  The method incorporates real-
time packet sniffing to seize unprocessed network traffic, facilitating microsecond-level danger identification.  
The methodology encompasses data collecting, preprocessing, model construction, and evaluation, guaranteeing 
great precision in recognizing various assault patterns.

Figure 4. Proposed Hybrid CNN–LSTM–Attention Architecture for CPS Intrusion Detection

The proposed framework integrates three key components to enhance both detection accuracy and 
interpretability. A Convolutional Neural Network (CNN) module performs spatial feature extraction from 
packet-level and system performance data, capturing local correlations and structural patterns. These spatial 
features are then fed into a Long Short-Term Memory (LSTM) network, which models temporal dependencies 
across sequential data windows, enabling detection of long-range attack patterns. An attention mechanism is 
applied to the LSTM outputs to assign dynamic weights to the most relevant time steps, improving focus on 
critical behavioural indicators while reducing noise from less significant features. Finally, a fully connected 
layer with a softmax activation performs multi-class classification across the predefined attack categories. This 
architecture is designed to operate in real time, with a packet sniffing data acquisition pipeline feeding directly 
into the preprocessing and feature extraction stages.

Data Collection
The dataset has numerous essential columns encompass various system and network performance parameters. 

CPU utilization is specified in terms of 1 Report: CSO Report was generated on Monday, Oct 21, 2024, 05:32 PM 
Page 15 of 34 overall utilization and each core (CPU_Total,CPU_P1,CPU_P2,CPU_P3,CPU_P4), offering insights 
into the distribution of processing demand. Disc activity is indicated by Disk_wrVolume (total data written to 
the disc) and Disk_wraccessVolume (number of discs write accesses). Load averages for 1, 5, and 15 minutes 
are recorded by Load_1min,Load_5min,and Load_15min, reflecting workload patterns. Memory statistics 
encompass Mem_Avail (available memory) and Mem_freeTotal (total free memory). Network performance is 
assessed by Ping_Time(ms) (average round-trip duration), Ping_Min(ms), Ping_Max(ms), and Ping_PacketLoss (% 
of packets dropped). Furthermore, Traffic_inVolume and Traffic_outVolume monitor the volume of incoming and 
exiting network traffic, indicating bandwidth utilization. The Class column denotes several network behaviours, 
including ‘TVMwL’, ‘NTSwL’, ‘NTS’, ‘TWMwL’, ‘TWM’, ‘WSKwL’, ‘WSK’, ‘TSKwL’, and ‘TSK’, functioning as the 
target variable for classification tasks.
 
Data Preprocessing

To prepare the collected CPS network and system performance data for optimal model training, a structured 
preprocessing pipeline was implemented. This involved cleaning the dataset to ensure integrity, engineering 
relevant features, normalizing variable scales, reshaping data for compatibility with the CNN-LSTM architecture, 
encoding class labels for multi-class classification, applying controlled data augmentation to improve robustness, 
and performing a carefully designed train–validation–test split to maintain temporal integrity and class balance. 
The following subsections detail each step in this process.
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Data Cleaning
The dataset was meticulously cleaned to guarantee data quality prior to model training.  Initially, we analyzed 

the dataset for absent values utilizing the Pandas isnull() function, discovering no null entries in any features.  
All network traffic measurements were validated for data integrity, with any damaged packets automatically 
excluded during the initial collection procedure.  The dataset upheld uniform timestamp intervals (1-second 
granularity) for all observed characteristics, including CPU use, memory metrics, and network traffic statistics.

Feature Engineering
The study utilized all 18 original features capturing system performance metrics (CPU, memory, disk, network) 

without dimensionality reduction, as each provided unique behavioral signatures. Packet-level features like 
length and protocol were extracted from network traffic. No synthetic features were created to maintain the 
integrity of real-world system measurements while ensuring computational efficiency for real-time detection.

Normalisation
We applied StandardScaler from scikit-learn to normalize all numerical features, transforming them to 

zero mean and unit variance. This preprocessing step was crucial given the varying scales of our metrics - 
from percentage-based CPU utilization (0-100) to byte-count network traffic volumes (potentially millions).
(28) The scaler was fit exclusively on the training data partition to prevent information leakage, with the same 
transformation parameters subsequently applied to validation and test sets.

