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ABSTRACT

Autism spectrum disorder (ASD) is an intricate nervous disorder typically diagnosed through the use of
electroencephalography (EEG). A novel model named Dual Encoder-Balanced Conditional Wasserstein
Generative Adversarial Network with Resting-state EEG-based Hybrid Graph Convolutional Network
(DEBCWGAN-Rest-HGCN) was made from this context. By fixing the class imbalance and making synthetic
EEG samples, it was able to detect ASD with encouraging results. However, it ignores the dynamic brain
patterns recorded by task-based EEG in favor of resting-state EEG. The Rest-HGCN model also cannot
successfully capture the uneven spatial and temporal aspects of EEG signals, and its fixed hyperparameters
might make it less accurate in detecting different types of EEG data. This article presents a new model
for finding and diagnosing ASD called the Optimized Local-Asymmetric Adaptive Hybrid GCN (OLA2ZHGCN).
This model uses both spatial and temporal information from resting-state and task-driven EEG signals. It
is based on the way autism affects brain connections and a variation amid the left and right hemispheres.
The LA2HGCN can efficiently collect discrete spatiotemporal EEG information through distinct areas and
hemispheres by improving the HGCN model with hierarchical feature extraction and fusion approaches.
This model has a time based feature extraction approach in the cognitive prior graph branch that picks up
temporal characteristics inside and between brain areas. It also has an adaptive GCN for spatial feature
extraction across non-Euclidean distributions of electrodes. An attention layer shows how each hemisphere
helps with ASD classification. A new Quantum Artificial Gorilla Troops Optimizer (QGTO) is also presented to
help the LA2ZHGCN model choose the best hyperparameters. The QGTO is based on the social intelligence of
gorilla tribes. It rapidly traverses intricate search spaces and achieves an equilibrium between exploration
and exploitation. By adding quantum mechanics to the GTO method, it can better find its way through
complicated search spaces and stay away from local optima. This makes hyperparameter selection more
successful. Finally, the test results show that the DEBCWGAN- OLA2HGCN on the EEG Dataset for ASD and the
ABC-CT dataset are 95,04 % and 92,27 % accurate, respectively, when compared to other algorithms.

Keywords: Autism Spectrum Disorder; Resting-State EEG; Task-Based EEG; DEBCWGAN; GCN; Quantum
Mechanics; Artificial Gorilla Troops Optimizer.

RESUMEN

Este articulo presenta un nuevo modelo para la deteccion y el diagndstico del TEA, denominado Red
Convolucional Hibrida Adaptativa Local-Asimétrica Optimizada (OLA2HGCN). Este modelo utiliza informacion
espacial y temporal de las sehales de EEG en reposo y basadas en tareas. Se basa en la forma en que el autismo
afecta las conexiones cerebrales y en la variacion entre los hemisferios izquierdo y derecho. El LA2ZHGCN puede
recopilar eficientemente informacion discreta de EEG espaciotemporal a través de distintas areas y hemisferios,
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mejorando el modelo HGCN con enfoques jerarquicos de extraccion y fusion de caracteristicas. Este modelo
cuenta con un enfoque de extraccion de caracteristicas basado en el tiempo en la rama de grafos cognitivos
previos, que capta caracteristicas temporales dentro y entre areas cerebrales. También cuenta con un GCN
adaptativo para la extraccion de caracteristicas espaciales en distribuciones de electrodos no euclidianas. Una
capa de atencion muestra como cada hemisferio contribuye a la clasificacion del TEA. También se presenta
un nuevo Optimizador Cuantico Artificial de Tropas de Gorilas (QGTO) para ayudar al modelo LA2HGCN a
seleccionar los mejores hiperparametros. EL QGTO se basa en la inteligencia social de las tribus de gorilas.
Recorre rapidamente espacios de bUsqueda complejos y logra un equilibrio entre exploracion y explotacion.
Al incorporar la mecanica cuantica al método GTO, puede navegar mejor en espacios de busqueda complejos
y evitar los optimos locales. Esto facilita la seleccion de hiperparametros. Finalmente, los resultados de
la prueba muestran que DEBCWGAN-OLA2HGCN en el conjunto de datos de EEG para TEA y el conjunto de
datos ABC-CT tienen una precision del 95,04 % y del 92,27 %, respectivamente, en comparacion con otros
algoritmos.

