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Improving Autism Detection Accuracy with an Optimized Local-Asymmetric 
Adaptive Hybrid GCN for EEG Data
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ABSTRACT

Autism spectrum disorder (ASD) is an intricate nervous disorder typically diagnosed through the use of 
electroencephalography (EEG). A novel model named Dual Encoder-Balanced Conditional Wasserstein 
Generative Adversarial Network with Resting-state EEG-based Hybrid Graph Convolutional Network 
(DEBCWGAN-Rest-HGCN) was made from this context. By fixing the class imbalance and making synthetic 
EEG samples, it was able to detect ASD with encouraging results. However, it ignores the dynamic brain 
patterns recorded by task-based EEG in favor of resting-state EEG. The Rest-HGCN model also cannot 
successfully capture the uneven spatial and temporal aspects of EEG signals, and its fixed hyperparameters 
might make it less accurate in detecting different types of EEG data. This article presents a new model 
for finding and diagnosing ASD called the Optimized Local-Asymmetric Adaptive Hybrid GCN (OLA2HGCN). 
This model uses both spatial and temporal information from resting-state and task-driven EEG signals. It 
is based on the way autism affects brain connections and a variation amid the left and right hemispheres. 
The LA2HGCN can efficiently collect discrete spatiotemporal EEG information through distinct areas and 
hemispheres by improving the HGCN model with hierarchical feature extraction and fusion approaches. 
This model has a time based feature extraction approach in the cognitive prior graph branch that picks up 
temporal characteristics inside and between brain areas. It also has an adaptive GCN for spatial feature 
extraction across non-Euclidean distributions of electrodes. An attention layer shows how each hemisphere 
helps with ASD classification. A new Quantum Artificial Gorilla Troops Optimizer (QGTO) is also presented to 
help the LA2HGCN model choose the best hyperparameters. The QGTO is based on the social intelligence of 
gorilla tribes. It rapidly traverses intricate search spaces and achieves an equilibrium between exploration 
and exploitation. By adding quantum mechanics to the GTO method, it can better find its way through 
complicated search spaces and stay away from local optima. This makes hyperparameter selection more 
successful. Finally, the test results show that the DEBCWGAN- OLA2HGCN on the EEG Dataset for ASD and the 
ABC-CT dataset are 95,04 % and 92,27 % accurate, respectively, when compared to other algorithms.

Keywords: Autism Spectrum Disorder; Resting-State EEG; Task-Based EEG; DEBCWGAN; GCN; Quantum 
Mechanics; Artificial Gorilla Troops Optimizer.

RESUMEN

Este artículo presenta un nuevo modelo para la detección y el diagnóstico del TEA, denominado Red 
Convolucional Híbrida Adaptativa Local-Asimétrica Optimizada (OLA2HGCN). Este modelo utiliza información 
espacial y temporal de las señales de EEG en reposo y basadas en tareas.  Se basa en la forma en que el autismo 
afecta las conexiones cerebrales y en la variación entre los hemisferios izquierdo y derecho. El LA2HGCN puede 
recopilar eficientemente información discreta de EEG espaciotemporal a través de distintas áreas y hemisferios,
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mejorando el modelo HGCN con enfoques jerárquicos de extracción y fusión de características. Este modelo 
cuenta con un enfoque de extracción de características basado en el tiempo en la rama de grafos cognitivos 
previos, que capta características temporales dentro y entre áreas cerebrales. También cuenta con un GCN 
adaptativo para la extracción de características espaciales en distribuciones de electrodos no euclidianas. Una 
capa de atención muestra cómo cada hemisferio contribuye a la clasificación del TEA. También se presenta 
un nuevo Optimizador Cuántico Artificial de Tropas de Gorilas (QGTO) para ayudar al modelo LA2HGCN a 
seleccionar los mejores hiperparámetros. El QGTO se basa en la inteligencia social de las tribus de gorilas. 
Recorre rápidamente espacios de búsqueda complejos y logra un equilibrio entre exploración y explotación. 
Al incorporar la mecánica cuántica al método GTO, puede navegar mejor en espacios de búsqueda complejos 
y evitar los óptimos locales. Esto facilita la selección de hiperparámetros. Finalmente, los resultados de 
la prueba muestran que DEBCWGAN-OLA2HGCN en el conjunto de datos de EEG para TEA y el conjunto de 
datos ABC-CT tienen una precisión del 95,04 % y del 92,27 %, respectivamente, en comparación con otros 
algoritmos.

Palabras clave: Trastorno del Espectro Autista; EEG en Reposo; EEG Basado en Tareas; DEBCWGAN; GCN; 
Mecánica Cuántica; Optimizador de Tropas Gorilas Artificiales.

INTRODUCTION
ASD is a common neurodevelopmental disorder that usually shows up at birth or in early childhood. It is 

marked by problems with social contact, a lack of interests, repetitive activities, and sometimes problems with 
thinking.(1) For effective treatment, it is very important to get proper diagnosis.  Cognitive and psychological 
tests are often used to diagnose ASD, however this process can take a long time and cause delays in getting 
a diagnosis.(2,3,4) Detecting ASD early is very important since quick therapy can help with symptoms and close 
the gap between children with ASD and individuals with Typical Development (TD).(5) Researchers are currently 
looking at the possibility of using impartial signs from Computed Tomography (CT) and Magnetic Resonance 
Imaging (MRI) to discover ASD early.(6)

Still, these imaging methods shouldn’t be used to diagnose ASD in kids because the link between brain 
results and ASD traits is not well-defined. Prior research has demonstrated that when autistic child’s brain grow, 
their EEG signals become less complex.(7,8) There are noticeable differences in the right and inner brain areas 
of children with autism compared to neurotypical children. These results suggest that EEG signals could give 
us unique and useful information about how the brains of people with autism work.(9,10) EEG signals are a more 
useful diagnostic method for ASD since they capture time in a complex way, are easy to use, and are cheaper 
than MRI and CT scans. Also, EEG is used with people of all ages and is easier to get for clinical use than MRI 
and CT. So, it is very important to build EEG-based algorithms for diagnosing autism so that ASD may be found 
and screened for early on.(11)

 Researchers have used deep learning (DL) algorithms like Convolutional Neural Networks (CNNs) and 
Recurrent Neural Networks (RNNs) to look at EEG forms and figure out if someone has ASD in the last few 
decades.(12) These models have made progress in identifying ASD, but it is still crucial to use the statistical 
information from EEG channels correctly. CNNs can get features from multi-channel data, however they may not 
fully show how related the channels are in a complex way. This could make it harder for CNN/RNN built models 
to accurately anticipate outcomes. Consequently, the cognitive prior and the data based graph components 
were combined by Tang et al.(13) to create the Rest-HGCN technique aimed at ASD. Data-based graph component 
retains dynamic information flow traits. The cognitive prior graph component leverages EEG cerebral systems 
as prior graph data to acquire strong neurological connectivity forms among cerebral areas. The Rest-HGCN 
improves its ability to detect ASD by using attention strategies, which extract discriminatory characteristics. 
This strengthens the separation between healthy and ASD child.

On the other hand, the Rest-HGCN method faced challenges due to small datasets, impacting its validation. 
Deep learning requires large labeled datasets, but there is a lack of public EEG data for ASD detection. EEG 
data collection is inconsistent, leading to imbalanced samples. Data augmentation techniques like adding 
Gaussian noise have been used, but those may not meet the needs for synthetic EEG creation.(14) GAN-based 
models show promise in improving EEG signals by considering correlations between waves. Earlier GANs 
create EEG waves based on spectral traits, which may not capture temporal variances effectively, leading to 
complex data generation processes. So, a novel DEBCWGAN model with Rest-HGCN has been developed for 
ASD detection(15), aiming to generate minority-class EEG samples from an imbalanced dataset. This model 
incorporates spatiotemporal features to create synthetic examples considering electrode location correlation 
and time-based traits of EEG waves. The Differential Entropy (DE) traits were transformed into temporal and 
electrode location features, input into Variational Auto-Encoder (VAE) encoders, and decoded into synthetic 
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examples. Additionally, gradient penalty and L2 regularization terms were used to prevent overfitting. The 
Rest-HGCN was then trained to find ASD using the larger dataset.

The Rest-HGCN model only looks at resting-state EEG, while task-based EEG shows how brain patterns 
change during certain tasks. Also, it’s hard to use Rest-HGCN to find unusual brain patterns in autism based on 
resting-state EEG since it is unable to capture the spatial and temporal elements of EEG data. Also, the Rest-
HGCN model’s predetermined hyperparameters may make it less flexible when working with different types of 
EEG data, which could lower its accuracy and make it harder to work with new test data, that makes it less 
useful in the real world.

This paper suggests a new end-to-end OLA2HGCN model that can learn different spatial and temporal 
aspects from resting-state and task-based EEG signals. This is based on how autism affects brain connection 
and hemispheric asymmetry. It improves the HGCN model by employing hierarchical feature extraction and 
integration to understand spatial and temporal EEG information that may be separated from different brain 
areas and hemispheres. This model has a time-based feature extraction approach in the cognitive prior graph 
branch that picks up temporal characteristics inside and between brain areas. It also has an adaptive GCN for 
spatial feature extraction across non-Euclidean distributions of electrodes. An attention layer highlights the 
role of each hemisphere in classification. The QGTO is also made to find the best hyperparameters for the 
LA2HGCN model. This optimizer uses the GTO, which is noted for being good at searching through complicated 
and high-dimensional spaces. The GTO algorithm is based on the social intelligence of gorilla groups. It is easy 
to use and can be changed, which helps it converge quickly. But it can be hard for it to get out of local optima.  
The GTO algorithm now includes quantum mechanics to get around this problem. This improvement makes it 
easier for the optimizer to find the best hyperparameters by balancing exploration and exploitation.  So, the 
DEBCWGAN-OLA2HGCN model has been shown to greatly increase the accuracy of finding and diagnosing ASD.

This part looks at recent research on using deep learning models to find people with autism by looking at 
their EEG data.  Baygin et al.(16) built a hybrid lightweight deep feature extractor that can find ASD using EEG 
inputs. They used 1D Local Binary Pattern (LBP) to get information from the signals and Short Time Fourier 
Transform (SIFT) to make spectrogram images. The deep features from the images were extracted using pre-
trained MobileNetV2, ShuffleNet, and SqueezeNet techniques. Then, feature selection was done with a dual-
phased ReliefF algorithm, and the most important characteristics were categorized with a Support Vector 
Machine (SVM) classifier. However, the accuracy was found to be low.

Ari et al.(17) developed an automated method to distinguish ASD with the help of EEG data. At first, the 
Douglas-Peucker algorithm was employed for diminishing the quantity of EEG data. A sparse coding was applied 
to create EEG rhythm-based images. Then, an Extreme Learning Machine with Auto-Encoder (ELM-AE) was 
employed for augmentation. The pre-trained CNN models were used to classify ASD and healthy EEG signals, but 
the model may not accurately capture spatial and temporal variations, affecting detection accuracy.

Rogala et al.(18) combined traditional statistics and machine learning to classify ASD in children using EEG 
data. They used normal and corrected imaginary phase locking value to identify unique brain connectivity 
patterns in children with ASD. However, due to a small sample size, accuracy was limited. Additionally, the 
reliance on resting-state EEG data could miss some of the nuances in how the brain communicates with one 
another in ASD. Peketi et al.(19) developed a novel method that combines Variational Mode Decomposition (VMD) 
and SVM classifier to classify P300 EEG signals in individuals with ASD. However, a key limitation was the need to 
determine the number of modes for decomposition in advance, which may result in mode mixing or redundancy 
if not properly optimized.

Menaka et al.(20) created an improved version of the AlexNet model by incorporating Linear Frequency Cepstral 
Coefficients (LFCC) to identify ASD from EEG waves, with an accuracy of 90%. On the other hand, it could not 
learn temporal information from EEG waves, and its effectiveness depended a lot on the right hyperparameter 
choices. Using EEG data, Xu et al.(21) came up with a new way to find ASD. They generated Time-Series Maps 
of Brain Functional Connectivity (TSM-BFC) by combining temporal data from EEG signals. We used a Deep 
Convolutional GAN (DCGAN) to add more data. Then, a CNN-Long Short-Term Memory (LSTM) technique was 
utilized to find ASD by looking at the time and space aspects of EEG signals.  But the accuracy was low because 
the sample size was limited, which made it more likely to overfit.Using EEG data, Toranjsimin et al.(22) built a 
model for diagnosing ASD early and without noise. They cleaned up and cut up the signals, and then they used 
cross wavelet transform images as input for AlexNet, GoogleNet, VGG19, ResNet50, and ResNet101. But these 
models had trouble capturing temporal features, which made them less accurate and less able to recall.  Al-
Qazzaz et al.(23) used transfer learning and hybrid CNNs to differentiate between EEG readings from those with 
ASD and those without. To start, the EEG signals were split into 5-second chunks and turned into 2D grayscale 
spectrogram images using the power spectral density method. Next, we used pre-trained CNN models including 
AlexNet, SqueezeNet, MobileNetV2, GoogleNet, ResNet18, ShuffleNet, and EfficientNet to get features from 
each spectrogram image. Decision trees, K-nearest neighbors, and SVM were used to construct hybrid models 
that could differentiate between normal people and people with mild, moderate, and severe ASD. Conversely, 
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the accuracy of these models was low due to their inability to capture temporal characteristics effectively.
The literature review reveals a gap in research on autism detection using EEG signals. Current studies focus 

mainly on resting-state EEG data, neglecting the insights that task-related EEG can offer. This limited focus 
hinders the models’ ability to capture the full range of brain activity in individuals with autism. Moreover, CNN 
models struggle to extract and analyze the complex spatial and temporal characteristics of autism-related 
brain activity effectively. Also, the fixed hyperparameters in these models restrict their adaptability to the 
diverse nature of EEG data across patients, leading to reduced accuracy and poor generalizability. To address 
these issues, this study aims to develop an optimized deep learning model that can effectively capture spatial 
and temporal features from EEG signals. This model will also be fine-tuned to enhance its performance by 
optimizing hyperparameters.