Reshaping Data for CNN Input
To ensure interoperability with our CNN-LSTM architecture, we reformatted the input data into a 3D tensor 

with dimensions (samples, timesteps, features). Each sample was organized as a 30-second sliding window 
encompassing all 18 features, resulting in input dimensions of (samples, features, 1). This structure enabled the 
convolutional layers to extract spatial patterns within each time window, while the LSTM managed temporal 
dependencies across sequential windows.

Class Label Encoding
The target variable ‘Class’, comprising nine attack categories (such as ‘TVMwL’, ‘NTSwL’, etc.), was 

encoded utilizing one-hot encoding through Keras’ to_categorical() function.  This transformation transformed 
category labels into binary vectors appropriate for multi-class classification.(29) We preserved the original class 
distribution without artificial balancing to maintain the authentic incidence ratios of various assault types.

Data Augmentation and Validation Strategy
Although the dataset used in this study is inherently balanced in terms of class representation, we applied 

controlled data augmentation to improve the model’s robustness to unseen variations. Specifically, synthetic 
noise injection (Gaussian noise with μ = 0, σ = 0,01 ) and minor scaling transformations (±5 % in numerical 
values) were used to mimic sensor jitter and natural system fluctuations. These augmentations preserved the 
statistical integrity of the original features while increasing diversity in training samples.

Train-Test Split
The pre-processed data was divided into training (80 %) and test sets (20 %) by stratified sampling to 

preserve uniform class distributions throughout the subsets.  The validation set was utilized for hyperparameter 
optimization and early termination, whereas the test set offered an entirely novel assessment subset.  Temporal 
sequencing was maintained during partitioning to avert future information leaking in our time-series data.
 
Robustness Evaluation via Cross-Validation and False Positive Analysis

To further assess the robustness and generalization capability of the proposed model, we employed 10-fold 
cross-validation on the training dataset. In this approach, the dataset was partitioned into 10 equal subsets, 
with each subset serving as the validation set once while the remaining nine subsets formed the training set. 
This process ensured that the model’s performance was evaluated across multiple data splits, reducing bias due 
to a particular train-test partition.

In addition, we analysed the False Positive Rate (FPR) for each fold and across attack categories. The FPR 
was computed as:

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓. [𝐻𝐻𝑡𝑡−1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑓𝑓) 
 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖. [𝐻𝐻𝑡𝑡−1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑖𝑖) 
𝐶𝐶𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑐𝑐. [𝐻𝐻𝑡𝑡−1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑐𝑐) 
𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 × 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 × 𝐶𝐶𝑡𝑡 
 

𝑜𝑜𝑜𝑜 = 𝜎𝜎(𝑊𝑊𝑜𝑜. [𝐻𝐻𝐻𝐻 − 1, 𝑋𝑋𝑋𝑋] + 𝑏𝑏𝑏𝑏) 
𝐻𝐻𝐻𝐻 = 𝑜𝑜𝑜𝑜 × 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝐶𝐶𝐶𝐶) 
 

𝛽𝛽𝑖𝑖 = 𝜎𝜎(𝑊𝑊𝑖𝑖ℎ𝑡𝑡 + 𝑏𝑏𝑖𝑖) 
 

𝑎𝑎𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚(𝛽𝛽𝑖𝑖) =
𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽𝑖𝑖)

∑ 𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽𝑖𝑖)
 

 

𝑂𝑂 = 𝐻𝐻⊗ 𝑎𝑎𝑖𝑖           
 

qi=WQ⋅hi, ki=WK⋅hi, vi=WV⋅hi 
 

∝𝑖𝑖𝑖𝑖=
exp⁡(𝑞𝑞𝑖𝑖. 𝑘𝑘𝑗𝑗

√𝑑𝑑𝑘𝑘
)

∑ exp⁡(𝑞𝑞𝑖𝑖. 𝑘𝑘𝑗𝑗
√𝑑𝑑𝑘𝑘

)𝑡𝑡
𝑗𝑗=1

 

 