Palabras clave: Trastorno del Espectro Autista; EEG en Reposo; EEG Basado en Tareas; DEBCWGAN; GCN;
Mecanica Cuantica; Optimizador de Tropas Gorilas Artificiales.

INTRODUCTION

ASD is a common neurodevelopmental disorder that usually shows up at birth or in early childhood. It is
marked by problems with social contact, a lack of interests, repetitive activities, and sometimes problems with
thinking.™ For effective treatment, it is very important to get proper diagnosis. Cognitive and psychological
tests are often used to diagnose ASD, however this process can take a long time and cause delays in getting
a diagnosis. 3% Detecting ASD early is very important since quick therapy can help with symptoms and close
the gap between children with ASD and individuals with Typical Development (TD).® Researchers are currently
looking at the possibility of using impartial signs from Computed Tomography (CT) and Magnetic Resonance
Imaging (MRI) to discover ASD early.®

Still, these imaging methods shouldn’t be used to diagnose ASD in kids because the link between brain
results and ASD traits is not well-defined. Prior research has demonstrated that when autistic child’s brain grow,
their EEG signals become less complex.”® There are noticeable differences in the right and inner brain areas
of children with autism compared to neurotypical children. These results suggest that EEG signals could give
us unique and useful information about how the brains of people with autism work.®'® EEG signals are a more
useful diagnostic method for ASD since they capture time in a complex way, are easy to use, and are cheaper
than MRI and CT scans. Also, EEG is used with people of all ages and is easier to get for clinical use than MRI
and CT. So, it is very important to build EEG-based algorithms for diagnosing autism so that ASD may be found
and screened for early on.

Researchers have used deep learning (DL) algorithms like Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs) to look at EEG forms and figure out if someone has ASD in the last few
decades."™ These models have made progress in identifying ASD, but it is still crucial to use the statistical
information from EEG channels correctly. CNNs can get features from multi-channel data, however they may not
fully show how related the channels are in a complex way. This could make it harder for CNN/RNN built models
to accurately anticipate outcomes. Consequently, the cognitive prior and the data based graph components
were combined by Tang et al.("® to create the Rest-HGCN technique aimed at ASD. Data-based graph component
retains dynamic information flow traits. The cognitive prior graph component leverages EEG cerebral systems
as prior graph data to acquire strong neurological connectivity forms among cerebral areas. The Rest-HGCN
improves its ability to detect ASD by using attention strategies, which extract discriminatory characteristics.
This strengthens the separation between healthy and ASD child.

On the other hand, the Rest-HGCN method faced challenges due to small datasets, impacting its validation.
Deep learning requires large labeled datasets, but there is a lack of public EEG data for ASD detection. EEG
data collection is inconsistent, leading to imbalanced samples. Data augmentation techniques like adding
Gaussian noise have been used, but those may not meet the needs for synthetic EEG creation. GAN-based
models show promise in improving EEG signals by considering correlations between waves. Earlier GANs
create EEG waves based on spectral traits, which may not capture temporal variances effectively, leading to
complex data generation processes. So, a novel DEBCWGAN model with Rest-HGCN has been developed for
ASD detection™, aiming to generate minority-class EEG samples from an imbalanced dataset. This model
incorporates spatiotemporal features to create synthetic examples considering electrode location correlation
and time-based traits of EEG waves. The Differential Entropy (DE) traits were transformed into temporal and
electrode location features, input into Variational Auto-Encoder (VAE) encoders, and decoded into synthetic
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examples. Additionally, gradient penalty and L2 regularization terms were used to prevent overfitting. The
Rest-HGCN was then trained to find ASD using the larger dataset.

The Rest-HGCN model only looks at resting-state EEG, while task-based EEG shows how brain patterns
change during certain tasks. Also, it’s hard to use Rest-HGCN to find unusual brain patterns in autism based on
resting-state EEG since it is unable to capture the spatial and temporal elements of EEG data. Also, the Rest-
HGCN model’s predetermined hyperparameters may make it less flexible when working with different types of
EEG data, which could lower its accuracy and make it harder to work with new test data, that makes it less
useful in the real world.

