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ABSTRACT

Video classification holds a foundational position in the realm of computer vision, involving the categorization 
and labeling of videos based on their content. Its significance resonates across various applications, including 
video surveil-lance, content recommendation, action recognition, video indexing, and more. The primary 
objective of video classification is to automatically analyze and comprehend the visual information embedded 
in videos, facilitating the efficient organization, retrieval, and interpretation of extensive video collections. 
The integration of convolutional neural networks (CNNs) and long short-term memory (LSTM) networks has 
brought about a revolution in video classification. This fusion effectively captures both spatial and temporal 
dependencies within video sequences, leveraging the strengths of CNNs in extracting spatial features 
and LSTMs in modeling sequential and temporal information. ConvLSTM and LRCN (Long-term Recurrent 
Convolutional Networks) are two widely embraced architectures that embody this fusion. This paper seeks 
to investigate the impact of convolutions on LSTM networks in the context of video classification, aiming to 
compare the performance of ConvLSTM and LRCN.
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RESUMEN

La clasificación de vídeos ocupa un lugar fundamental en el ámbito de la visión informática, ya que consiste 
en categorizar y etiquetar vídeos en función de su contenido. Su importancia se extiende a diversas 
aplicaciones, como la videovigilancia, la recomendación de contenidos, el reconocimiento de acciones y la 
indexación de vídeos, entre otras. El objetivo principal de la clasificación de vídeos es analizar y comprender 
automáticamente la información visual contenida en los vídeos, facilitando la organización, recuperación e 
interpretación eficientes de extensas colecciones de vídeos. La integración de redes neuronales convolucionales 
(CNN) y redes de memoria a corto plazo (LSTM) ha supuesto una revolución en la clasificación de vídeos. 
Esta fusión captura eficazmente las dependencias espaciales y temporales dentro de las secuencias de vídeo, 
aprovechando los puntos fuertes de las CNN en la extracción de características espaciales y de las LSTM en 
el modelado de la información secuencial y temporal. ConvLSTM y LRCN (Long-term Recurrent Convolutional 
Networks) son dos arquitecturas ampliamente aceptadas que incorporan esta fusión. Este artículo pretende 
investigar el impacto de las convoluciones en las redes LSTM en el contexto de la clasificación de vídeo, con 
el objetivo de comparar el rendimiento de ConvLSTM y LRCN.
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INTRODUCTION
Video classification is a crucial undertaking in computer vision, entailing video categorization based on 

content. Deep learning has marked significant progress in this domain, with ConvLSTM and LRCN emerging as 
prominent architectural advancements. The integration of Convolutional Neural Networks (CNNs) and Long 
Short-Term Memory networks (LSTMs), observed in ConvLSTM and LRCN, has exerted a profound influence on 
video classification. ConvLSTM extends LSTM functionality by incorporating convolutional operations within 
its cells, enabling direct learning of spatial representations from video sequences and modeling of long-term 
temporal dependencies. ConvLSTM's convolutional operations adeptly extract spatial features, capturing frame-
level patterns and object information, and enabling recognition of complex actions.(1)

In contrast, LRCN adopts a sequential approach, utilizing CNNs initially to capture frame-level characteristics 
encoding spatial information. Subsequently, these features undergo processing in an LSTM network to discern 
temporal dependencies between frames. LRCN strategically leverages CNNs for spatial details and LSTMs for 
temporal context, enabling a comprehensive understanding of movement pat-terns and temporal nuances.(2)

Following this introduction, the subsequent sections of this paper are organized as follows. Section 2 
provides an overview of the related works, and in section 3 we provide an overview of the methodology 
employed, including a description of the datasets used. Additionally, it presents the theoretical background of 
key architectures such as CNN, LSTM, ConvLSTM, and LRCN. In Section 4, we present the main findings obtained 
from the classifiers' performance evaluation using different datasets. Finally, Section 5 wraps up the paper by 
providing a summary of the key findings and offering perspectives for future research endeavors. 

Related Works 
In the realm of video classification, several noteworthy works have contributed to advancing the field. 

Researchers have explored diverse methodologies, techniques, and architectures to enhance the accuracy 
and efficiency of video classification systems. One influential approach involves leveraging deep learning, 
particularly Convolutional Neural Networks (CNNs) and Long Short-Term Memory networks (LSTMs).