METHOD
The OLA2HGCN model for ASD detection and diagnosis is outlined in this section. Figure 1 illustrates a visual 

graphical representation for the proposed work.
 

Figure 1. Schematic Representation of the suggested module

Dataset Description
This study utilizes two widely recognized datasets to gather EEG signals from children diagnosed with ASD 

and children who are TD:
1.	 EEG Dataset for ASD:(24) EEG data were collected from 28 individuals with ASD and 28 TD individuals 

using the Biosemi Active two EEG system. This dataset comprises recordings of eyes closed and sleeping 
for a 2,5-minute period. The DEBCWGAN model generates 2000 artificial EEG data (1000 from each class) 
using 44 training samples to improve classification performance.

2.	 Autism Biomarkers Consortium for Clinical Trials (ABC-CT) dataset:(25) It includes EEG and eye-
tracking data from 280 ASD contributors and 119 TD contributors aged 6–11 years. EEG data was collected 
at three time points. The DEBCWGAN model generates 2000 artificial EEG data (1000 from each class) 
using 319 training samples to enhance classification performance.

Pre-processing and Augmentation
The raw EEG data are preprocessed to extract DE features from 5 frequency groups (alpha, gamma, delta, 
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beta, theta) for each of the 62 EEG channels. These features are segmented into 5-second windows. To capture 
temporal and spatial information, the data is transformed in two ways: 1) A 5-second segment with 310 
dimensions (62 channels x 5 bands) for timing, and 2) A 16x16 grid representation of the 62 channels for each 
5-second window to capture spatial relationships. Additionally, every electrode is connected to Cz, sampling 
frequency set to 1000 Hz, and electrodes’ impedance is maintained below 50 kΩ. If an electrode has an 
impedance greater than 50 kΩ or a threshold greater than 200V while recording, an artifact detection method 
will be employed to identify it. These electrodes have been identified as channels with poor interpolation. 
The filtered signals are again equilibrated with the mean reference of two mastoids. This preprocessed data is 
fed to the DEBCWGAN model for data augmentation. This model uses two encoder networks to learn temporal 
and spatial patterns separately before combining them to generate synthetic EEG samples. Thus, it creates 
balanced training data to enhance the performance of the autism detection classifier.

Local-Asymmetric Adaptive Hybrid Graph Convolutional Network Model
The LA2HGCN model is designed to improve the accuracy of autism diagnosis by extracting discriminative 

features. Using adaptive graph convolution and the parameter-sharing mechanism of CNNs, this model is able 
to learn the asymmetric spatial aspects based on functional connections in the brain as well as the temporal 
characteristics of different brain regions.  Before feeding them into a classifier, the retrieved characteristics 
are merged using an attention technique to optimize the differences.  Figure 2 shows the general design of the 
LA2HGCN model that has a classifier, a global concatenation method, an asymmetric spatial feature extractor, 
an adaptive graph structure learner, and a regional temporal feature extractor.

Figure 2. Architecture of LA2HGCN Model

Model Input
In this study, 46 channels are selected using the 10-10 autism criteria to encompass the four functional areas 

of the brain: the frontal, temporal, parietal, and occipital lobes. The left and right hemispheres of cerebral 
channels are symmetrically sorted to ensure comparability. Participant data is normalized to reduce differences. 
Data is cut to remove bad fragments and randomly selected for ten-second slices. Each participant’s data is 
processed into 10 samples without overlap. A dimension is added to produce numerous convolution kernel 
(ConvKern) channels in a technique used as input to facilitate learning of features in both spatial and temporal 
aspects. The model input matrix is defined as:

𝑋𝑋 = {𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡}   (1) 
 

𝐵𝐵𝑖𝑖𝑟𝑟 = 𝜎𝜎 (𝐴𝐴𝐴𝐴𝐴𝐴2(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷(𝑋𝑋𝑖𝑖𝑟𝑟, 𝑠𝑠1))) (2) 

 
𝐵𝐵𝑟𝑟 = [𝐵𝐵1𝑟𝑟, … , 𝐵𝐵𝑖𝑖𝑟𝑟]   (3) 
 

𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = 𝜎𝜎 (𝐴𝐴𝐴𝐴𝐴𝐴2(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷(𝐵𝐵𝑟𝑟, 𝑠𝑠2))) (4) 

 

𝐴𝐴𝑚𝑚𝑚𝑚𝑟𝑟 = 𝑔𝑔(𝑥𝑥𝑚𝑚, 𝑥𝑥𝑛𝑛) =
𝑒𝑒(𝜎𝜎(𝜔𝜔

𝑇𝑇|𝑥𝑥𝑛𝑛−𝑥𝑥𝑚𝑚|))

∑ 𝑒𝑒(𝜎𝜎(𝜔𝜔
𝑇𝑇|𝑥𝑥𝑚𝑚−𝑥𝑥𝑛𝑛|))𝑁𝑁

𝑚𝑚=1
    (5) 

 

ℒ𝐶𝐶𝐶𝐶 = −
1
𝐵𝐵∑ ∑ 𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 log1 𝑦̂𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐=0
𝐵𝐵
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ=1  (6) 

 
𝐹𝐹𝑔𝑔𝑟𝑟 = 𝑔𝑔𝜃𝜃 ∗ 𝒢𝒢𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = 𝑔𝑔𝜃𝜃(𝐿𝐿)𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = ∑ 𝜃𝜃𝑘𝑘𝐾𝐾−1

𝑘𝑘=0 𝑇𝑇𝑘𝑘(𝐿̃𝐿)𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 (7) 
 
𝑇𝑇0(𝑥𝑥) = 1, 𝑇𝑇1(𝑥𝑥) = 𝑥𝑥, 𝑇𝑇𝑛𝑛+1(𝑥𝑥) = 2𝑥𝑥𝑇𝑇𝑛𝑛(𝑥𝑥) − 𝑇𝑇𝑛𝑛−1(𝑥𝑥)  (8) 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐺𝐺𝐺𝐺𝐺𝐺 (𝐴𝐴𝐴𝐴𝐴𝐴([𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡], 𝑄𝑄)) = 1
𝑘𝑘 ∑ [𝛽𝛽1𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝛽𝛽2𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡]𝐾𝐾

𝑘𝑘=1  (9) 

 
𝑦̂𝑦 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑊𝑊2𝑝𝑝 ∘ (𝑊𝑊1𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑏𝑏1) + 𝑏𝑏2)  (10) 
 

𝐺𝐺𝐺𝐺(𝑡𝑡 + 1) =
{
 

 (𝑢𝑢𝑏𝑏 − 𝑙𝑙𝑏𝑏) × 𝑟𝑟1 + 𝑙𝑙𝑏𝑏, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 𝜌𝜌
(𝑟𝑟2 − 𝐶𝐶) × 𝑋𝑋𝑟𝑟(𝑡𝑡) + 𝐿𝐿 × 𝐻𝐻, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 1

2

𝑋𝑋(𝑡𝑡) − 𝐿𝐿 × (𝐿𝐿 × (𝑋𝑋(𝑡𝑡) − 𝐺𝐺𝑋𝑋𝑟𝑟(𝑡𝑡))) + 𝑟𝑟3 × (𝑋𝑋(𝑡𝑡) − 𝐺𝐺𝑋𝑋𝑟𝑟(𝑡𝑡)), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 1
2

 (11) 

 

𝐶𝐶 = cos(2 × 𝑟𝑟4) + 1 × (1 −
𝑇𝑇

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
) (12) 

 
𝐿𝐿 = 𝐶𝐶 × 𝑙𝑙    (13) 
 
𝐻𝐻 = 𝑍𝑍 × 𝑋𝑋(𝑡𝑡)    (14) 
 
𝑍𝑍 = [−𝐶𝐶, 𝐶𝐶]    (15) 
 
𝐺𝐺𝐺𝐺(𝑡𝑡 + 1) = 𝐿𝐿 ×𝑀𝑀 × (𝑋𝑋(𝑡𝑡) − 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) + 𝑋𝑋(𝑡𝑡) (16) 
 

𝑀𝑀 = (|1𝑁𝑁∑ 𝐺𝐺𝐺𝐺𝑖𝑖(𝑡𝑡)𝑁𝑁
𝑖𝑖=1 |

𝑔𝑔
)
1 𝑔𝑔⁄

    (17) 

 
𝑔𝑔 = 2𝐿𝐿       (18) 
 

The matrices, Xleft and Xright represent EEG data from the left and right hemispheres, respectively. Each 
matrix has a size of c/2×point, where c is the total number of channels and point is the segment length, (i.e., 

https://doi.org/10.56294/dm20261339
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1000). Xleft and Xright are made up of EEG data from four brain areas in each hemisphere, which are labeled Xi
left 

and Xi
right for i=1,2,3,4.

Local-Temporal Feature Extractor (LTFE)
Here, 2D convolution is employed to derive time-based properties of each electrode. The convolution 

operation is set up using a parameter-sharing technique to make a local temporal feature extractor that is 
specific to the functional properties of brain areas in autism. Each electrode’s time series data runs through 
two 2D convolution procedures. The only thing that is different between them is a collection of common 
variables. The LTFE model employs Convolutional (Conv) blocks in all four regions and both hemispheres to get 
temporal characteristics from smaller areas. The parameters of the ConvKern are shared throughout all regions 
of the brain. The parts of a Conv block is 2D Conv layer, an average pooling (AvgPool) layer and an activation 
function called ReLU. This method is described as:
𝑋𝑋 = {𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡}   (1) 
 

𝐵𝐵𝑖𝑖𝑟𝑟 = 𝜎𝜎 (𝐴𝐴𝐴𝐴𝐴𝐴2(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷(𝑋𝑋𝑖𝑖𝑟𝑟, 𝑠𝑠1))) (2) 

 
𝐵𝐵𝑟𝑟 = [𝐵𝐵1𝑟𝑟, … , 𝐵𝐵𝑖𝑖𝑟𝑟]   (3) 
 

𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = 𝜎𝜎 (𝐴𝐴𝐴𝐴𝐴𝐴2(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷(𝐵𝐵𝑟𝑟, 𝑠𝑠2))) (4) 

 

𝐴𝐴𝑚𝑚𝑚𝑚𝑟𝑟 = 𝑔𝑔(𝑥𝑥𝑚𝑚, 𝑥𝑥𝑛𝑛) =
𝑒𝑒(𝜎𝜎(𝜔𝜔

𝑇𝑇|𝑥𝑥𝑛𝑛−𝑥𝑥𝑚𝑚|))

∑ 𝑒𝑒(𝜎𝜎(𝜔𝜔
𝑇𝑇|𝑥𝑥𝑚𝑚−𝑥𝑥𝑛𝑛|))𝑁𝑁

𝑚𝑚=1
    (5) 

 

ℒ𝐶𝐶𝐶𝐶 = −
1
𝐵𝐵∑ ∑ 𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 log1 𝑦̂𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐=0
𝐵𝐵
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ=1  (6) 

 
𝐹𝐹𝑔𝑔𝑟𝑟 = 𝑔𝑔𝜃𝜃 ∗ 𝒢𝒢𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = 𝑔𝑔𝜃𝜃(𝐿𝐿)𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = ∑ 𝜃𝜃𝑘𝑘𝐾𝐾−1

𝑘𝑘=0 𝑇𝑇𝑘𝑘(𝐿̃𝐿)𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 (7) 
 
𝑇𝑇0(𝑥𝑥) = 1, 𝑇𝑇1(𝑥𝑥) = 𝑥𝑥, 𝑇𝑇𝑛𝑛+1(𝑥𝑥) = 2𝑥𝑥𝑇𝑇𝑛𝑛(𝑥𝑥) − 𝑇𝑇𝑛𝑛−1(𝑥𝑥)  (8) 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐺𝐺𝐺𝐺𝐺𝐺 (𝐴𝐴𝐴𝐴𝐴𝐴([𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡], 𝑄𝑄)) = 1
𝑘𝑘 ∑ [𝛽𝛽1𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝛽𝛽2𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡]𝐾𝐾

𝑘𝑘=1  (9) 

 
𝑦̂𝑦 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑊𝑊2𝑝𝑝 ∘ (𝑊𝑊1𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑏𝑏1) + 𝑏𝑏2)  (10) 
 

𝐺𝐺𝐺𝐺(𝑡𝑡 + 1) =
{
 

 (𝑢𝑢𝑏𝑏 − 𝑙𝑙𝑏𝑏) × 𝑟𝑟1 + 𝑙𝑙𝑏𝑏, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 𝜌𝜌
(𝑟𝑟2 − 𝐶𝐶) × 𝑋𝑋𝑟𝑟(𝑡𝑡) + 𝐿𝐿 × 𝐻𝐻, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 1

2

𝑋𝑋(𝑡𝑡) − 𝐿𝐿 × (𝐿𝐿 × (𝑋𝑋(𝑡𝑡) − 𝐺𝐺𝑋𝑋𝑟𝑟(𝑡𝑡))) + 𝑟𝑟3 × (𝑋𝑋(𝑡𝑡) − 𝐺𝐺𝑋𝑋𝑟𝑟(𝑡𝑡)), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 1
2

 (11) 

 

𝐶𝐶 = cos(2 × 𝑟𝑟4) + 1 × (1 −
𝑇𝑇

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
) (12) 

 
𝐿𝐿 = 𝐶𝐶 × 𝑙𝑙    (13) 
 
𝐻𝐻 = 𝑍𝑍 × 𝑋𝑋(𝑡𝑡)    (14) 
 
𝑍𝑍 = [−𝐶𝐶, 𝐶𝐶]    (15) 
 
𝐺𝐺𝐺𝐺(𝑡𝑡 + 1) = 𝐿𝐿 ×𝑀𝑀 × (𝑋𝑋(𝑡𝑡) − 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) + 𝑋𝑋(𝑡𝑡) (16) 
 

𝑀𝑀 = (|1𝑁𝑁∑ 𝐺𝐺𝐺𝐺𝑖𝑖(𝑡𝑡)𝑁𝑁
𝑖𝑖=1 |

𝑔𝑔
)
1 𝑔𝑔⁄

    (17) 

 
𝑔𝑔 = 2𝐿𝐿       (18) 
 

The variables Xi
r and Bi

r represent the raw data input and local temporal feature, respectively, for the i^th 
brain area of the r hemisphere in equation (2), where r is an element of the left and right hemispheres and i is 
an element of the 1, 2, 3 and 4 sets. The 2D convolution method Conv2D(∙) uses a kernel scale of s_1=fs/2, the 
ReLU activation function is denoted as σ(∙), and the average pooling layer Avg2 (∙) is used to lower the temporal 
dimension by half to prevent overfitting and increase robustness.