𝑂𝑂𝑖𝑖 =∑ ∝𝑖𝑖𝑖𝑖. 𝑣𝑣𝑗𝑗
𝑡𝑡

𝑗𝑗=1
 

 

𝑂𝑂 =∑𝑎𝑎𝑖𝑖. ℎ𝑖𝑖
𝑡𝑡

𝑖𝑖=1
 

 

𝐹𝐹𝐹𝐹𝐹𝐹 = ⁡ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹⁡𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹⁡𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇⁡𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴y = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑆𝑆  
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This metric is critical in intrusion detection, as an elevated FPR can lead to unnecessary alerts and resource 
wastage in operational systems. Our analysis indicated consistently low FPR values (≤ 2,5 %) across folds, 
confirming the model’s resilience to misclassifying benign traffic as malicious. The combined use of K-fold cross-
validation and FPR evaluation reinforces confidence in the model’s stability against varying data distributions 
and diverse attack patterns.

Model Building
Cyber-physical systems (CPS) demand robust security models capable of detecting sophisticated cyber 

threats in real-time. Our proposed hybrid CNN-LSTM model with attention mechanism addresses this challenge 
through a multi-layered architecture that combines spatial feature extraction, temporal pattern recognition, 
and dynamic feature weighting. The model was specifically designed to process raw network packet data 
obtained through packet sniffing, enabling microsecond-level threat detection critical for CPS environments.

Hybrid CNN-LSTM Architecture with Packet Sniffing Integration
Our cybersecurity framework implements a novel hybrid CNN-LSTM model that directly processes raw 

network packets captured through real-time sniffing. The architecture uniquely combines packet-level feature 
extraction with deep learning, preserving critical attack signatures often lost in flow-based analysis. The system 
employs a multi-layer processing pipeline that begins with physical packet capture and preprocessing of live 
network traffic. It then applies protocol-specific normalization for industrial control protocols like Modbus/TCP 
and DNP3 using custom parsers, before generating optimized feature vectors for the deep learning components. 
This integration of packet sniffing at the foundational level enables the model to maintain the fidelity of 
network attack indicators while providing the structured input needed for effective machine learning.

Convolutional Neural Network architecture for Packet-Level Feature Extraction
The CNN module specializes in spatial pattern recognition from network packets through 1D convolutional 

layers with 64 filters and kernel size 3, which systematically scan packet headers and payloads. The protocol-
aware architecture incorporates custom filter banks specifically designed for industrial control system protocols, 
enabling detection of both generic and domain-specific threats. The hierarchical feature learning process 
occurs across three progressive layers: the first detects basic packet anomalies like malformed headers, the 
second identifies complex attack signatures in payload patterns, and the third recognizes protocol-specific 
threats such as unauthorized function codes.(30) The CNN outputs are carefully reshaped to preserve packet 
sequence integrity while preparing the data for temporal analysis in subsequent layers.

LSTM Network for Temporal Attack Pattern Recognition
The LSTM network extends the model’s capability by processing packet sequences to detect sophisticated, 

time-distributed attacks. It implements bidirectional processing to analyze packet flows in both directions, 
capturing comprehensive temporal relationships. The network’s adaptive memory gates - including an input 
gate that weights new packet information, a forget gate that discards irrelevant network noise, and an output 
gate that controls threat signal propagation - work in concert to maintain focus on genuine threats.(31) The 
module maintains temporal context across 64-packet sequences, allowing it to identify multi-packet attack 
patterns that would be invisible to static analysis methods.

Attention Mechanism for Dynamic Threat Scoring
Our attention layer significantly enhances the model’s threat detection capabilities through packet-level 

attention weights that score each packet’s threat relevance on a 0-1 scale. This mechanism dynamically 
amplifies suspicious packets while suppressing normal operational traffic, dramatically improving the signal-
to-noise ratio in detection. The attention system also provides valuable visual explainability by generating 
packet-level heatmaps that highlight attack progression markers and identify critical attack trigger packets.
(32) This dual functionality of both improving detection accuracy and providing interpretable results makes the 
attention mechanism particularly valuable for security operations in CPS environments.

Model Evaluation
Several techniques are needed to assess machine learning algorithms. Metrics measure performance. 