This paper suggests a new end-to-end OLA?HGCN model that can learn different spatial and temporal
aspects from resting-state and task-based EEG signals. This is based on how autism affects brain connection
and hemispheric asymmetry. It improves the HGCN model by employing hierarchical feature extraction and
integration to understand spatial and temporal EEG information that may be separated from different brain
areas and hemispheres. This model has a time-based feature extraction approach in the cognitive prior graph
branch that picks up temporal characteristics inside and between brain areas. It also has an adaptive GCN for
spatial feature extraction across non-Euclidean distributions of electrodes. An attention layer highlights the
role of each hemisphere in classification. The QGTO is also made to find the best hyperparameters for the
LAZHGCN model. This optimizer uses the GTO, which is noted for being good at searching through complicated
and high-dimensional spaces. The GTO algorithm is based on the social intelligence of gorilla groups. It is easy
to use and can be changed, which helps it converge quickly. But it can be hard for it to get out of local optima.
The GTO algorithm now includes quantum mechanics to get around this problem. This improvement makes it
easier for the optimizer to find the best hyperparameters by balancing exploration and exploitation. So, the
DEBCWGAN-OLAZHGCN model has been shown to greatly increase the accuracy of finding and diagnosing ASD.

This part looks at recent research on using deep learning models to find people with autism by looking at
their EEG data. Baygin et al."® built a hybrid lightweight deep feature extractor that can find ASD using EEG
inputs. They used 1D Local Binary Pattern (LBP) to get information from the signals and Short Time Fourier
Transform (SIFT) to make spectrogram images. The deep features from the images were extracted using pre-
trained MobileNetV2, ShuffleNet, and SqueezeNet techniques. Then, feature selection was done with a dual-
phased ReliefF algorithm, and the most important characteristics were categorized with a Support Vector
Machine (SVM) classifier. However, the accuracy was found to be low.

Ari et al." developed an automated method to distinguish ASD with the help of EEG data. At first, the
Douglas-Peucker algorithm was employed for diminishing the quantity of EEG data. A sparse coding was applied
to create EEG rhythm-based images. Then, an Extreme Learning Machine with Auto-Encoder (ELM-AE) was
employed for augmentation. The pre-trained CNN models were used to classify ASD and healthy EEG signals, but
the model may not accurately capture spatial and temporal variations, affecting detection accuracy.

Rogala et al.™® combined traditional statistics and machine learning to classify ASD in children using EEG
data. They used normal and corrected imaginary phase locking value to identify unique brain connectivity
patterns in children with ASD. However, due to a small sample size, accuracy was limited. Additionally, the
reliance on resting-state EEG data could miss some of the nuances in how the brain communicates with one
another in ASD. Peketi et al.""” developed a novel method that combines Variational Mode Decomposition (VMD)
and SVM classifier to classify P300 EEG signals in individuals with ASD. However, a key limitation was the need to
determine the number of modes for decomposition in advance, which may result in mode mixing or redundancy
if not properly optimized.

Menaka et al.? created an improved version of the AlexNet model by incorporating Linear Frequency Cepstral
Coefficients (LFCC) to identify ASD from EEG waves, with an accuracy of 90%. On the other hand, it could not
learn temporal information from EEG waves, and its effectiveness depended a lot on the right hyperparameter
choices. Using EEG data, Xu et al.?" came up with a new way to find ASD. They generated Time-Series Maps
of Brain Functional Connectivity (TSM-BFC) by combining temporal data from EEG signals. We used a Deep
Convolutional GAN (DCGAN) to add more data. Then, a CNN-Long Short-Term Memory (LSTM) technique was
utilized to find ASD by looking at the time and space aspects of EEG signals. But the accuracy was low because
the sample size was limited, which made it more likely to overfit.Using EEG data, Toranjsimin et al.?? built a
model for diagnosing ASD early and without noise. They cleaned up and cut up the signals, and then they used
cross wavelet transform images as input for AlexNet, GoogleNet, VGG19, ResNet50, and ResNet101. But these
models had trouble capturing temporal features, which made them less accurate and less able to recall. Al-
Qazzaz et al.® used transfer learning and hybrid CNNs to differentiate between EEG readings from those with
ASD and those without. To start, the EEG signals were split into 5-second chunks and turned into 2D grayscale
spectrogram images using the power spectral density method. Next, we used pre-trained CNN models including
AlexNet, SqueezeNet, MobileNetV2, GoogleNet, ResNet18, ShuffleNet, and EfficientNet to get features from
each spectrogram image. Decision trees, K-nearest neighbors, and SVM were used to construct hybrid models
that could differentiate between normal people and people with mild, moderate, and severe ASD. Conversely,
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the accuracy of these models was low due to their inability to capture temporal characteristics effectively.