The EEG frequency commonly used for autism diagnosis ranges from 2Hz to 70Hz. Therefore, a ConvKern 
scale of (1,fs/2) is selected to capture temporal features above 2Hz. After the region’s local-temporal features 
have been retrieved, the hemibrain’s temporal features can be learned using the same convolution blocks. 
Prior to this, combining spatially-related brain region feature maps from the same hemisphere is essential. This 
method is described as:

𝑋𝑋 = {𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡}   (1) 
 

𝐵𝐵𝑖𝑖𝑟𝑟 = 𝜎𝜎 (𝐴𝐴𝐴𝐴𝐴𝐴2(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷(𝑋𝑋𝑖𝑖𝑟𝑟, 𝑠𝑠1))) (2) 

 
𝐵𝐵𝑟𝑟 = [𝐵𝐵1𝑟𝑟, … , 𝐵𝐵𝑖𝑖𝑟𝑟]   (3) 
 

𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = 𝜎𝜎 (𝐴𝐴𝐴𝐴𝐴𝐴2(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷(𝐵𝐵𝑟𝑟, 𝑠𝑠2))) (4) 

 

𝐴𝐴𝑚𝑚𝑚𝑚𝑟𝑟 = 𝑔𝑔(𝑥𝑥𝑚𝑚, 𝑥𝑥𝑛𝑛) =
𝑒𝑒(𝜎𝜎(𝜔𝜔

𝑇𝑇|𝑥𝑥𝑛𝑛−𝑥𝑥𝑚𝑚|))

∑ 𝑒𝑒(𝜎𝜎(𝜔𝜔
𝑇𝑇|𝑥𝑥𝑚𝑚−𝑥𝑥𝑛𝑛|))𝑁𝑁

𝑚𝑚=1
    (5) 

 

ℒ𝐶𝐶𝐶𝐶 = −
1
𝐵𝐵∑ ∑ 𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 log1 𝑦̂𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐=0
𝐵𝐵
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ=1  (6) 

 
𝐹𝐹𝑔𝑔𝑟𝑟 = 𝑔𝑔𝜃𝜃 ∗ 𝒢𝒢𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = 𝑔𝑔𝜃𝜃(𝐿𝐿)𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = ∑ 𝜃𝜃𝑘𝑘𝐾𝐾−1

𝑘𝑘=0 𝑇𝑇𝑘𝑘(𝐿̃𝐿)𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 (7) 
 
𝑇𝑇0(𝑥𝑥) = 1, 𝑇𝑇1(𝑥𝑥) = 𝑥𝑥, 𝑇𝑇𝑛𝑛+1(𝑥𝑥) = 2𝑥𝑥𝑇𝑇𝑛𝑛(𝑥𝑥) − 𝑇𝑇𝑛𝑛−1(𝑥𝑥)  (8) 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐺𝐺𝐺𝐺𝐺𝐺 (𝐴𝐴𝐴𝐴𝐴𝐴([𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡], 𝑄𝑄)) = 1
𝑘𝑘 ∑ [𝛽𝛽1𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝛽𝛽2𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡]𝐾𝐾

𝑘𝑘=1  (9) 

 
𝑦̂𝑦 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑊𝑊2𝑝𝑝 ∘ (𝑊𝑊1𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑏𝑏1) + 𝑏𝑏2)  (10) 
 

𝐺𝐺𝐺𝐺(𝑡𝑡 + 1) =
{
 

 (𝑢𝑢𝑏𝑏 − 𝑙𝑙𝑏𝑏) × 𝑟𝑟1 + 𝑙𝑙𝑏𝑏, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 𝜌𝜌
(𝑟𝑟2 − 𝐶𝐶) × 𝑋𝑋𝑟𝑟(𝑡𝑡) + 𝐿𝐿 × 𝐻𝐻, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 1

2

𝑋𝑋(𝑡𝑡) − 𝐿𝐿 × (𝐿𝐿 × (𝑋𝑋(𝑡𝑡) − 𝐺𝐺𝑋𝑋𝑟𝑟(𝑡𝑡))) + 𝑟𝑟3 × (𝑋𝑋(𝑡𝑡) − 𝐺𝐺𝑋𝑋𝑟𝑟(𝑡𝑡)), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 1
2

 (11) 

 

𝐶𝐶 = cos(2 × 𝑟𝑟4) + 1 × (1 −
𝑇𝑇

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
) (12) 

 
𝐿𝐿 = 𝐶𝐶 × 𝑙𝑙    (13) 
 
𝐻𝐻 = 𝑍𝑍 × 𝑋𝑋(𝑡𝑡)    (14) 
 
𝑍𝑍 = [−𝐶𝐶, 𝐶𝐶]    (15) 
 
𝐺𝐺𝐺𝐺(𝑡𝑡 + 1) = 𝐿𝐿 ×𝑀𝑀 × (𝑋𝑋(𝑡𝑡) − 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) + 𝑋𝑋(𝑡𝑡) (16) 
 

𝑀𝑀 = (|1𝑁𝑁∑ 𝐺𝐺𝐺𝐺𝑖𝑖(𝑡𝑡)𝑁𝑁
𝑖𝑖=1 |

𝑔𝑔
)
1 𝑔𝑔⁄

    (17) 

 
𝑔𝑔 = 2𝐿𝐿       (18) 
 

The local-temporal feature extractor produces a final feature map that is computed as:

𝑋𝑋 = {𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡}   (1) 
 

𝐵𝐵𝑖𝑖𝑟𝑟 = 𝜎𝜎 (𝐴𝐴𝐴𝐴𝐴𝐴2(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷(𝑋𝑋𝑖𝑖𝑟𝑟, 𝑠𝑠1))) (2) 

 
𝐵𝐵𝑟𝑟 = [𝐵𝐵1𝑟𝑟, … , 𝐵𝐵𝑖𝑖𝑟𝑟]   (3) 
 

𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = 𝜎𝜎 (𝐴𝐴𝐴𝐴𝐴𝐴2(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷(𝐵𝐵𝑟𝑟, 𝑠𝑠2))) (4) 

 

𝐴𝐴𝑚𝑚𝑚𝑚𝑟𝑟 = 𝑔𝑔(𝑥𝑥𝑚𝑚, 𝑥𝑥𝑛𝑛) =
𝑒𝑒(𝜎𝜎(𝜔𝜔

𝑇𝑇|𝑥𝑥𝑛𝑛−𝑥𝑥𝑚𝑚|))

∑ 𝑒𝑒(𝜎𝜎(𝜔𝜔
𝑇𝑇|𝑥𝑥𝑚𝑚−𝑥𝑥𝑛𝑛|))𝑁𝑁

𝑚𝑚=1
    (5) 

 

ℒ𝐶𝐶𝐶𝐶 = −
1
𝐵𝐵∑ ∑ 𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 log1 𝑦̂𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐=0
𝐵𝐵
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ=1  (6) 

 
𝐹𝐹𝑔𝑔𝑟𝑟 = 𝑔𝑔𝜃𝜃 ∗ 𝒢𝒢𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = 𝑔𝑔𝜃𝜃(𝐿𝐿)𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = ∑ 𝜃𝜃𝑘𝑘𝐾𝐾−1

𝑘𝑘=0 𝑇𝑇𝑘𝑘(𝐿̃𝐿)𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 (7) 
 
𝑇𝑇0(𝑥𝑥) = 1, 𝑇𝑇1(𝑥𝑥) = 𝑥𝑥, 𝑇𝑇𝑛𝑛+1(𝑥𝑥) = 2𝑥𝑥𝑇𝑇𝑛𝑛(𝑥𝑥) − 𝑇𝑇𝑛𝑛−1(𝑥𝑥)  (8) 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐺𝐺𝐺𝐺𝐺𝐺 (𝐴𝐴𝐴𝐴𝐴𝐴([𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡], 𝑄𝑄)) = 1
𝑘𝑘 ∑ [𝛽𝛽1𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝛽𝛽2𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡]𝐾𝐾

𝑘𝑘=1  (9) 

 
𝑦̂𝑦 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑊𝑊2𝑝𝑝 ∘ (𝑊𝑊1𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑏𝑏1) + 𝑏𝑏2)  (10) 
 

𝐺𝐺𝐺𝐺(𝑡𝑡 + 1) =
{
 

 (𝑢𝑢𝑏𝑏 − 𝑙𝑙𝑏𝑏) × 𝑟𝑟1 + 𝑙𝑙𝑏𝑏, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 𝜌𝜌
(𝑟𝑟2 − 𝐶𝐶) × 𝑋𝑋𝑟𝑟(𝑡𝑡) + 𝐿𝐿 × 𝐻𝐻, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 1

2

𝑋𝑋(𝑡𝑡) − 𝐿𝐿 × (𝐿𝐿 × (𝑋𝑋(𝑡𝑡) − 𝐺𝐺𝑋𝑋𝑟𝑟(𝑡𝑡))) + 𝑟𝑟3 × (𝑋𝑋(𝑡𝑡) − 𝐺𝐺𝑋𝑋𝑟𝑟(𝑡𝑡)), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 1
2

 (11) 

 

𝐶𝐶 = cos(2 × 𝑟𝑟4) + 1 × (1 −
𝑇𝑇

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
) (12) 

 
𝐿𝐿 = 𝐶𝐶 × 𝑙𝑙    (13) 
 
𝐻𝐻 = 𝑍𝑍 × 𝑋𝑋(𝑡𝑡)    (14) 
 
𝑍𝑍 = [−𝐶𝐶, 𝐶𝐶]    (15) 
 
𝐺𝐺𝐺𝐺(𝑡𝑡 + 1) = 𝐿𝐿 ×𝑀𝑀 × (𝑋𝑋(𝑡𝑡) − 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) + 𝑋𝑋(𝑡𝑡) (16) 
 

𝑀𝑀 = (|1𝑁𝑁∑ 𝐺𝐺𝐺𝐺𝑖𝑖(𝑡𝑡)𝑁𝑁
𝑖𝑖=1 |

𝑔𝑔
)
1 𝑔𝑔⁄

    (17) 

 
𝑔𝑔 = 2𝐿𝐿       (18) 
 

In equation (4),  is a portion of the final phase of feature mapping.

Adaptive Graph Network Learning
The adjacency matrix is created by learning the neighboring feature correlations of electrodes in the 

technique, unlike a fixed graph structure. In this study, the graph structures of the left and right hemibrains 
are established separately to obtain the adjacency matrices Aleft and Aright.

Let Aij
left, Aij

right=g(xi,xj ) is used to depict the connections between nodes xi and xj, where i,j∈{1,2,…,n} 
represent the nodes in the hemibrain. The feature map 〖Tem〗^r provides vectors equivalent to nodes i and j. 
The function g(Xi, xj) is computed using a learnable weight vector ω=(ω1,ω2,…,ωf )∈Rf×1 and the attributes of i 
and j. The ω shares variables across all node connections during the learning process. The ConvKern feature 
layers from previous layer averages are used to depict the graph structure of the adjacency matrix as:

𝑋𝑋 = {𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡}   (1) 
 

𝐵𝐵𝑖𝑖𝑟𝑟 = 𝜎𝜎 (𝐴𝐴𝐴𝐴𝐴𝐴2(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷(𝑋𝑋𝑖𝑖𝑟𝑟, 𝑠𝑠1))) (2) 

 
𝐵𝐵𝑟𝑟 = [𝐵𝐵1𝑟𝑟, … , 𝐵𝐵𝑖𝑖𝑟𝑟]   (3) 
 

𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = 𝜎𝜎 (𝐴𝐴𝐴𝐴𝐴𝐴2(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷(𝐵𝐵𝑟𝑟, 𝑠𝑠2))) (4) 

 

𝐴𝐴𝑚𝑚𝑚𝑚𝑟𝑟 = 𝑔𝑔(𝑥𝑥𝑚𝑚, 𝑥𝑥𝑛𝑛) =
𝑒𝑒(𝜎𝜎(𝜔𝜔

𝑇𝑇|𝑥𝑥𝑛𝑛−𝑥𝑥𝑚𝑚|))

∑ 𝑒𝑒(𝜎𝜎(𝜔𝜔
𝑇𝑇|𝑥𝑥𝑚𝑚−𝑥𝑥𝑛𝑛|))𝑁𝑁

𝑚𝑚=1
    (5) 

 

ℒ𝐶𝐶𝐶𝐶 = −
1
𝐵𝐵∑ ∑ 𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 log1 𝑦̂𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐=0
𝐵𝐵
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ=1  (6) 

 
𝐹𝐹𝑔𝑔𝑟𝑟 = 𝑔𝑔𝜃𝜃 ∗ 𝒢𝒢𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = 𝑔𝑔𝜃𝜃(𝐿𝐿)𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = ∑ 𝜃𝜃𝑘𝑘𝐾𝐾−1