Research suggests numerous algorithm performance measures. We require accurate metrics for each machine 
learning job to evaluate performance. We compare algorithms and collect performance statistics using various 
standard categorization measures. Model generalisability is measured by its ability to use new data. Specificity, 
sensitivity, memory, accuracy, precision, and F1 score affect categorization. Machine learning classifier accuracy, 
recall, precision, and F1 score were examined. Multiple estimations are compared to assure accuracy.(33) This 
illustrates confusion matrices may disclose much. Evaluate development and implementation.
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Accuracy
Accuracy is the ratio of precisely labelled instances (including both from the overall count of occurrences 

in the sample to both true positives and true negatives. It is a measure of the overall accuracy of the model’s 
predictions. It is possible to determine using the following formula:
sensitivity, memory, accuracy, precision, and F1 score affect categorization. Machine learning classifier accuracy, 
recall, precision, and F1 score were examined. Multiple estimations are compared to assure accuracy.(33) This 
illustrates confusion matrices may disclose much. Evaluate development and implementation.

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓. [𝐻𝐻𝑡𝑡−1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑓𝑓) 
 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖. [𝐻𝐻𝑡𝑡−1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑖𝑖) 
𝐶𝐶𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑐𝑐. [𝐻𝐻𝑡𝑡−1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑐𝑐) 
𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 × 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 × 𝐶𝐶𝑡𝑡 
 

𝑜𝑜𝑜𝑜 = 𝜎𝜎(𝑊𝑊𝑜𝑜. [𝐻𝐻𝐻𝐻 − 1, 𝑋𝑋𝑋𝑋] + 𝑏𝑏𝑏𝑏) 
𝐻𝐻𝐻𝐻 = 𝑜𝑜𝑜𝑜 × 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝐶𝐶𝐶𝐶) 
 

𝛽𝛽𝑖𝑖 = 𝜎𝜎(𝑊𝑊𝑖𝑖ℎ𝑡𝑡 + 𝑏𝑏𝑖𝑖) 
 

𝑎𝑎𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚(𝛽𝛽𝑖𝑖) =
𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽𝑖𝑖)

∑ 𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽𝑖𝑖)
 

 

𝑂𝑂 = 𝐻𝐻⊗ 𝑎𝑎𝑖𝑖           
 

qi=WQ⋅hi, ki=WK⋅hi, vi=WV⋅hi 
 

∝𝑖𝑖𝑖𝑖=
exp⁡(𝑞𝑞𝑖𝑖. 𝑘𝑘𝑗𝑗

√𝑑𝑑𝑘𝑘
)

∑ exp⁡(𝑞𝑞𝑖𝑖. 𝑘𝑘𝑗𝑗
√𝑑𝑑𝑘𝑘

)𝑡𝑡
𝑗𝑗=1

 

 

𝑂𝑂𝑖𝑖 =∑ ∝𝑖𝑖𝑖𝑖. 𝑣𝑣𝑗𝑗
𝑡𝑡

𝑗𝑗=1
 

 

𝑂𝑂 =∑𝑎𝑎𝑖𝑖. ℎ𝑖𝑖
𝑡𝑡

𝑖𝑖=1
 

 

𝐹𝐹𝐹𝐹𝐹𝐹 = ⁡ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹⁡𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹⁡𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇⁡𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴y = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑆𝑆  

 
Where:

S=TP+TN+FP+FN

Precision: Precision is calculated by subtracting one from a ratio, specifically (1 - precise), representing the 
fraction of false negatives. Recall, on the other hand, is obtained by dividing precision by one.

𝑃𝑃𝑃𝑃 𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹  

 

𝑅𝑅𝑅𝑅 𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 
 

𝐹𝐹1 = 2 ∗ 𝑃𝑃𝑃𝑃 𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑅𝑅𝑅𝑅 𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎
𝑃𝑃𝑃𝑃 𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑅𝑅𝑅𝑅 𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎  

 

Recall: conversely, there are entities called false negatives about true negatives. 
𝑃𝑃𝑃𝑃 𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹  

 

𝑅𝑅𝑅𝑅 𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 
 

𝐹𝐹1 = 2 ∗ 𝑃𝑃𝑃𝑃 𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑅𝑅𝑅𝑅 𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎
𝑃𝑃𝑃𝑃 𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑅𝑅𝑅𝑅 𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎  

 

F1-Score: regarding this matter, the calculation involves squaring the accuracy and recall scores.