Studies such as various studies(3,4,5) delved into the fusion of CNNs and LSTMs, exemplified by architectures 
like ConvLSTM. These architectures have demonstrated notable success in capturing both spatial and temporal 
dependencies within video sequences, thereby improving the overall performance of video classification tasks.

Continuing the exploration of innovative architectures, the Long-term Recurrent Convolutional Network 
(LRCN) has emerged as a prominent example in the fusion of CNNs and LSTMs, as demonstrated in the work 
by several studies.(4,5,6,7) LRCN follows a sequential approach, initially utilizing CNNs to capture frame-level 
characteristics encoding spatial information. These features are then fed into an LSTM network to capture 
temporal dependencies between frames. LRCN's strategic combination of CNNs for spatial details and LSTMs 
for temporal context enables it to understand movement patterns and temporal nuances. The success of LRCN 
further reinforces the effectiveness of combining spatial and temporal features for robust video classification.

These related works collectively underscore the dynamic and evolving landscape of video classification 
research, with a focus on integrating deep learning, exploring novel features, and leveraging transfer learning 
for improved performance and versatility.

METHODS
Dataset

In this study, we employed three datasets to conduct our experiments: UCF11, UCF50, and DynTex.
UCF11: The UCF11 dataset comprises a total of 1600 video clips, meticulously cate-gorized into 11 diverse 

action types.(8) Recognized as a benchmark dataset within the field of video classification, UCF11 is widely 
utilized to evaluate algorithms de-signed for the recognition and categorization of dynamic activities. Its 
extensive content encapsulates a broad array of human endeavors, ranging from sports activities such as 
basketball, biking, diving, golf swing, horse riding, and swinging, to everyday actions like tennis swing, forming 
a rich and varied collection.(9) 

Renowned for its role as a standard reference, UCF11 serves as a crucial resource for assessing the efficacy 
of algorithms in handling a wide spectrum of dynamic activi-ties.

UCF50: The UCF50 dataset stands as a prominent benchmark in the realm of video classification, offering 
a comprehensive collection that spans 50 diverse action cate-gories. Comprising a total of 6618 realistic 
videos sourced from YouTube,(8) this dataset presents a rich and varied set of activities for analysis. The action 
categories within UCF50 encapsulate a broad spectrum, featuring activities such as applying eye makeup, 
applying lipstick, band marching, archery, baby crawling, balance beam, basketball dunk, baseball pitch, 
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biking, bench press, billiards, bowling, and more. Renowned for its expansive and realistic content, UCF50 
serves as a valuable resource for assessing and advancing video classification algorithms across a diverse array 
of real-world scenarios.

DynTex: The DynTex dataset stands out as a meticulously curated collection of video sequences centered 
around dynamic tissues, comprising a total of 522 videos showcasing dynamic textures.(10) These videos are 
thoughtfully organized across five distinct dynamic textures: Clouds-Steam, Flags, Fire, Water, and Trees, 
presenting a diverse array of visual patterns and movements. This dataset plays a crucial role in the field of 
computer vision, serving as a cornerstone for dynamic texture-related tasks such as analysis, classification, 
and recognition. Widely employed by researchers and developers, the DynTex dataset proves to be a valuable 
resource for the in-depth study and advancement of algorithms aimed at proficiently capturing and analyzing 
the temporal intricacies inherent in dynamic textures within videos.

Convolutional neural networks 
Deep learning models, specifically convolutional neural networks (CNNs), represent a ubiquitous and highly 

impactful approach in the realm of computer vision tasks. Renowned for their prowess in extracting meaningful 
information from visual data, CNN architectures excel in various image-related applications, including 
classification, detection, and recognition. The intrinsic design of CNNs encompasses convolutional layers, 
where filters are applied for intricate processing of input images, pooling layers that effectively decrease 
spatial dimensions, and fully connected layers tailored for tasks such as classification or regression.(11,12,13,14,15

,16,17,18,19,20,21) This versatile architecture has become instrumental in addressing complex visual challenges and 
remains at the forefront of advancements in computer vision re-search.