𝑘𝑘=0 𝑇𝑇𝑘𝑘(𝐿̃𝐿)𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 (7) 
 
𝑇𝑇0(𝑥𝑥) = 1, 𝑇𝑇1(𝑥𝑥) = 𝑥𝑥, 𝑇𝑇𝑛𝑛+1(𝑥𝑥) = 2𝑥𝑥𝑇𝑇𝑛𝑛(𝑥𝑥) − 𝑇𝑇𝑛𝑛−1(𝑥𝑥)  (8) 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐺𝐺𝐺𝐺𝐺𝐺 (𝐴𝐴𝐴𝐴𝐴𝐴([𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡], 𝑄𝑄)) = 1
𝑘𝑘 ∑ [𝛽𝛽1𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝛽𝛽2𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡]𝐾𝐾

𝑘𝑘=1  (9) 

 
𝑦̂𝑦 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑊𝑊2𝑝𝑝 ∘ (𝑊𝑊1𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑏𝑏1) + 𝑏𝑏2)  (10) 
 

𝐺𝐺𝐺𝐺(𝑡𝑡 + 1) =
{
 

 (𝑢𝑢𝑏𝑏 − 𝑙𝑙𝑏𝑏) × 𝑟𝑟1 + 𝑙𝑙𝑏𝑏, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 𝜌𝜌
(𝑟𝑟2 − 𝐶𝐶) × 𝑋𝑋𝑟𝑟(𝑡𝑡) + 𝐿𝐿 × 𝐻𝐻, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 1

2

𝑋𝑋(𝑡𝑡) − 𝐿𝐿 × (𝐿𝐿 × (𝑋𝑋(𝑡𝑡) − 𝐺𝐺𝑋𝑋𝑟𝑟(𝑡𝑡))) + 𝑟𝑟3 × (𝑋𝑋(𝑡𝑡) − 𝐺𝐺𝑋𝑋𝑟𝑟(𝑡𝑡)), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 1
2

 (11) 

 

𝐶𝐶 = cos(2 × 𝑟𝑟4) + 1 × (1 −
𝑇𝑇

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
) (12) 

 
𝐿𝐿 = 𝐶𝐶 × 𝑙𝑙    (13) 
 
𝐻𝐻 = 𝑍𝑍 × 𝑋𝑋(𝑡𝑡)    (14) 
 
𝑍𝑍 = [−𝐶𝐶, 𝐶𝐶]    (15) 
 
𝐺𝐺𝐺𝐺(𝑡𝑡 + 1) = 𝐿𝐿 ×𝑀𝑀 × (𝑋𝑋(𝑡𝑡) − 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) + 𝑋𝑋(𝑡𝑡) (16) 
 

𝑀𝑀 = (|1𝑁𝑁∑ 𝐺𝐺𝐺𝐺𝑖𝑖(𝑡𝑡)𝑁𝑁
𝑖𝑖=1 |

𝑔𝑔
)
1 𝑔𝑔⁄

    (17) 

 
𝑔𝑔 = 2𝐿𝐿       (18) 
 

The ReLU activation function converts linear units into non-negative numbers. Based on a time feature map 
that is dynamic, the adjacency matrix is fine-tuned iteratively by total cross-entropy loss. The cross-entropy 
loss function is:

𝑋𝑋 = {𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡}   (1) 
 

𝐵𝐵𝑖𝑖𝑟𝑟 = 𝜎𝜎 (𝐴𝐴𝐴𝐴𝐴𝐴2(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷(𝑋𝑋𝑖𝑖𝑟𝑟, 𝑠𝑠1))) (2) 

 
𝐵𝐵𝑟𝑟 = [𝐵𝐵1𝑟𝑟, … , 𝐵𝐵𝑖𝑖𝑟𝑟]   (3) 
 

𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = 𝜎𝜎 (𝐴𝐴𝐴𝐴𝐴𝐴2(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷(𝐵𝐵𝑟𝑟, 𝑠𝑠2))) (4) 

 

𝐴𝐴𝑚𝑚𝑚𝑚𝑟𝑟 = 𝑔𝑔(𝑥𝑥𝑚𝑚, 𝑥𝑥𝑛𝑛) =
𝑒𝑒(𝜎𝜎(𝜔𝜔

𝑇𝑇|𝑥𝑥𝑛𝑛−𝑥𝑥𝑚𝑚|))

∑ 𝑒𝑒(𝜎𝜎(𝜔𝜔
𝑇𝑇|𝑥𝑥𝑚𝑚−𝑥𝑥𝑛𝑛|))𝑁𝑁

𝑚𝑚=1
    (5) 

 

ℒ𝐶𝐶𝐶𝐶 = −
1
𝐵𝐵∑ ∑ 𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 log1 𝑦̂𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐=0
𝐵𝐵
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ=1  (6) 

 
𝐹𝐹𝑔𝑔𝑟𝑟 = 𝑔𝑔𝜃𝜃 ∗ 𝒢𝒢𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = 𝑔𝑔𝜃𝜃(𝐿𝐿)𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = ∑ 𝜃𝜃𝑘𝑘𝐾𝐾−1

𝑘𝑘=0 𝑇𝑇𝑘𝑘(𝐿̃𝐿)𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 (7) 
 
𝑇𝑇0(𝑥𝑥) = 1, 𝑇𝑇1(𝑥𝑥) = 𝑥𝑥, 𝑇𝑇𝑛𝑛+1(𝑥𝑥) = 2𝑥𝑥𝑇𝑇𝑛𝑛(𝑥𝑥) − 𝑇𝑇𝑛𝑛−1(𝑥𝑥)  (8) 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐺𝐺𝐺𝐺𝐺𝐺 (𝐴𝐴𝐴𝐴𝐴𝐴([𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡], 𝑄𝑄)) = 1
𝑘𝑘 ∑ [𝛽𝛽1𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝛽𝛽2𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡]𝐾𝐾

𝑘𝑘=1  (9) 

 
𝑦̂𝑦 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑊𝑊2𝑝𝑝 ∘ (𝑊𝑊1𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑏𝑏1) + 𝑏𝑏2)  (10) 
 

𝐺𝐺𝐺𝐺(𝑡𝑡 + 1) =
{
 

 (𝑢𝑢𝑏𝑏 − 𝑙𝑙𝑏𝑏) × 𝑟𝑟1 + 𝑙𝑙𝑏𝑏, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 𝜌𝜌
(𝑟𝑟2 − 𝐶𝐶) × 𝑋𝑋𝑟𝑟(𝑡𝑡) + 𝐿𝐿 × 𝐻𝐻, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 1

2

𝑋𝑋(𝑡𝑡) − 𝐿𝐿 × (𝐿𝐿 × (𝑋𝑋(𝑡𝑡) − 𝐺𝐺𝑋𝑋𝑟𝑟(𝑡𝑡))) + 𝑟𝑟3 × (𝑋𝑋(𝑡𝑡) − 𝐺𝐺𝑋𝑋𝑟𝑟(𝑡𝑡)), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 1
2

 (11) 

 

𝐶𝐶 = cos(2 × 𝑟𝑟4) + 1 × (1 −
𝑇𝑇

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
) (12) 

 
𝐿𝐿 = 𝐶𝐶 × 𝑙𝑙    (13) 
 
𝐻𝐻 = 𝑍𝑍 × 𝑋𝑋(𝑡𝑡)    (14) 
 
𝑍𝑍 = [−𝐶𝐶, 𝐶𝐶]    (15) 
 
𝐺𝐺𝐺𝐺(𝑡𝑡 + 1) = 𝐿𝐿 ×𝑀𝑀 × (𝑋𝑋(𝑡𝑡) − 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) + 𝑋𝑋(𝑡𝑡) (16) 
 

𝑀𝑀 = (|1𝑁𝑁∑ 𝐺𝐺𝐺𝐺𝑖𝑖(𝑡𝑡)𝑁𝑁
𝑖𝑖=1 |

𝑔𝑔
)
1 𝑔𝑔⁄

    (17) 

 
𝑔𝑔 = 2𝐿𝐿       (18) 
 

Finally, Aij
left and Aij

right has been computed. This matrix serves as input for a graph network in graph 
convolutional learning.
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Asymmetric-Spatial Feature Extractor (ASFE)
Graph convolution in EEG data involves approximating graph ConvKern (GConvKern) with the help of 

Chebyshev polynomials, reducing computational complexity to K, where K is the Chebyshev polynomials count 
used. By integrating hemibrain adjacency matrices with the time-based attributes of every node, both the left 
and right hemispheres’ non-Euclidean spatial characteristics are acquired.  The Chebyshev GConvKern with K-1 
order is:

𝑋𝑋 = {𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡}   (1) 
 

𝐵𝐵𝑖𝑖𝑟𝑟 = 𝜎𝜎 (𝐴𝐴𝐴𝐴𝐴𝐴2(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷(𝑋𝑋𝑖𝑖𝑟𝑟, 𝑠𝑠1))) (2) 

 
𝐵𝐵𝑟𝑟 = [𝐵𝐵1𝑟𝑟, … , 𝐵𝐵𝑖𝑖𝑟𝑟]   (3) 
 

𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = 𝜎𝜎 (𝐴𝐴𝐴𝐴𝐴𝐴2(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷(𝐵𝐵𝑟𝑟, 𝑠𝑠2))) (4) 

 

𝐴𝐴𝑚𝑚𝑚𝑚𝑟𝑟 = 𝑔𝑔(𝑥𝑥𝑚𝑚, 𝑥𝑥𝑛𝑛) =
𝑒𝑒(𝜎𝜎(𝜔𝜔

𝑇𝑇|𝑥𝑥𝑛𝑛−𝑥𝑥𝑚𝑚|))

∑ 𝑒𝑒(𝜎𝜎(𝜔𝜔
𝑇𝑇|𝑥𝑥𝑚𝑚−𝑥𝑥𝑛𝑛|))𝑁𝑁

𝑚𝑚=1
    (5) 

 

ℒ𝐶𝐶𝐶𝐶 = −
1
𝐵𝐵∑ ∑ 𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 log1 𝑦̂𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐=0
𝐵𝐵
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ=1  (6) 

 
𝐹𝐹𝑔𝑔𝑟𝑟 = 𝑔𝑔𝜃𝜃 ∗ 𝒢𝒢𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = 𝑔𝑔𝜃𝜃(𝐿𝐿)𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = ∑ 𝜃𝜃𝑘𝑘𝐾𝐾−1

𝑘𝑘=0 𝑇𝑇𝑘𝑘(𝐿̃𝐿)𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 (7) 
 
𝑇𝑇0(𝑥𝑥) = 1, 𝑇𝑇1(𝑥𝑥) = 𝑥𝑥, 𝑇𝑇𝑛𝑛+1(𝑥𝑥) = 2𝑥𝑥𝑇𝑇𝑛𝑛(𝑥𝑥) − 𝑇𝑇𝑛𝑛−1(𝑥𝑥)  (8) 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐺𝐺𝐺𝐺𝐺𝐺 (𝐴𝐴𝐴𝐴𝐴𝐴([𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡], 𝑄𝑄)) = 1
𝑘𝑘 ∑ [𝛽𝛽1𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝛽𝛽2𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡]𝐾𝐾

𝑘𝑘=1  (9) 

 
𝑦̂𝑦 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑊𝑊2𝑝𝑝 ∘ (𝑊𝑊1𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑏𝑏1) + 𝑏𝑏2)  (10) 
 

𝐺𝐺𝐺𝐺(𝑡𝑡 + 1) =
{
 

 (𝑢𝑢𝑏𝑏 − 𝑙𝑙𝑏𝑏) × 𝑟𝑟1 + 𝑙𝑙𝑏𝑏, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 𝜌𝜌
(𝑟𝑟2 − 𝐶𝐶) × 𝑋𝑋𝑟𝑟(𝑡𝑡) + 𝐿𝐿 × 𝐻𝐻, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 1

2

𝑋𝑋(𝑡𝑡) − 𝐿𝐿 × (𝐿𝐿 × (𝑋𝑋(𝑡𝑡) − 𝐺𝐺𝑋𝑋𝑟𝑟(𝑡𝑡))) + 𝑟𝑟3 × (𝑋𝑋(𝑡𝑡) − 𝐺𝐺𝑋𝑋𝑟𝑟(𝑡𝑡)), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 1
2

 (11) 

 

𝐶𝐶 = cos(2 × 𝑟𝑟4) + 1 × (1 −
𝑇𝑇

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
) (12) 

 
𝐿𝐿 = 𝐶𝐶 × 𝑙𝑙    (13) 
 
𝐻𝐻 = 𝑍𝑍 × 𝑋𝑋(𝑡𝑡)    (14) 
 
𝑍𝑍 = [−𝐶𝐶, 𝐶𝐶]    (15) 
 
𝐺𝐺𝐺𝐺(𝑡𝑡 + 1) = 𝐿𝐿 ×𝑀𝑀 × (𝑋𝑋(𝑡𝑡) − 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) + 𝑋𝑋(𝑡𝑡) (16) 
 

𝑀𝑀 = (|1𝑁𝑁∑ 𝐺𝐺𝐺𝐺𝑖𝑖(𝑡𝑡)𝑁𝑁
𝑖𝑖=1 |

𝑔𝑔
)
1 𝑔𝑔⁄

    (17) 

 
𝑔𝑔 = 2𝐿𝐿       (18) 
 

In equation (7), gθ symbolizes the ConvKern, *G denotes the graph convolution procedure, and L ̃ symbolizes 
the normalized Laplace matrix defined as L ̃=2/λmax -1, where λmax denotes the maximum eigenvalue. The 
eigenvalue diagonal matrix of the normalized Laplace matrix, as per the criteria of the Chebyshev polynomial 
of the 1st class, is transformed to an interval [-1,1]. The repititive definition of the initial class of Chebyshev 
polynomials is as follows:

𝑋𝑋 = {𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡}   (1) 
 