𝑃𝑃𝑃𝑃 𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹  

 

𝑅𝑅𝑅𝑅 𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 
 

𝐹𝐹1 = 2 ∗ 𝑃𝑃𝑃𝑃 𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑅𝑅𝑅𝑅 𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎
𝑃𝑃𝑃𝑃 𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑅𝑅𝑅𝑅 𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎  

 
Model Algorithm

Algorithm 1 Hybrid CNN-LSTM Cyber Threat Detection Pipeline with 10- Fold Validation
1: Input:
2:     - Raw network packets with timestamp
3:     - System metrics (CPU, Memory, Disk, Network)
4: Output:
5:     - Attack classification (TVMwL, NTSwL, ..., TSK)
6:     - Threat confidence score
7: Phase 1: Data Preprocessing
8:    1. Collect raw packets and system performance metrics
9:     2. Remove corrupted packets and validate data integrity
10:   3. Normalize all numerical features to [0, 1] range
11:   4. Reshape data into 30-second sequential windows
12:   5. One-hot encode the 9 attack class labels
13:   6. Prepare data for k-fold validation (shuffle and partition)
14: Phase 2: Model Architecture
15:   1. CNN Module:
16:        a. Apply three 1D convolutional layers (64 filters)
17:        b. Detect: packet anomalies → payload patterns → protocol-specific threats
18:        c. Apply max-pooling after each layer
19:   2. LSTM Module:
20:       a. Process CNN outputs with bidirectional LSTM (64 units)
21:       b. Maintain memory gates for temporal dependencies
22:   3. Attention Mechanism:
23:      a. Compute importance weights for each time step
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24:      b. Generate weighted threat representation
25:    4. Output Layer:
26:      a. Softmax classification for 9 attack types
27:      b. Confidence score generation
28: Phase 3: Evaluation with 10-Fold Cross-Validation
29: for k = 1 to 10 do
30:    a. Set fold k as validation set
31:    b. Use remaining 9 folds for training
32:    c. Train model for 100 epochs with early stopping
33:    d. Store validation metrics for fold k
34: end for
35: 2. Aggregate results across all folds:
36:    a. Calculate mean accuracy ± standard deviation
37:    b. Compute macro-average precision/recall
38:    c. Generate confusion matrix from all fold predictions
39: 3. Final Model Training:
40:     a. Train on complete training set (all 10 folds)
41:    b. Evaluate on held-out test set (10 % of original data)
42:    c. Calculate:
43:           i. Test accuracy
44:           ii. Class-wise F1-scores

RESULTS
Confusion Matrix

Figure 5. CNN+LSTM+Attention integrated PS Model Confusion Matrix

Figure 6. CNN+LSTM  model Confusion Matrix
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Figure 7. CNN model Confusion Matrix

Figure 8. LSTM Model Confusion Matrix

Figure 9. XGBoost  model Confusion Matrix

A comprehensive examination of the classification results from comparing the different model.This displays 
a CNN-LSTM + Attention model with integrated PS(Packet Sniffing) that has an attention mechanism for use with 
both CNN and LSTM models independently. Accuracy, loss, and confusion matrices throughout training iterations 
We use recall, precision, and F1-score to evaluate each model. The results are organized and supported with 
visuals to explain how each model was performed. The confusion matrices provide classification accuracy and 
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misclassification rates, revealing each model’s classification strengths and limitations. The accuracy and loss 
graphs compare training.