Figure 1. Architectures of convolutional neural networks

In the dynamic field of video classification, Convolutional Neural Networks (CNNs) showcase their effectiveness 
by proficiently capturing both spatial and temporal dimensions of visual data. Operating on a per-frame basis 
within a video, CNNs intricately extract frame-level features, enabling the discernment of complex visual 
patterns unique to each frame. 

This spatial understanding forms the foundation for robust video analysis. To complement this spatial 
comprehension with temporal context, recurrent neural networks (RNNs) and Long Short-Term Memory networks 
(LSTMs) are frequently integrated. These networks specialize in processing sequential frames, facilitating the 
capture of temporal dependencies inherent in video sequences. RNNs and LSTMs contribute a crucial temporal 
perspective, allowing the model to grasp the evolving dynamics and relationships between consecutive frames 
over time.

This fusion of CNNs with specialized temporal processing networks exemplifies a comprehensive approach 
to video classification, ensuring that the model not only discerns intricate spatial details but also comprehends 
the nuanced temporal evolution within video content. It stands as a testament to the sophisticated strategies 
employed to enhance the discernment capabilities of video classification systems in the ever-evolving landscape 
of computer vision.

Long Short-Term Memory
Long Short-Term Memory (LSTM) represents a specialized class of recurrent neural networks (RNNs), 

meticulously crafted to overcome the vanishing gradient problem that often impedes traditional RNNs. Unlike 
its predecessors, LSTM incorporates a memory cell and gating mechanisms, allowing it to expertly capture 
extended, long-term dependencies within sequential data. This architectural refinement proves particularly 
advantageous in tasks demanding a nuanced understanding of temporal relationships, such as speech recognition 
and video analysis, where the ability to discern intricate patterns over time is paramount.(10)

The distinguishing feature of LSTM lies in its intricate chained structure, vividly depicted in figure 2. This 
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structure facilitates a sequential flow of information within the network, empowering LSTM to systematically 
capture and retain relevant con-textual information over time. At each step along the chain, the model engages 
in the retention and updating of pertinent information, ensuring a continuous and adaptive understanding of 
the evolving context within the sequential data.

This nuanced architecture has propelled LSTM to widespread adoption across diverse domains. Its proficiency 
in handling sequential data, coupled with its capacity to grasp long-term dependencies, positions LSTM as a 
versatile and powerful choice. The model's effectiveness in retaining context over extended sequences has 
made it instrumental in enhancing the capabilities of systems engaged in tasks requiring intricate temporal 
analysis, solidifying its role as a cornerstone in advanced data sequence processing.

Figure 2. Structure of an LSTM network(14)

Convolutional Long Short-Term Memory (ConvLSTM)
Convolutional Long Short-Term Memory (ConvLSTM) represents a sophisticated evolution from the 

conventional Long Short-Term Memory (LSTM) architecture, introducing a transformative modification to 
bolster its capabilities in handling sequential data with spatial dependencies. The fundamental shift lies in the 
adaptation of the LSTM module, where fully-connected gates are replaced with convolutional gates. 

The essence of ConvLSTM's innovation lies in its distinctive approach to spatial information integration 
and the capturing of spatial dependencies within sequential data, especially pertinent in domains like video 
analysis and spatiotemporal sequences. This is achieved through the strategic use of convolution operations at 
each gate, a departure from the matrix multiplication employed by traditional LSTMs.

This architectural modification enables ConvLSTM to capitalize on the strengths of convolutional neural 
networks (CNNs), leveraging local receptive fields and shared weights. By doing so, ConvLSTM gains an enhanced 
ability to learn intricate spatial representations and effectively capture long-term dependencies present in 
the data.(15) This nuanced approach positions ConvLSTM as a robust solution in scenarios where understanding 
spatial context is crucial.

The utilization of convolutional gates in ConvLSTM represents a paradigm shift, providing a unique advantage 
in tasks demanding a sophisticated interplay between temporal and spatial dimensions within sequential 
data. This refined architecture elevates ConvLSTM as a formidable tool, showcasing its utility in cutting-edge 
applications that require an in-depth comprehension of spatial relationships in evolving data sequences.

Figure 3. ConvLSTM cell architecture(16)
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Long-term Recurrent Convolutional Networks (LRCN)
Long-term Recurrent Convolutional Networks (LRCN) adopt a meticulous sequential strategy for video 

classification, demonstrating a comprehensive and nuanced approach to decoding dynamic visual content. The 
process is initiated by harnessing the power of Convolutional Neural Networks (CNNs) to extract features at the 
frame level from each video frame. The meticulously extracted features undergo a sequential analysis within 
a Long Short-Term Memory (LSTM) network. 