𝐵𝐵𝑖𝑖𝑟𝑟 = 𝜎𝜎 (𝐴𝐴𝐴𝐴𝐴𝐴2(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷(𝑋𝑋𝑖𝑖𝑟𝑟, 𝑠𝑠1))) (2) 

 
𝐵𝐵𝑟𝑟 = [𝐵𝐵1𝑟𝑟, … , 𝐵𝐵𝑖𝑖𝑟𝑟]   (3) 
 

𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = 𝜎𝜎 (𝐴𝐴𝐴𝐴𝐴𝐴2(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷(𝐵𝐵𝑟𝑟, 𝑠𝑠2))) (4) 

 

𝐴𝐴𝑚𝑚𝑚𝑚𝑟𝑟 = 𝑔𝑔(𝑥𝑥𝑚𝑚, 𝑥𝑥𝑛𝑛) =
𝑒𝑒(𝜎𝜎(𝜔𝜔

𝑇𝑇|𝑥𝑥𝑛𝑛−𝑥𝑥𝑚𝑚|))

∑ 𝑒𝑒(𝜎𝜎(𝜔𝜔
𝑇𝑇|𝑥𝑥𝑚𝑚−𝑥𝑥𝑛𝑛|))𝑁𝑁

𝑚𝑚=1
    (5) 

 

ℒ𝐶𝐶𝐶𝐶 = −
1
𝐵𝐵∑ ∑ 𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 log1 𝑦̂𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐=0
𝐵𝐵
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ=1  (6) 

 
𝐹𝐹𝑔𝑔𝑟𝑟 = 𝑔𝑔𝜃𝜃 ∗ 𝒢𝒢𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = 𝑔𝑔𝜃𝜃(𝐿𝐿)𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = ∑ 𝜃𝜃𝑘𝑘𝐾𝐾−1

𝑘𝑘=0 𝑇𝑇𝑘𝑘(𝐿̃𝐿)𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 (7) 
 
𝑇𝑇0(𝑥𝑥) = 1, 𝑇𝑇1(𝑥𝑥) = 𝑥𝑥, 𝑇𝑇𝑛𝑛+1(𝑥𝑥) = 2𝑥𝑥𝑇𝑇𝑛𝑛(𝑥𝑥) − 𝑇𝑇𝑛𝑛−1(𝑥𝑥)  (8) 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐺𝐺𝐺𝐺𝐺𝐺 (𝐴𝐴𝐴𝐴𝐴𝐴([𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡], 𝑄𝑄)) = 1
𝑘𝑘 ∑ [𝛽𝛽1𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝛽𝛽2𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡]𝐾𝐾

𝑘𝑘=1  (9) 

 
𝑦̂𝑦 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑊𝑊2𝑝𝑝 ∘ (𝑊𝑊1𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑏𝑏1) + 𝑏𝑏2)  (10) 
 

𝐺𝐺𝐺𝐺(𝑡𝑡 + 1) =
{
 

 (𝑢𝑢𝑏𝑏 − 𝑙𝑙𝑏𝑏) × 𝑟𝑟1 + 𝑙𝑙𝑏𝑏, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 𝜌𝜌
(𝑟𝑟2 − 𝐶𝐶) × 𝑋𝑋𝑟𝑟(𝑡𝑡) + 𝐿𝐿 × 𝐻𝐻, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 1

2

𝑋𝑋(𝑡𝑡) − 𝐿𝐿 × (𝐿𝐿 × (𝑋𝑋(𝑡𝑡) − 𝐺𝐺𝑋𝑋𝑟𝑟(𝑡𝑡))) + 𝑟𝑟3 × (𝑋𝑋(𝑡𝑡) − 𝐺𝐺𝑋𝑋𝑟𝑟(𝑡𝑡)), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 1
2

 (11) 

 

𝐶𝐶 = cos(2 × 𝑟𝑟4) + 1 × (1 −
𝑇𝑇

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
) (12) 

 
𝐿𝐿 = 𝐶𝐶 × 𝑙𝑙    (13) 
 
𝐻𝐻 = 𝑍𝑍 × 𝑋𝑋(𝑡𝑡)    (14) 
 
𝑍𝑍 = [−𝐶𝐶, 𝐶𝐶]    (15) 
 
𝐺𝐺𝐺𝐺(𝑡𝑡 + 1) = 𝐿𝐿 ×𝑀𝑀 × (𝑋𝑋(𝑡𝑡) − 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) + 𝑋𝑋(𝑡𝑡) (16) 
 

𝑀𝑀 = (|1𝑁𝑁∑ 𝐺𝐺𝐺𝐺𝑖𝑖(𝑡𝑡)𝑁𝑁
𝑖𝑖=1 |

𝑔𝑔
)
1 𝑔𝑔⁄

    (17) 

 
𝑔𝑔 = 2𝐿𝐿       (18) 
 

This is generated using a iterative formula Tk (L ), which denotes the Chebyshev polynomial.  Furthermore, θk 
symbolizes the Chebyshev coefficients vector.

Attention-Based Feature Concatenation
Attention strategies are employed to evaluate the spatial and temporal characteristics of the left and 

right brains before entering the model. Attention mechanism adjusts its attention based on influence of each 
hemisphere on categorization outcomes. The process is illustrated in Figure 3. Global pooling compresses global 
features, and the fully connected layer using activation function learns a non-linear relationship between the 
left and right hemispheres. EEG asymmetry features in autism are obtained through weighted averaging after 
fusion. These fused features are denoted as:

𝑋𝑋 = {𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡}   (1) 
 

𝐵𝐵𝑖𝑖𝑟𝑟 = 𝜎𝜎 (𝐴𝐴𝐴𝐴𝐴𝐴2(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷(𝑋𝑋𝑖𝑖𝑟𝑟, 𝑠𝑠1))) (2) 

 
𝐵𝐵𝑟𝑟 = [𝐵𝐵1𝑟𝑟, … , 𝐵𝐵𝑖𝑖𝑟𝑟]   (3) 
 

𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = 𝜎𝜎 (𝐴𝐴𝐴𝐴𝐴𝐴2(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷(𝐵𝐵𝑟𝑟, 𝑠𝑠2))) (4) 

 

𝐴𝐴𝑚𝑚𝑚𝑚𝑟𝑟 = 𝑔𝑔(𝑥𝑥𝑚𝑚, 𝑥𝑥𝑛𝑛) =
𝑒𝑒(𝜎𝜎(𝜔𝜔

𝑇𝑇|𝑥𝑥𝑛𝑛−𝑥𝑥𝑚𝑚|))

∑ 𝑒𝑒(𝜎𝜎(𝜔𝜔
𝑇𝑇|𝑥𝑥𝑚𝑚−𝑥𝑥𝑛𝑛|))𝑁𝑁

𝑚𝑚=1
    (5) 

 

ℒ𝐶𝐶𝐶𝐶 = −
1
𝐵𝐵∑ ∑ 𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 log1 𝑦̂𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐=0
𝐵𝐵
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ=1  (6) 

 
𝐹𝐹𝑔𝑔𝑟𝑟 = 𝑔𝑔𝜃𝜃 ∗ 𝒢𝒢𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = 𝑔𝑔𝜃𝜃(𝐿𝐿)𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = ∑ 𝜃𝜃𝑘𝑘𝐾𝐾−1

𝑘𝑘=0 𝑇𝑇𝑘𝑘(𝐿̃𝐿)𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 (7) 
 
𝑇𝑇0(𝑥𝑥) = 1, 𝑇𝑇1(𝑥𝑥) = 𝑥𝑥, 𝑇𝑇𝑛𝑛+1(𝑥𝑥) = 2𝑥𝑥𝑇𝑇𝑛𝑛(𝑥𝑥) − 𝑇𝑇𝑛𝑛−1(𝑥𝑥)  (8) 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐺𝐺𝐺𝐺𝐺𝐺 (𝐴𝐴𝐴𝐴𝐴𝐴([𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡], 𝑄𝑄)) = 1
𝑘𝑘 ∑ [𝛽𝛽1𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝛽𝛽2𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡]𝐾𝐾

𝑘𝑘=1  (9) 

 
𝑦̂𝑦 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑊𝑊2𝑝𝑝 ∘ (𝑊𝑊1𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑏𝑏1) + 𝑏𝑏2)  (10) 
 

𝐺𝐺𝐺𝐺(𝑡𝑡 + 1) =
{
 

 (𝑢𝑢𝑏𝑏 − 𝑙𝑙𝑏𝑏) × 𝑟𝑟1 + 𝑙𝑙𝑏𝑏, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 𝜌𝜌
(𝑟𝑟2 − 𝐶𝐶) × 𝑋𝑋𝑟𝑟(𝑡𝑡) + 𝐿𝐿 × 𝐻𝐻, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 1

2

𝑋𝑋(𝑡𝑡) − 𝐿𝐿 × (𝐿𝐿 × (𝑋𝑋(𝑡𝑡) − 𝐺𝐺𝑋𝑋𝑟𝑟(𝑡𝑡))) + 𝑟𝑟3 × (𝑋𝑋(𝑡𝑡) − 𝐺𝐺𝑋𝑋𝑟𝑟(𝑡𝑡)), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 1
2

 (11) 

 

𝐶𝐶 = cos(2 × 𝑟𝑟4) + 1 × (1 −
𝑇𝑇

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
) (12) 

 
𝐿𝐿 = 𝐶𝐶 × 𝑙𝑙    (13) 
 
𝐻𝐻 = 𝑍𝑍 × 𝑋𝑋(𝑡𝑡)    (14) 
 
𝑍𝑍 = [−𝐶𝐶, 𝐶𝐶]    (15) 
 
𝐺𝐺𝐺𝐺(𝑡𝑡 + 1) = 𝐿𝐿 ×𝑀𝑀 × (𝑋𝑋(𝑡𝑡) − 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) + 𝑋𝑋(𝑡𝑡) (16) 
 

𝑀𝑀 = (|1𝑁𝑁∑ 𝐺𝐺𝐺𝐺𝑖𝑖(𝑡𝑡)𝑁𝑁
𝑖𝑖=1 |

𝑔𝑔
)
1 𝑔𝑔⁄

    (17) 

 
𝑔𝑔 = 2𝐿𝐿       (18) 
 

In equation 9, K represents the quantity of GConvKerns, Q denotes dimension reduction ratio throughout the 
compression of the attention strategy and β1,β2 are left and right brain weights resulting after the attention 
strategies.

Figure 3. Attention-Based Hemibrain Feature Concatenation
Classifier

The final likelihood of an autism diagnosis is the product of training and a classification loss optimization 
model, like a cross-entropy loss function.  A two-layer classification layer using the ReLU and Softmax functions 
receives the spatiotemporal fusion feature matrix as input. The output is defined as:

𝑋𝑋 = {𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡}   (1) 
 

𝐵𝐵𝑖𝑖𝑟𝑟 = 𝜎𝜎 (𝐴𝐴𝐴𝐴𝐴𝐴2(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷(𝑋𝑋𝑖𝑖𝑟𝑟, 𝑠𝑠1))) (2) 

 
𝐵𝐵𝑟𝑟 = [𝐵𝐵1𝑟𝑟, … , 𝐵𝐵𝑖𝑖𝑟𝑟]   (3) 
 

𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = 𝜎𝜎 (𝐴𝐴𝐴𝐴𝐴𝐴2(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷(𝐵𝐵𝑟𝑟, 𝑠𝑠2))) (4) 

 

𝐴𝐴𝑚𝑚𝑚𝑚𝑟𝑟 = 𝑔𝑔(𝑥𝑥𝑚𝑚, 𝑥𝑥𝑛𝑛) =
𝑒𝑒(𝜎𝜎(𝜔𝜔

𝑇𝑇|𝑥𝑥𝑛𝑛−𝑥𝑥𝑚𝑚|))

∑ 𝑒𝑒(𝜎𝜎(𝜔𝜔
𝑇𝑇|𝑥𝑥𝑚𝑚−𝑥𝑥𝑛𝑛|))𝑁𝑁

𝑚𝑚=1
    (5) 

 

ℒ𝐶𝐶𝐶𝐶 = −
1
𝐵𝐵∑ ∑ 𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 log1 𝑦̂𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐=0
𝐵𝐵
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ=1  (6) 

 
𝐹𝐹𝑔𝑔𝑟𝑟 = 𝑔𝑔𝜃𝜃 ∗ 𝒢𝒢𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = 𝑔𝑔𝜃𝜃(𝐿𝐿)𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = ∑ 𝜃𝜃𝑘𝑘𝐾𝐾−1

𝑘𝑘=0 𝑇𝑇𝑘𝑘(𝐿̃𝐿)𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 (7) 
 
𝑇𝑇0(𝑥𝑥) = 1, 𝑇𝑇1(𝑥𝑥) = 𝑥𝑥, 𝑇𝑇𝑛𝑛+1(𝑥𝑥) = 2𝑥𝑥𝑇𝑇𝑛𝑛(𝑥𝑥) − 𝑇𝑇𝑛𝑛−1(𝑥𝑥)  (8) 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐺𝐺𝐺𝐺𝐺𝐺 (𝐴𝐴𝐴𝐴𝐴𝐴([𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡], 𝑄𝑄)) = 1
𝑘𝑘 ∑ [𝛽𝛽1𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝛽𝛽2𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡]𝐾𝐾

𝑘𝑘=1  (9) 

 
𝑦̂𝑦 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑊𝑊2𝑝𝑝 ∘ (𝑊𝑊1𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑏𝑏1) + 𝑏𝑏2)  (10) 
 

𝐺𝐺𝐺𝐺(𝑡𝑡 + 1) =
{
 

 (𝑢𝑢𝑏𝑏 − 𝑙𝑙𝑏𝑏) × 𝑟𝑟1 + 𝑙𝑙𝑏𝑏, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 𝜌𝜌
(𝑟𝑟2 − 𝐶𝐶) × 𝑋𝑋𝑟𝑟(𝑡𝑡) + 𝐿𝐿 × 𝐻𝐻, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 1