Figure 10. Random Forest  model Confusion Matrix

The graphic illustrates three confusion matrices that depict the performance of several models: a Hybrid 
algorithm, an LSTM model and a convolutional neural network (CNN) model. The actual labels are shown in 
the rows of each matrix, while the projected classifications for different classes are shown in the Report: 
CSO Report was generated on Monday, Oct 21, 2024, 05:32 PM Page 20 of 34 columns. The colour intensity 
denotes the quantity of accurate or inaccurate forecasts, with deeper blue signifying more values. Figures 
5–10 display confusion matrices that evaluate the classification efficacy of different deep learning and machine 
learning models across ten specific classes: NTS, NTSwL, TSK, TSKwL, TVM, TVMwL, TWM, TWMwL, WSK, 
and WSKwL.  The suggested CNN+LSTM+Attention integrated PS(Packet Sniffing) model (Figure 5) exhibits 
exceptional performance, attaining the maximum correct classification counts for almost all classes with 
negligible misclassification.  NTS is accurately classified 253 times, with a single instance misclassified as TSK; 
NTSwL achieves 242 correct classifications with no significant errors; TSK records 224 correct classifications, 
with nine misclassified as TWM; and notably, TVM attains a flawless score of 266 correct predictions without 
any mistakes.  TWM attains 236 accurate predictions with merely two misclassified occurrences, while TWMwL 
registers 229 right predictions with only slight confusion involving TSK and TVM.  These results demonstrate a 
commendable equilibrium between precision and recall, signifying the efficacy of incorporating the attention 
mechanism into CNN+LSTM.The CNN+LSTM model depicted in figure 6 demonstrates robust performance; 
nevertheless, it exhibits a marginally higher rate of misclassifications relative to the suggested model.  NTS 
registers 245 accurate predictions with five misclassifications among other categories, while TSK attains 242 
accurate predictions with four errors.  TWMwL excels with 253 accurate predictions, whilst WSK achieves 236, 
demonstrating that this architecture continues to manage sequential and spatial patterns proficiently, albeit 
lacking the enhanced refinement provided by attention mechanisms.The CNN model (figure 7) yields robust 
findings; nonetheless, it is afflicted by extensive misclassification clusters.  TWM demonstrates 216 accurate 
predictions, with 20 occurrences incorrectly labeled as TSK, indicating a substantial decline in performance 
for that category.  Likewise, TSKwL attains 237 correct classifications with nine misclassifications into TWM, 
highlighting its limits in differentiating visually identical categories without sequence modeling.The LSTM model 
depicted in Figure 8 has similar overall accuracy to the CNN, albeit with distinct misclassification patterns.  
For instance, TSK registers 217 accurate predictions but misclassifies 16 as TVM, while TWM attains 232 correct 
predictions with just tiny, sporadic errors.  This indicates that although LSTM effectively captures sequential 
relationships, it may have difficulties in distinguishing solely spatial features relative to CNN.Conventional 
models like XGBoost (figure 9) and Random Forest (figure 10) lag behind deep learning methodologies.  XGBoost 
achieves reasonable accuracy, exemplified by NTS with 228 correct predictions and WSKwL with 219 correct, 
although demonstrates a broader distribution of mistakes across several classes.  The Random Forest model 
has the poorest performance, achieving 216 correct classifications for NTS, 199 for WSK, and numerous classes 
encountering 4 to 5 misclassifications into other categories.The examination of the confusion matrix distinctly 
demonstrates that the suggested CNN+LSTM+Attention integrated PS model is the most effective, achieving 
the highest accurate classification counts and the lowest misclassification rates, thereby surpassing all other 
evaluated architectures.
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Model Accuracy and Model Loss
To evaluate the learning behaviour and stability of each architecture, we monitored both accuracy and loss 

over 100 training epochs for the hybrid CNN–LSTM model, the standalone CNN, and the standalone LSTM. These 
metrics provide insight into each model’s convergence speed, generalization ability, and risk of overfitting 
or underfitting. The following subsections detail the observed performance patterns, supported by graphical 
comparisons.