This strategic integration of LSTM serves as a pivotal step, enabling LRCN to model and comprehend intricate 
temporal dependencies existing between successive frames in a video sequence. The sequential scrutiny of 
frame-level features unfolds a dynamic narrative, allowing LRCN to effectively capture evolving dynamics and 
con-textual nuances present in video sequences.

LRCN's sequential methodology extends beyond recognizing individual frame patterns; it involves discerning 
nuanced relationships and narrative evolution be-tween frames over time. This detailed understanding 
empowers LRCN to effectively capture dynamic and contextual information within video sequences, significantly 
augmenting its proficiency in classifying and comprehending video content.(17) This sophisticated methodology 
positions LRCN as a potent tool for tasks demanding a holistic grasp of both spatial and temporal dimensions 
within dynamic visual data.

Figure 4. Architectures of LRCN

RESULTS
Our research involved a meticulously structured series of experiments employing ConvLSTM and LRCN 

models, with a deliberate focus on understanding their performance dynamics. We initiated our analysis by 
closely examining the UCF11 dataset and systematically expanded our investigations to encompass the broader 
contexts presented by the UCF50 and DynTex datasets. Through an in-depth comparative analysis of ConvLSTM 
and LRCN models across these diverse datasets, our study sought to unravel nuanced insights into the intricate 
interplay of convolutional operations on Long Short-Term Memory (LSTM) networks within the domain of video 
classification.

The core of our investigation delved into the simultaneous integration of Convolutional Neural Networks (CNNs) 
and LSTM networks. Our scrutiny extended to scenarios where CNNs and LSTMs collaboratively contribute to the 
video classification process, enabling us to discern the combined effects of these architectural components. 
Furthermore, our study rigorously examined the implications of adopting CNNs as the initial step to extract 
frame-level features from individual video frames, followed by the application of LSTMs. 

This multifaceted experimental design was crafted to systematically dissect and comprehend the intricate 
dynamics surrounding convolutional influences on LSTM networks. By adopting this comprehensive approach, 
we aimed to provide a detailed understanding of the multifaceted impact of convolutional operations on the 
com-plex landscape of video classification tasks. The table below illustrates the obtained results.

Table 1. Comparison of ConvLSTM and LRCN on data

Method DynTex UCF11 UCF50

ConvLSTM 0,56 0,62 0,79

LRCN 0,71 0,77 0,93

For the DynTex dataset, the ConvLSTM model exhibited an accuracy of 0,56, whereas the LRCN model 
demonstrated superior performance with a higher accuracy of 0,71. Transitioning to the UCF11 dataset, the 

https://doi.org/10.56294/dm2023152

 5    Benzyane M, et al



https://doi.org/10.56294/dm2023152

ConvLSTM model achieved an accuracy of 0,62, while the LRCN model excelled further with a higher accuracy 
of 0,77. In the UCF50 dataset, the ConvLSTM model attained an accuracy of 0,79, yet the LRCN model outshone 
with an even higher accuracy of 0,93. These findings underscore a consistent trend wherein the LRCN model 
consistently outperformed the ConvLSTM model across all three datasets, emphasizing its superior efficacy in 
video classification tasks.

CONCLUSION
In conclusion, video classification stands as a crucial domain within computer vi-sion and multimedia content 

interpretation, presenting both challenges and avenues for the development of robust classification models. 
Our investigation delved into the impact of convolutions on LSTM networks for video classification, revealing 
that the sequential utilization of CNNs for initial feature extraction, followed by LSTMs, yields superior results 
compared to the simultaneous use of CNNs and LSTMs. This sequential approach demonstrated enhanced 
performance and accuracy.

While our pilot study provides valuable insights, it also highlights opportunities for refinement in video 
classification methodologies. Future research endeavors could focus on exploring diverse CNN and LSTM 
architectures, optimizing their parameters to further enhance the efficacy of the sequential approach. By 
contributing to ongoing advancements in this field, such efforts hold the potential to elevate the precision and 
capabilities of video classification models.
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