2

𝑋𝑋(𝑡𝑡) − 𝐿𝐿 × (𝐿𝐿 × (𝑋𝑋(𝑡𝑡) − 𝐺𝐺𝑋𝑋𝑟𝑟(𝑡𝑡))) + 𝑟𝑟3 × (𝑋𝑋(𝑡𝑡) − 𝐺𝐺𝑋𝑋𝑟𝑟(𝑡𝑡)), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 1
2

 (11) 

 

𝐶𝐶 = cos(2 × 𝑟𝑟4) + 1 × (1 −
𝑇𝑇

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
) (12) 

 
𝐿𝐿 = 𝐶𝐶 × 𝑙𝑙    (13) 
 
𝐻𝐻 = 𝑍𝑍 × 𝑋𝑋(𝑡𝑡)    (14) 
 
𝑍𝑍 = [−𝐶𝐶, 𝐶𝐶]    (15) 
 
𝐺𝐺𝐺𝐺(𝑡𝑡 + 1) = 𝐿𝐿 ×𝑀𝑀 × (𝑋𝑋(𝑡𝑡) − 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) + 𝑋𝑋(𝑡𝑡) (16) 
 

𝑀𝑀 = (|1𝑁𝑁∑ 𝐺𝐺𝐺𝐺𝑖𝑖(𝑡𝑡)𝑁𝑁
𝑖𝑖=1 |

𝑔𝑔
)
1 𝑔𝑔⁄

    (17) 

 
𝑔𝑔 = 2𝐿𝐿       (18) 
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Algorithm 1 LA2HGCN Technique 
Input: EEG data X=[Xleft,Xright ], True label y, and maximum iterations T:
Output: LA2HGCN recognition (y ̂ )
	 Initialize: ω0←0;
	 for(t←1:T)
	    for(r∈[L,R])
	       for(i=1:4)
	          Obtain ith area output Bir using equation (2);
	          Obtain Bi using equation. (3) and time based hybrid learning result Temr using Eq.(4);
	       end for
	       Obtain Amn

r using equation. (5);
	       Obtain graph Conv learning result Fg

r using equation (7);
	    end for
	    Obtain the concatenated weighted sum using attention strategy as equation (9);
	 end for
	 Obtain y ̂ by equation. (10);
	 End

Thus, the LA2HGCN model is trained to distinguish between children with ASD and TD. The model’s 
hyperparameters are optimized by QGTO to improve detection accuracy, as detailed in the next section.

Quantum Artificial Gorilla Troops Optimization (AGTO) for Hyperparameter Selection
The AGTO model is inspired by the social behavior of gorillas. Gorillas typically congregate in groups headed 

by an adult male called silverback, due to the white hair on their back. The group typically includes adult 
females and their offspring. The male gorilla is responsible for defending territory, making decisions, and 
guiding the group in finding food. Rivalry for territory and resources is common among gorillas, with male-
female interactions being close and female-female interactions more distant.(26) 

Exploration Phase
In the gorilla community, a silverback gorilla leads decision-making. Gorillas explore various locations for 

food, including familiar and unfamiliar situations. The silverback gorilla represents the ideal solution during 
the exploration phase. Additionally, three strategies are activated during this stage, as described in equation 
(11). The variable ρ, ranging [0,1], determines the migration plan for unidentified locations. If rand<ρ, the 
current gorilla’s location moves to an anonymous place, allowing for better coverage of the problem space and 
a complete distribution of solutions. If rand≥ρ, two other mechanisms are activated. If rand≥1/2, the gorilla 
moves towards other gorillas, enhancing exploration. If rand<1/2, the gorillas migrate to known positions, 
aiding in escaping local optima.

𝑋𝑋 = {𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡}   (1) 
 

𝐵𝐵𝑖𝑖𝑟𝑟 = 𝜎𝜎 (𝐴𝐴𝐴𝐴𝐴𝐴2(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷(𝑋𝑋𝑖𝑖𝑟𝑟, 𝑠𝑠1))) (2) 

 
𝐵𝐵𝑟𝑟 = [𝐵𝐵1𝑟𝑟, … , 𝐵𝐵𝑖𝑖𝑟𝑟]   (3) 
 

𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = 𝜎𝜎 (𝐴𝐴𝐴𝐴𝐴𝐴2(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷(𝐵𝐵𝑟𝑟, 𝑠𝑠2))) (4) 

 

𝐴𝐴𝑚𝑚𝑚𝑚𝑟𝑟 = 𝑔𝑔(𝑥𝑥𝑚𝑚, 𝑥𝑥𝑛𝑛) =
𝑒𝑒(𝜎𝜎(𝜔𝜔

𝑇𝑇|𝑥𝑥𝑛𝑛−𝑥𝑥𝑚𝑚|))

∑ 𝑒𝑒(𝜎𝜎(𝜔𝜔
𝑇𝑇|𝑥𝑥𝑚𝑚−𝑥𝑥𝑛𝑛|))𝑁𝑁

𝑚𝑚=1
    (5) 

 

ℒ𝐶𝐶𝐶𝐶 = −
1
𝐵𝐵∑ ∑ 𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 log1 𝑦̂𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐=0
𝐵𝐵
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ=1  (6) 

 
𝐹𝐹𝑔𝑔𝑟𝑟 = 𝑔𝑔𝜃𝜃 ∗ 𝒢𝒢𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = 𝑔𝑔𝜃𝜃(𝐿𝐿)𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = ∑ 𝜃𝜃𝑘𝑘𝐾𝐾−1

𝑘𝑘=0 𝑇𝑇𝑘𝑘(𝐿̃𝐿)𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 (7) 
 
𝑇𝑇0(𝑥𝑥) = 1, 𝑇𝑇1(𝑥𝑥) = 𝑥𝑥, 𝑇𝑇𝑛𝑛+1(𝑥𝑥) = 2𝑥𝑥𝑇𝑇𝑛𝑛(𝑥𝑥) − 𝑇𝑇𝑛𝑛−1(𝑥𝑥)  (8) 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐺𝐺𝐺𝐺𝐺𝐺 (𝐴𝐴𝐴𝐴𝐴𝐴([𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡], 𝑄𝑄)) = 1
𝑘𝑘 ∑ [𝛽𝛽1𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝛽𝛽2𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡]𝐾𝐾

𝑘𝑘=1  (9) 

 
𝑦̂𝑦 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑊𝑊2𝑝𝑝 ∘ (𝑊𝑊1𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑏𝑏1) + 𝑏𝑏2)  (10) 
 

𝐺𝐺𝐺𝐺(𝑡𝑡 + 1) =
{
 

 (𝑢𝑢𝑏𝑏 − 𝑙𝑙𝑏𝑏) × 𝑟𝑟1 + 𝑙𝑙𝑏𝑏, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 𝜌𝜌
(𝑟𝑟2 − 𝐶𝐶) × 𝑋𝑋𝑟𝑟(𝑡𝑡) + 𝐿𝐿 × 𝐻𝐻, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 1

2

𝑋𝑋(𝑡𝑡) − 𝐿𝐿 × (𝐿𝐿 × (𝑋𝑋(𝑡𝑡) − 𝐺𝐺𝑋𝑋𝑟𝑟(𝑡𝑡))) + 𝑟𝑟3 × (𝑋𝑋(𝑡𝑡) − 𝐺𝐺𝑋𝑋𝑟𝑟(𝑡𝑡)), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 1
2

 (11) 

 

𝐶𝐶 = cos(2 × 𝑟𝑟4) + 1 × (1 −
𝑇𝑇

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
) (12) 

 
𝐿𝐿 = 𝐶𝐶 × 𝑙𝑙    (13) 
 
𝐻𝐻 = 𝑍𝑍 × 𝑋𝑋(𝑡𝑡)    (14) 
 
𝑍𝑍 = [−𝐶𝐶, 𝐶𝐶]    (15) 
 
𝐺𝐺𝐺𝐺(𝑡𝑡 + 1) = 𝐿𝐿 ×𝑀𝑀 × (𝑋𝑋(𝑡𝑡) − 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) + 𝑋𝑋(𝑡𝑡) (16) 
 

𝑀𝑀 = (|1𝑁𝑁∑ 𝐺𝐺𝐺𝐺𝑖𝑖(𝑡𝑡)𝑁𝑁
𝑖𝑖=1 |

𝑔𝑔
)
1 𝑔𝑔⁄

    (17) 

 
𝑔𝑔 = 2𝐿𝐿       (18) 
 

In equation (11), GX(t+1) represents the gorilla candidate location vector for the succeeding t iteration, 
X(t) denotes the present gorilla location vector, r1,r2,r3 and rand are random values in [0,1] altered in every 
iteration, ub and lb denote variables’ upper and lower limits, Xr is a unsystematically nominated gorilla in 
the population, and GXr is a unsystematically nominated vector of gorilla candidate locations that includes 
locations updated in all stages. Moreover, C,L, and H are determined as follows:

𝑋𝑋 = {𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡}   (1) 
 

𝐵𝐵𝑖𝑖𝑟𝑟 = 𝜎𝜎 (𝐴𝐴𝐴𝐴𝐴𝐴2(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷(𝑋𝑋𝑖𝑖𝑟𝑟, 𝑠𝑠1))) (2) 

 
𝐵𝐵𝑟𝑟 = [𝐵𝐵1𝑟𝑟, … , 𝐵𝐵𝑖𝑖𝑟𝑟]   (3) 
 

𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = 𝜎𝜎 (𝐴𝐴𝐴𝐴𝐴𝐴2(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷(𝐵𝐵𝑟𝑟, 𝑠𝑠2))) (4) 

 

𝐴𝐴𝑚𝑚𝑚𝑚𝑟𝑟 = 𝑔𝑔(𝑥𝑥𝑚𝑚, 𝑥𝑥𝑛𝑛) =
𝑒𝑒(𝜎𝜎(𝜔𝜔

𝑇𝑇|𝑥𝑥𝑛𝑛−𝑥𝑥𝑚𝑚|))

∑ 𝑒𝑒(𝜎𝜎(𝜔𝜔
𝑇𝑇|𝑥𝑥𝑚𝑚−𝑥𝑥𝑛𝑛|))𝑁𝑁

𝑚𝑚=1
    (5) 

 

ℒ𝐶𝐶𝐶𝐶 = −
1
𝐵𝐵∑ ∑ 𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 log1 𝑦̂𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐=0
𝐵𝐵
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ=1  (6) 

 
𝐹𝐹𝑔𝑔𝑟𝑟 = 𝑔𝑔𝜃𝜃 ∗ 𝒢𝒢𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = 𝑔𝑔𝜃𝜃(𝐿𝐿)𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = ∑ 𝜃𝜃𝑘𝑘𝐾𝐾−1

𝑘𝑘=0 𝑇𝑇𝑘𝑘(𝐿̃𝐿)𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 (7) 
 
𝑇𝑇0(𝑥𝑥) = 1, 𝑇𝑇1(𝑥𝑥) = 𝑥𝑥, 𝑇𝑇𝑛𝑛+1(𝑥𝑥) = 2𝑥𝑥𝑇𝑇𝑛𝑛(𝑥𝑥) − 𝑇𝑇𝑛𝑛−1(𝑥𝑥)  (8) 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐺𝐺𝐺𝐺𝐺𝐺 (𝐴𝐴𝐴𝐴𝐴𝐴([𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡], 𝑄𝑄)) = 1
𝑘𝑘 ∑ [𝛽𝛽1𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝛽𝛽2𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡]𝐾𝐾

𝑘𝑘=1  (9) 

 
𝑦̂𝑦 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑊𝑊2𝑝𝑝 ∘ (𝑊𝑊1𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑏𝑏1) + 𝑏𝑏2)  (10) 
 

𝐺𝐺𝐺𝐺(𝑡𝑡 + 1) =
{
 

 (𝑢𝑢𝑏𝑏 − 𝑙𝑙𝑏𝑏) × 𝑟𝑟1 + 𝑙𝑙𝑏𝑏, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 𝜌𝜌
(𝑟𝑟2 − 𝐶𝐶) × 𝑋𝑋𝑟𝑟(𝑡𝑡) + 𝐿𝐿 × 𝐻𝐻, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 1

2

𝑋𝑋(𝑡𝑡) − 𝐿𝐿 × (𝐿𝐿 × (𝑋𝑋(𝑡𝑡) − 𝐺𝐺𝑋𝑋𝑟𝑟(𝑡𝑡))) + 𝑟𝑟3 × (𝑋𝑋(𝑡𝑡) − 𝐺𝐺𝑋𝑋𝑟𝑟(𝑡𝑡)), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 1
2

 (11) 

 

𝐶𝐶 = cos(2 × 𝑟𝑟4) + 1 × (1 −
𝑇𝑇

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
) (12) 

 
𝐿𝐿 = 𝐶𝐶 × 𝑙𝑙    (13) 
 
𝐻𝐻 = 𝑍𝑍 × 𝑋𝑋(𝑡𝑡)    (14) 
 
𝑍𝑍 = [−𝐶𝐶, 𝐶𝐶]    (15) 
 
𝐺𝐺𝐺𝐺(𝑡𝑡 + 1) = 𝐿𝐿 ×𝑀𝑀 × (𝑋𝑋(𝑡𝑡) − 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) + 𝑋𝑋(𝑡𝑡) (16) 
 

𝑀𝑀 = (|1𝑁𝑁∑ 𝐺𝐺𝐺𝐺𝑖𝑖(𝑡𝑡)𝑁𝑁
𝑖𝑖=1 |

𝑔𝑔
)
1 𝑔𝑔⁄

    (17) 

 
𝑔𝑔 = 2𝐿𝐿       (18) 
 

In equation (12), T is the present iteration, Tmax is the maximum iteration, and r4 denotes uniform distribution 
in 0 to 1.  While value of C changes somewhat in the later stages, it changes considerably in the beginning. This 
allows for greater randomness in the early stage to explore a global optimal solution, while in the later stage, 
it decreases to facilitate rapid convergence.