Hybrid Model Accuracy and Loss

 
Figure 11. Hybrid Model Accuracy and Loss

Figure 11 displays how well the CNN+LSTM+Attention model with PS performed a hundred times during 
training. This depiction of training and validation accuracy is shown graphically, with the x-axis showing the 
total number of epochs and the y-axis showing the precise level. The model exhibits fast learning, attaining 
elevated accuracy within the initial 20 epochs. The training accuracy curve nears perfection at roughly 0,98 
, while the validation accuracy displays a similar pattern, stabilizing somewhat below the training curve. The 
convergence of the two curves signifies little overfitting and robust generalization ability on both the datasets 
used for training and unseen validation, proving that the model is entirely accurate. The following graph shows 
the loss for the training set (blue curve) and the validation set (orange curve) across 100 repetitions. The 
x-axis represents the number of epochs, while the y-axis indicates the loss value. First, training and validation 
loss commences at comparatively elevated levels, with the training loss initiating at around 1,2 . Both losses 
significantly decrease during the initial epochs, signifying the model’s accelerated learning process. The abrupt 
decline indicates that the model rapidly decreases errors and modifies its parameters to optimize the goal 
function. After around 20 epochs, both curves plateau, attaining a near-constant value, with training loss 
converging around 0,1  and validation loss stabilizing slightly lower. During training, there was a significant 
correlation between the loss curves for training and validation, which means that the model did not overfit and 
may thus generalize well to new data. The slight divergence between the two losses reinforces the model’s 
resilience since it circumvents prevalent issues like overfitting to the training data or underfitting. This trend 
of loss reduction indicates excellent learning and optimization, with both losses attaining low levels, suggesting 
a well-trained and highly efficient model.

Performance Metrics
Cyber-Physical Systems (CPS) cybersecurity is greatly improved by integrating Packet Sniffing (PS) with deep 

learning architectures. This is evidenced by the outstanding performance of the hybrid CNN+LSTM+Attention 
model with PS as shown in figure 12, which achieved an accuracy of 99,08 % and nearly identical F1-score 
(0,9908 ), recall (0,9908 ), and precision (0,9909 ). This model processes real-time data from packet sniffing 
(PS) and uses convolutional neural networks (CNN) to extract spatial features from network packets, long short-
term memory (LSTM) networks to identify temporal attack patterns, and an attention mechanism to prioritize 
important traffic segments. This method is very dependable for intrusion detection in CPS situations due to its 
excellent precision and recall values, which show little false positives and negatives.With 98,74 % accuracy 
(F1: 0,9868 , recall: 0,9864 , precision: 0,9874 ), the standalone CNN+LSTM model comes in second, proving 
that deep learning models perform better even in the absence of attention mechanisms.  However, a ~0,34 
% increase in accuracy is obtained by adding PS and attention techniques, underscoring the significance of 
adaptive feature weighting and real-time packet inspection.  In contrast, the performance of the LSTM (98,41 % 
accuracy) and pure CNN (98,42 %) models is somewhat worse, indicating that hybrid architectures are crucial for 
identifying both temporal and spatial attack signs in CPS networks.On the other hand, deep learning techniques 
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outperform traditional machine learning models such as Random Forest (94,43 % accuracy, F1: 0,9438 ) and 
XGBoost (95,23 % accuracy, F1: 0,9519 ).  This discrepancy (around 4-5 percent lower accuracy) highlights how 
typical machine learning is not up to par when it comes to processing high-dimensional, sequential network 
traffic data.  For easier classification tasks, XGBoost and Random Forest are still helpful, but they have trouble 
with the dynamic, non-linear patterns found in CPS cyberattacks.

Figure 12. Performance Metrics

Table 2. 10-Fold Cross-Validation Performance of the Proposed CNN–LSTM–Attention with PS Model

Fold Accuracy (%) Precision (%) Recall (%) F1-Score (%) False Positive Rate (%)

1 98,42 98,10 98,25 98,17 2,3

2 98,36 98,05 98,18 98,11 2,4

3 98,51 98,22 98,30 98,26 2,1

4 98,39 98,09 98,22 98,15 2,5

5 98,47 98,16 98,28 98,22 2,2

6 98,50 98,18 98,32 98,25 2,3

7 98,44 98,12 98,27 98,19 2,3

8 98,53 98,23 98,33 98,28 2,1

9 98,48 98,20 98,29 98,24 2,2

10 98,45 98,15 98,26 98,20 2,3

Mean ± SD 98,45 ± 0,05 98,15 ± 0,06 98,27 ± 0,5 98,21 ± 0,05 0,11

The table -2 shows the 10-fold cross-validation results demonstrate the stability and high performance of 
the proposed CNN–LSTM–Attention model with PS across multiple data splits. Accuracy remained consistently 
above 98,3 % in all folds, with minimal standard deviation (±0,05 %), indicating strong generalization. Precision, 
recall, and F1-score also showed very small variations, confirming balanced detection capability across attack 
types. Importantly, the false positive rate (FPR) stayed low, averaging 2,27 %, ensuring that benign traffic was 
rarely misclassified as malicious — a critical factor for practical deployment in cybersecurity environments.