𝑋𝑋 = {𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡}   (1) 
 

𝐵𝐵𝑖𝑖𝑟𝑟 = 𝜎𝜎 (𝐴𝐴𝐴𝐴𝐴𝐴2(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷(𝑋𝑋𝑖𝑖𝑟𝑟, 𝑠𝑠1))) (2) 

 
𝐵𝐵𝑟𝑟 = [𝐵𝐵1𝑟𝑟, … , 𝐵𝐵𝑖𝑖𝑟𝑟]   (3) 
 

𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = 𝜎𝜎 (𝐴𝐴𝐴𝐴𝐴𝐴2(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷(𝐵𝐵𝑟𝑟, 𝑠𝑠2))) (4) 

 

𝐴𝐴𝑚𝑚𝑚𝑚𝑟𝑟 = 𝑔𝑔(𝑥𝑥𝑚𝑚, 𝑥𝑥𝑛𝑛) =
𝑒𝑒(𝜎𝜎(𝜔𝜔

𝑇𝑇|𝑥𝑥𝑛𝑛−𝑥𝑥𝑚𝑚|))

∑ 𝑒𝑒(𝜎𝜎(𝜔𝜔
𝑇𝑇|𝑥𝑥𝑚𝑚−𝑥𝑥𝑛𝑛|))𝑁𝑁

𝑚𝑚=1
    (5) 

 

ℒ𝐶𝐶𝐶𝐶 = −
1
𝐵𝐵∑ ∑ 𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 log1 𝑦̂𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐=0
𝐵𝐵
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ=1  (6) 

 
𝐹𝐹𝑔𝑔𝑟𝑟 = 𝑔𝑔𝜃𝜃 ∗ 𝒢𝒢𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = 𝑔𝑔𝜃𝜃(𝐿𝐿)𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = ∑ 𝜃𝜃𝑘𝑘𝐾𝐾−1

𝑘𝑘=0 𝑇𝑇𝑘𝑘(𝐿̃𝐿)𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 (7) 
 
𝑇𝑇0(𝑥𝑥) = 1, 𝑇𝑇1(𝑥𝑥) = 𝑥𝑥, 𝑇𝑇𝑛𝑛+1(𝑥𝑥) = 2𝑥𝑥𝑇𝑇𝑛𝑛(𝑥𝑥) − 𝑇𝑇𝑛𝑛−1(𝑥𝑥)  (8) 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐺𝐺𝐺𝐺𝐺𝐺 (𝐴𝐴𝐴𝐴𝐴𝐴([𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡], 𝑄𝑄)) = 1
𝑘𝑘 ∑ [𝛽𝛽1𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝛽𝛽2𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡]𝐾𝐾

𝑘𝑘=1  (9) 

 
𝑦̂𝑦 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑊𝑊2𝑝𝑝 ∘ (𝑊𝑊1𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑏𝑏1) + 𝑏𝑏2)  (10) 
 

𝐺𝐺𝐺𝐺(𝑡𝑡 + 1) =
{
 

 (𝑢𝑢𝑏𝑏 − 𝑙𝑙𝑏𝑏) × 𝑟𝑟1 + 𝑙𝑙𝑏𝑏, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 𝜌𝜌
(𝑟𝑟2 − 𝐶𝐶) × 𝑋𝑋𝑟𝑟(𝑡𝑡) + 𝐿𝐿 × 𝐻𝐻, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 1

2

𝑋𝑋(𝑡𝑡) − 𝐿𝐿 × (𝐿𝐿 × (𝑋𝑋(𝑡𝑡) − 𝐺𝐺𝑋𝑋𝑟𝑟(𝑡𝑡))) + 𝑟𝑟3 × (𝑋𝑋(𝑡𝑡) − 𝐺𝐺𝑋𝑋𝑟𝑟(𝑡𝑡)), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 1
2

 (11) 

 

𝐶𝐶 = cos(2 × 𝑟𝑟4) + 1 × (1 −
𝑇𝑇

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
) (12) 

 
𝐿𝐿 = 𝐶𝐶 × 𝑙𝑙    (13) 
 
𝐻𝐻 = 𝑍𝑍 × 𝑋𝑋(𝑡𝑡)    (14) 
 
𝑍𝑍 = [−𝐶𝐶, 𝐶𝐶]    (15) 
 
𝐺𝐺𝐺𝐺(𝑡𝑡 + 1) = 𝐿𝐿 ×𝑀𝑀 × (𝑋𝑋(𝑡𝑡) − 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) + 𝑋𝑋(𝑡𝑡) (16) 
 

𝑀𝑀 = (|1𝑁𝑁∑ 𝐺𝐺𝐺𝐺𝑖𝑖(𝑡𝑡)𝑁𝑁
𝑖𝑖=1 |

𝑔𝑔
)
1 𝑔𝑔⁄

    (17) 

 
𝑔𝑔 = 2𝐿𝐿       (18) 
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In equation (13), l represents a random integer produced by a normal distribution between -1 and 1, while L 
is a parameter that models the leadership of a silverback gorilla. Silverback gorillas may make errors in foraging 
or group management due to their inexperience. By following a leader, they can gain valuable experience and 
achieve greater stability. Equation (13) is a way to simulate the influence of a silverback gorilla’s leadership. 
Also, H is determined as follows:

𝑋𝑋 = {𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡}   (1) 
 

𝐵𝐵𝑖𝑖𝑟𝑟 = 𝜎𝜎 (𝐴𝐴𝐴𝐴𝐴𝐴2(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷(𝑋𝑋𝑖𝑖𝑟𝑟, 𝑠𝑠1))) (2) 

 
𝐵𝐵𝑟𝑟 = [𝐵𝐵1𝑟𝑟, … , 𝐵𝐵𝑖𝑖𝑟𝑟]   (3) 
 

𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = 𝜎𝜎 (𝐴𝐴𝐴𝐴𝐴𝐴2(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷(𝐵𝐵𝑟𝑟, 𝑠𝑠2))) (4) 

 

𝐴𝐴𝑚𝑚𝑚𝑚𝑟𝑟 = 𝑔𝑔(𝑥𝑥𝑚𝑚, 𝑥𝑥𝑛𝑛) =
𝑒𝑒(𝜎𝜎(𝜔𝜔

𝑇𝑇|𝑥𝑥𝑛𝑛−𝑥𝑥𝑚𝑚|))

∑ 𝑒𝑒(𝜎𝜎(𝜔𝜔
𝑇𝑇|𝑥𝑥𝑚𝑚−𝑥𝑥𝑛𝑛|))𝑁𝑁

𝑚𝑚=1
    (5) 

 

ℒ𝐶𝐶𝐶𝐶 = −
1
𝐵𝐵∑ ∑ 𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 log1 𝑦̂𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐=0
𝐵𝐵
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ=1  (6) 

 
𝐹𝐹𝑔𝑔𝑟𝑟 = 𝑔𝑔𝜃𝜃 ∗ 𝒢𝒢𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = 𝑔𝑔𝜃𝜃(𝐿𝐿)𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = ∑ 𝜃𝜃𝑘𝑘𝐾𝐾−1

𝑘𝑘=0 𝑇𝑇𝑘𝑘(𝐿̃𝐿)𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 (7) 
 
𝑇𝑇0(𝑥𝑥) = 1, 𝑇𝑇1(𝑥𝑥) = 𝑥𝑥, 𝑇𝑇𝑛𝑛+1(𝑥𝑥) = 2𝑥𝑥𝑇𝑇𝑛𝑛(𝑥𝑥) − 𝑇𝑇𝑛𝑛−1(𝑥𝑥)  (8) 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐺𝐺𝐺𝐺𝐺𝐺 (𝐴𝐴𝐴𝐴𝐴𝐴([𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡], 𝑄𝑄)) = 1
𝑘𝑘 ∑ [𝛽𝛽1𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝛽𝛽2𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡]𝐾𝐾

𝑘𝑘=1  (9) 

 
𝑦̂𝑦 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑊𝑊2𝑝𝑝 ∘ (𝑊𝑊1𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑏𝑏1) + 𝑏𝑏2)  (10) 
 

𝐺𝐺𝐺𝐺(𝑡𝑡 + 1) =
{
 

 (𝑢𝑢𝑏𝑏 − 𝑙𝑙𝑏𝑏) × 𝑟𝑟1 + 𝑙𝑙𝑏𝑏, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 𝜌𝜌
(𝑟𝑟2 − 𝐶𝐶) × 𝑋𝑋𝑟𝑟(𝑡𝑡) + 𝐿𝐿 × 𝐻𝐻, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 1

2

𝑋𝑋(𝑡𝑡) − 𝐿𝐿 × (𝐿𝐿 × (𝑋𝑋(𝑡𝑡) − 𝐺𝐺𝑋𝑋𝑟𝑟(𝑡𝑡))) + 𝑟𝑟3 × (𝑋𝑋(𝑡𝑡) − 𝐺𝐺𝑋𝑋𝑟𝑟(𝑡𝑡)), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 1
2

 (11) 

 

𝐶𝐶 = cos(2 × 𝑟𝑟4) + 1 × (1 −
𝑇𝑇

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
) (12) 

 
𝐿𝐿 = 𝐶𝐶 × 𝑙𝑙    (13) 
 
𝐻𝐻 = 𝑍𝑍 × 𝑋𝑋(𝑡𝑡)    (14) 
 
𝑍𝑍 = [−𝐶𝐶, 𝐶𝐶]    (15) 
 
𝐺𝐺𝐺𝐺(𝑡𝑡 + 1) = 𝐿𝐿 ×𝑀𝑀 × (𝑋𝑋(𝑡𝑡) − 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) + 𝑋𝑋(𝑡𝑡) (16) 
 

𝑀𝑀 = (|1𝑁𝑁∑ 𝐺𝐺𝐺𝐺𝑖𝑖(𝑡𝑡)𝑁𝑁
𝑖𝑖=1 |

𝑔𝑔
)
1 𝑔𝑔⁄

    (17) 

 
𝑔𝑔 = 2𝐿𝐿       (18) 
 

Upon completion of this phase, the fitness values (i.e., detection accuracy) of GX and X are determined. 
When the fitness value of GX(t) is smaller than that of X(t), the location of GX(t) will swap the location of X(t).

Exploitation Phase
The GTO algorithm calls upon two behaviors throughout its exploitation phase: accompanying the silverback 

and competing with mature female gorillas. The silverback gorilla leads the group, makes choices, directs 
movements, and ensures safety. The silverback’s decisions are followed by all of the group’s gorillas. However, 
as the silverback may weaken or die, a new leader may emerge through rivalry within the group. The choice 
between these behaviors is determined by the  value in equation 12. If C≥W, following the silverback is selected; 
otherwise, rivaling with adult female gorillas is chosen, where the optimization procedure begins with the 
setting of a parameter, W.

Following the Silverback
The recently formed gorilla group is led by a young and strong silverback, with other young males following 

his lead effectively. They obey his commands to search for food in different areas and stick together as a 
cohesive unit. This strategy is implemented when C≥W is met, using equation 16 for simulation.

𝑋𝑋 = {𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡}   (1) 
 

𝐵𝐵𝑖𝑖𝑟𝑟 = 𝜎𝜎 (𝐴𝐴𝐴𝐴𝐴𝐴2(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷(𝑋𝑋𝑖𝑖𝑟𝑟, 𝑠𝑠1))) (2) 

 
𝐵𝐵𝑟𝑟 = [𝐵𝐵1𝑟𝑟, … , 𝐵𝐵𝑖𝑖𝑟𝑟]   (3) 
 

𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = 𝜎𝜎 (𝐴𝐴𝐴𝐴𝐴𝐴2(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐷𝐷(𝐵𝐵𝑟𝑟, 𝑠𝑠2))) (4) 

 

𝐴𝐴𝑚𝑚𝑚𝑚𝑟𝑟 = 𝑔𝑔(𝑥𝑥𝑚𝑚, 𝑥𝑥𝑛𝑛) =
𝑒𝑒(𝜎𝜎(𝜔𝜔

𝑇𝑇|𝑥𝑥𝑛𝑛−𝑥𝑥𝑚𝑚|))

∑ 𝑒𝑒(𝜎𝜎(𝜔𝜔
𝑇𝑇|𝑥𝑥𝑚𝑚−𝑥𝑥𝑛𝑛|))𝑁𝑁

𝑚𝑚=1
    (5) 

 

ℒ𝐶𝐶𝐶𝐶 = −
1
𝐵𝐵∑ ∑ 𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 log1 𝑦̂𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐=0
𝐵𝐵
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ=1  (6) 

 
𝐹𝐹𝑔𝑔𝑟𝑟 = 𝑔𝑔𝜃𝜃 ∗ 𝒢𝒢𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = 𝑔𝑔𝜃𝜃(𝐿𝐿)𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = ∑ 𝜃𝜃𝑘𝑘𝐾𝐾−1

𝑘𝑘=0 𝑇𝑇𝑘𝑘(𝐿̃𝐿)𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 (7) 
 
𝑇𝑇0(𝑥𝑥) = 1, 𝑇𝑇1(𝑥𝑥) = 𝑥𝑥, 𝑇𝑇𝑛𝑛+1(𝑥𝑥) = 2𝑥𝑥𝑇𝑇𝑛𝑛(𝑥𝑥) − 𝑇𝑇𝑛𝑛−1(𝑥𝑥)  (8) 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐺𝐺𝐺𝐺𝐺𝐺 (𝐴𝐴𝐴𝐴𝐴𝐴([𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡], 𝑄𝑄)) = 1
𝑘𝑘 ∑ [𝛽𝛽1𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝛽𝛽2𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡]𝐾𝐾

𝑘𝑘=1  (9) 

 
𝑦̂𝑦 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑊𝑊2𝑝𝑝 ∘ (𝑊𝑊1𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑏𝑏1) + 𝑏𝑏2)  (10) 
 

𝐺𝐺𝐺𝐺(𝑡𝑡 + 1) =
{
 

 (𝑢𝑢𝑏𝑏 − 𝑙𝑙𝑏𝑏) × 𝑟𝑟1 + 𝑙𝑙𝑏𝑏, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 𝜌𝜌
(𝑟𝑟2 − 𝐶𝐶) × 𝑋𝑋𝑟𝑟(𝑡𝑡) + 𝐿𝐿 × 𝐻𝐻, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 1

2

𝑋𝑋(𝑡𝑡) − 𝐿𝐿 × (𝐿𝐿 × (𝑋𝑋(𝑡𝑡) − 𝐺𝐺𝑋𝑋𝑟𝑟(𝑡𝑡))) + 𝑟𝑟3 × (𝑋𝑋(𝑡𝑡) − 𝐺𝐺𝑋𝑋𝑟𝑟(𝑡𝑡)), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 1
2

 (11) 

 

𝐶𝐶 = cos(2 × 𝑟𝑟4) + 1 × (1 −
𝑇𝑇

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
) (12) 

 
𝐿𝐿 = 𝐶𝐶 × 𝑙𝑙    (13) 
 
𝐻𝐻 = 𝑍𝑍 × 𝑋𝑋(𝑡𝑡)    (14) 
 
𝑍𝑍 = [−𝐶𝐶, 𝐶𝐶]    (15) 
 
𝐺𝐺𝐺𝐺(𝑡𝑡 + 1) = 𝐿𝐿 ×𝑀𝑀 × (𝑋𝑋(𝑡𝑡) − 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) + 𝑋𝑋(𝑡𝑡) (16) 
 

𝑀𝑀 = (|1𝑁𝑁∑ 𝐺𝐺𝐺𝐺𝑖𝑖(𝑡𝑡)𝑁𝑁
𝑖𝑖=1 |

𝑔𝑔
)
1 𝑔𝑔⁄

    (17) 

 
𝑔𝑔 = 2𝐿𝐿       (18) 
 

In equations (16,17,18), In iteration t, GXi (t) is the candidate position vector of all gorillas, and Xsilverback is 
the location vector of the silverback gorilla (best answer).

2. Rivaling with Adult Female Gorillas
If C<W, the exploitation phase will use the second behavior. During the adolescent years, gorilla males 

engage in mating wars with other gorillas in order to increase their population and choose adult females. 
Disputes inside the group might escalate into physical altercations and drag on for days. This behavior is 
simulated by equation (19), as follows:

𝐺𝐺𝐺𝐺(𝑡𝑡) = 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − (𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑄𝑄 − 𝑋𝑋(𝑡𝑡) × 𝑄𝑄) × 𝐴𝐴  (19) 
 
𝑄𝑄 = 2 × 𝑟𝑟5 − 1        (20) 
 
𝐴𝐴 = 𝛽𝛽 × 𝐸𝐸        (21) 
 

𝐸𝐸 = {
𝑁𝑁1, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 1

2
𝑁𝑁2, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 1

2
       (22) 

 

𝑧𝑧 = 𝑟𝑟1(𝑤𝑤)×𝐺𝐺𝐺𝐺(𝑡𝑡)+𝑟𝑟2(1−𝑤𝑤)×𝐺𝐺𝐺𝐺(𝑡𝑡)
𝑟𝑟1+𝑟𝑟2

      (23) 

 

𝐺𝐺𝐺𝐺(𝑡𝑡 + 1) = {
𝑧𝑧 + 𝛼𝛼 × (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 − 𝑋𝑋(𝑡𝑡)) × ln (1

𝑢𝑢) , ℎ ≥ 1
2

𝑧𝑧 − 𝛼𝛼 × (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 − 𝑋𝑋(𝑡𝑡)) × ln (1
𝑢𝑢) 𝑂𝑂𝑂𝑂 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (24) 

 

𝛼𝛼 = 0.5×(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇)
𝑇𝑇−0.5              (25) 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁 ∑ 𝐺𝐺𝐺𝐺𝑖𝑖(𝑡𝑡)𝑁𝑁

𝑖𝑖=1    (26) 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑇𝑇𝑇𝑇)+𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (𝑇𝑇𝑇𝑇)
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝐹𝐹𝐹𝐹)+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (𝐹𝐹𝐹𝐹)         (27) 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹   (28) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹                       (29) 

 

𝐹𝐹1 = 2×𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃×𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅    (30) 

 

In equations. (19,20,21,22), Q represents the intensity of the simulated gorilla’s rivalry, r5,rand are the 
random numbers in [0,1] for a normal distribution, E mimics the effect of aggression on the solution dimension, 
β is the parameter established before to the optimization process, and A is the coefficient vector that mimics 
the intensity of rivalry. Any value from a normal distribution in the problem dimension can equal E if rand is 
greater than or equal to 1/2.  On the other hand, E might represent a normal distribution random number. 

Upon completion of this phase, a group formation operation is carried out to estimate the fitness value of 
all GX solutions. If the fitness value of GX(t) is less than X(t), then GX(t) solution is utilized as the X(t) solution. 

https://doi.org/10.56294/dm20261339
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The silverback is selected as the best option that was found from the whole population.

Quantum Mechanism
This study integrates quantum mechanics into the GTO algorithm to improve its capability to balance 

exploration and exploitation in the search space. Quantum mechanics is used as an additional strategy for 
location updating, particularly during the exploitation stage, to enhance the algorithm’s performance in 
discovering optimal solutions. The Monte Carlo technique is employed to determine the new solution xnew such 
as updating location of each gorilla as follows:

𝐺𝐺𝐺𝐺(𝑡𝑡) = 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − (𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑄𝑄 − 𝑋𝑋(𝑡𝑡) × 𝑄𝑄) × 𝐴𝐴  (19) 
 
𝑄𝑄 = 2 × 𝑟𝑟5 − 1        (20) 
 
𝐴𝐴 = 𝛽𝛽 × 𝐸𝐸        (21) 
 

𝐸𝐸 = {
𝑁𝑁1, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 1

2
𝑁𝑁2, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 1

2
       (22) 

 

𝑧𝑧 = 𝑟𝑟1(𝑤𝑤)×𝐺𝐺𝐺𝐺(𝑡𝑡)+𝑟𝑟2(1−𝑤𝑤)×𝐺𝐺𝐺𝐺(𝑡𝑡)
𝑟𝑟1+𝑟𝑟2

      (23) 

 

𝐺𝐺𝐺𝐺(𝑡𝑡 + 1) = {
𝑧𝑧 + 𝛼𝛼 × (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 − 𝑋𝑋(𝑡𝑡)) × ln (1

𝑢𝑢) , ℎ ≥ 1
2

𝑧𝑧 − 𝛼𝛼 × (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 − 𝑋𝑋(𝑡𝑡)) × ln (1
𝑢𝑢) 𝑂𝑂𝑂𝑂 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (24) 

 

𝛼𝛼 = 0.5×(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇)
𝑇𝑇−0.5              (25) 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁 ∑ 𝐺𝐺𝐺𝐺𝑖𝑖(𝑡𝑡)𝑁𝑁

𝑖𝑖=1    (26) 
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𝐴𝐴 = 𝛽𝛽 × 𝐸𝐸        (21) 
 

𝐸𝐸 = {
𝑁𝑁1, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 1

2
𝑁𝑁2, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 1

2
       (22) 

 

𝑧𝑧 = 𝑟𝑟1(𝑤𝑤)×𝐺𝐺𝐺𝐺(𝑡𝑡)+𝑟𝑟2(1−𝑤𝑤)×𝐺𝐺𝐺𝐺(𝑡𝑡)
𝑟𝑟1+𝑟𝑟2

      (23) 

 

𝐺𝐺𝐺𝐺(𝑡𝑡 + 1) = {
𝑧𝑧 + 𝛼𝛼 × (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 − 𝑋𝑋(𝑡𝑡)) × ln (1

𝑢𝑢) , ℎ ≥ 1
2

𝑧𝑧 − 𝛼𝛼 × (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 − 𝑋𝑋(𝑡𝑡)) × ln (1
𝑢𝑢) 𝑂𝑂𝑂𝑂 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (24) 

 

𝛼𝛼 = 0.5×(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇)
𝑇𝑇−0.5              (25) 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁 ∑ 𝐺𝐺𝐺𝐺𝑖𝑖(𝑡𝑡)𝑁𝑁

𝑖𝑖=1    (26) 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑇𝑇𝑇𝑇)+𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (𝑇𝑇𝑇𝑇)
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝐹𝐹𝐹𝐹)+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (𝐹𝐹𝐹𝐹)         (27) 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹   (28) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹                       (29) 

 

𝐹𝐹1 = 2×𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃×𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅    (30) 

 

A flowchart of this QGTO is presented in figure 4. Thus, the QGTO selects the optimal hyperparameters 
of the LA2HGCN model to improve model training and ASD detection accuracy. Table 1 displays the optimal 
hyperparameters selected by the QGTO algorithm for the LA2HGCN model.
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Figure 4. Flowchart of QGTO Algorithm for Optimal Hyperparameter Selection

Table 1. List of Hyperparameters for LA2HGCN Model for ASD Detection and Diagnosis

Parameters Search Space Optimal Range

No. of graph convolutional layers [2,3,4] 3

Number of hidden layers [1, 2] 1

Training rate [0.0001, 0.1] 0,01

Dropout rate [0,2, 0,3, 0,4, 0,5] 0,5

Number of epochs [100, 300] 200

Batch size [32, 64, 128, 256, 512] 256

Optimizer [Stochastic gradient descent, Adam] Adam

Loss [Cross-entropy, mean squared error] Cross-entropy

RESULTS
This division assesses the robustness of suggested DEBCWGAN-OLA2HGCN technique using two distinct EEG 

datasets as described in Section 3.1. The model’s performance is compared with existing models, such as Rest-
HGCN,(14) DEBCWGAN-rest-HGCN,(15) VMD-SVM,(19) Improved AlexNet,(20) and DCGAN-CNN-LSTM.(21) The experiment 
is carried out on a laptop with an Intel® Core TM i5-4210 CPU @ 3GHz, 4GB RAM, and a 1TB HDD on Windows 10 
64-bit. The two datasets were used to implement all existing and proposed models in MATLAB 2019b in order to 
quantify performance enhancements.

Performance Evaluation Measures
The effectiveness of ASD detection models can be assessed by means of the subsequent measures:

•	 Accuracy is the proportion of exactly recognized cases among the total cases assessed.
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𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹                       (29) 

 

𝐹𝐹1 = 2×𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃×𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅    (30) 

 

Figure 5. Convergence Curve of QGTO Algorithm

Figure 5 displays the convergence curve of the QGTO model, showcasing the improvement in fitness value over 
iterations. The curve demonstrates a rapid initial enhancement followed by a gradual plateau as the algorithm 
converges towards an optimal solution. This indicates the QGTO’s effective balance between exploration and 
exploitation, facilitating effective exploration of the search domain while evading neighborhood optimums.

Figure 6 compares the DEBCWGAN-OLA2HGCN model with existing models on the EEG Dataset for ASD. 
The DEBCWGAN-OLA2HGCN outperforms other models in detecting children with ASD due to effective training 
using a large-scale dataset. Compared to VMD-SVM, improved AlexNet, DCGAN-CNN-LSTM, Rest-HGCN, and 
DEBCWGAN-Rest-HGCN, the proposed model shows an increase in precision by 42,25 %, 32,77 %, 23,84 %, 13,81 
%, and 10,65 %, recall by 42,51 %, 26,28 %, 21,56 %, 14,02 %, and 0,84 %, F1-score by 42,39 %, 29,44 %, 22,7 %, 
13,92 %, and 2,84 %, and accuracy by 42,55 %, 26,72 %, 23,56 %, 14,05 %, and 3,68 %, respectively.

Figure 7 compares the proposed DEBCWGAN-OLA2HGCN model with existing models on the ABC-CT dataset 
for classifying children with ASD. The DEBCWGAN-OLA2HGCN model outperforms other models due to effective 
training with a large-scale dataset. Compared to VMD-SVM, improved AlexNet, DCGAN-CNN-LSTM, Rest-HGCN, 
and DEBCWGAN-Rest-HGCN, the anticipated technique attains a higher precision, recall, F1-score, and accuracy. 
Precision is improved by 13,72 %, 8,73 %, 6,56 %, 4,32 %, and 0,52 %, recall by 17,73 %, 10,67 %, 6,5 %, 4,4 %, 
and 0,6 %, F1-score by 15,73 %, 9,71 %, 6,53 %, 4,37 %, and 0,57 %, and accuracy by 29,18 %, 19,24 %, 13,13 %, 
10,73 %, and 4,73 %, respectively.

Data and Metadata. 2026; 5:1339  12 

https://doi.org/10.56294/dm20261339


Figure 6. Comparison of DEBCWGAN-OLA2HGCN Model against Existing Models on EEG Dataset for ASD

Figure 7. Comparison of DEBCWGAN-OLA2HGCN Model against Existing Models on ABC-CT Dataset

CONCLUSIONS
The study shows how the OLA2HGCN model and DEBCWGAN can work together to improve the detection 

of ASD by using both resting-state and task-based EEG data. The LA2HGCN model made it easier to acquire 
different spatial and temporal aspects from EEG recordings. The addition of a new QGTO to the LA2HGCN 
improved its hyperparameters, which led to better accuracy in classifying ASD than earlier methods. These new 
results point to a viable path for future research and therapeutic use. The DEBCWGAN-OLA2HGCN model was 
able to correctly identify 95,04 % of EEG data for ASD and 92,27 % of ABC-CT data for ASD, showing that it might 
be used to locate ASD early and accurately.
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