DISCUSSION
The thorough assessment of the proposed CNN-LSTM-Attention model, incorporating Packet Sniffing (PS), 

reveals its exceptional efficacy in classifying network traffic into ten unique categories (NTS, NTSwL, TSK, 
TSKwL, TVM, TVMwL, TWM, TWMwL, WSK, WSKwL).  The confusion matrices (figures 5–10) demonstrate that 
the hybrid model attains nearly flawless classification, with 253 accurate predictions for NTS, 266 for TVM 
(impeccable), and 236 for TWM, while displaying negligible misclassifications (e.g., with 2 errors for TWM).  
Conversely, independent models such as CNN and LSTM exhibit elevated misclassification rates (e.g., 20 
misclassifications for TWM in CNN, 16 for TSK in LSTM), underscoring their deficiencies in managing spatial and 
sequential connections absent attention processes.  Conventional models (XGBoost, Random Forest) exhibit 
markedly inferior performance, with Random Forest attaining merely 199 accurate classifications for WSK, 
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underscoring the imperative for deep learning in intricate cyber-physical system (CPS) security endeavors. The 
training dynamics (figure 11) further corroborate the hybrid model’s durability, achieving a training accuracy 
of approximately 98 % within 20 epochs and a validation loss stabilizing at 0,1, signifying negligible overfitting.  
The performance measures (figure 12) confirm its superiority, attaining 99,08 % accuracy, 0,9909 precision, 
0,9908 recall, and a 0,9908 F1-score, surpassing CNN-LSTM (98,74 % accuracy), standalone LSTM (98,41 %), and 
CNN (98,42 %). The 10-fold cross-validation (table 2) demonstrates consistency, yielding a mean accuracy of 
98,45 % (±0,05 %) and a low false positive rate (FPR) of 2,27 %, which is essential for practical implementation. 
The amalgamation of PS with deep learning is crucial, as real-time packet analysis improves feature extraction, 
while the attention mechanism sharpens focus on essential traffic segments. The approximately 0,34 % 
improvement in accuracy over CNN-LSTM and the 4–5 % disparity compared to XGBoost/Random Forest highlight 
the constraints of conventional techniques in high-dimensional, dynamic Cyber-Physical Systems contexts.  The 
results establish the suggested model as a cutting-edge method for intrusion detection, achieving a high recall 
rate while maintaining low precision, which is crucial for protecting critical infrastructure.  Future research may 
investigate real-time implementation and adversarial resilience to enhance practical applicability validation. 

CONCLUSIONS
The study successfully achieved its objective of developing an advanced and operationally viable intrusion-

detection framework for cyber-physical systems by integrating hybrid deep-learning components with real-
time packet sniffing. The proposed CNN-LSTM architecture enhanced with an attention mechanism allowed for 
a coherent solution that could capture both spatial and temporal characteristics of network behavior while 
keeping interpretability and adaptive focus on critical traffic patterns. Its superior qualitative performance 
across models thus proved that the integration of packet-level data acquisition and deep spatiotemporal learning 
provided a more reliable and context-aware defense compared to any standalone or traditional approaches. 
This framework also put forth a clear methodological pathway-from live data collection to dynamic feature 
weighting-that might lead future CPS security designs. At the same time, the work recognized limitations 
concerning computational demands, dependence on high-quality labeled data, and reduced visibility in 
encrypted traffic that highlighted areas of further refinement. Generally, the research ensured a concrete, 
systematic, and practically relevant contribution to CPS cybersecurity and initiated a solid foundation for 
future improvements in real-time deployment, scalability, and resilience against evolving cyber threats.
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