The literature review reveals a gap in research on autism detection using EEG signals. Current studies focus
mainly on resting-state EEG data, neglecting the insights that task-related EEG can offer. This limited focus
hinders the models’ ability to capture the full range of brain activity in individuals with autism. Moreover, CNN
models struggle to extract and analyze the complex spatial and temporal characteristics of autism-related
brain activity effectively. Also, the fixed hyperparameters in these models restrict their adaptability to the
diverse nature of EEG data across patients, leading to reduced accuracy and poor generalizability. To address
these issues, this study aims to develop an optimized deep learning model that can effectively capture spatial
and temporal features from EEG signals. This model will also be fine-tuned to enhance its performance by
optimizing hyperparameters.

METHOD
The OLAZHGCN model for ASD detection and diagnosis is outlined in this section. Figure 1 illustrates a visual
graphical representation for the proposed work.

/ Quantum Artificial Gorilla
Troops Optimization (QGTO)
Algorithm

Y.
E " Optimal hyperparameters

Training

DEBCWGAN

Training | | o del for EEG
dataset

Local-Asymmetric Adaptive
Hybrid Graph Convolutional

augmentation Network (LA2HGCN)

]
EEG Dataset :
A Trained Model

Performance
analysis
Figure 1. Schematic Representation of the suggested module

Dataset Description
This study utilizes two widely recognized datasets to gather EEG signals from children diagnosed with ASD
and children who are TD:

1. EEG Dataset for ASD:@ EEG data were collected from 28 individuals with ASD and 28 TD individuals
using the Biosemi Active two EEG system. This dataset comprises recordings of eyes closed and sleeping
for a 2,5-minute period. The DEBCWGAN model generates 2000 artificial EEG data (1000 from each class)
using 44 training samples to improve classification performance.

2. Autism Biomarkers Consortium for Clinical Trials (ABC-CT) dataset:® It includes EEG and eye-
tracking data from 280 ASD contributors and 119 TD contributors aged 6-11 years. EEG data was collected
at three time points. The DEBCWGAN model generates 2000 artificial EEG data (1000 from each class)
using 319 training samples to enhance classification performance.

Pre-processing and Augmentation
The raw EEG data are preprocessed to extract DE features from 5 frequency groups (alpha, gamma, delta,
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beta, theta) for each of the 62 EEG channels. These features are segmented into 5-second windows. To capture
temporal and spatial information, the data is transformed in two ways: 1) A 5-second segment with 310
dimensions (62 channels x 5 bands) for timing, and 2) A 16x16 grid representation of the 62 channels for each
5-second window to capture spatial relationships. Additionally, every electrode is connected to Cz, sampling
frequency set to 1000 Hz, and electrodes’ impedance is maintained below 50 kQ. If an electrode has an
impedance greater than 50 kQ or a threshold greater than 200V while recording, an artifact detection method
will be employed to identify it. These electrodes have been identified as channels with poor interpolation.
The filtered signals are again equilibrated with the mean reference of two mastoids. This preprocessed data is
fed to the DEBCWGAN model for data augmentation. This model uses two encoder networks to learn temporal
and spatial patterns separately before combining them to generate synthetic EEG samples. Thus, it creates
balanced training data to enhance the performance of the autism detection classifier.

Local-Asymmetric Adaptive Hybrid Graph Convolutional Network Model

The LAZHGCN model is designed to improve the accuracy of autism diagnosis by extracting discriminative
features. Using adaptive graph convolution and the parameter-sharing mechanism of CNNs, this model is able
to learn the asymmetric spatial aspects based on functional connections in the brain as well as the temporal
characteristics of different brain regions. Before feeding them into a classifier, the retrieved characteristics
are merged using an attention technique to optimize the differences. Figure 2 shows the general design of the
LAZHGCN model that has a classifier, a global concatenation method, an asymmetric spatial feature extractor,
an adaptive graph structure learner, and a regional temporal feature extractor.
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Figure 2. Architecture of LA?lHGCN Model
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Model Input

In this study, 46 channels are selected using the 10-10 autism criteria to encompass the four functional areas
of the brain: the frontal, temporal, parietal, and occipital lobes. The left and right hemispheres of cerebral
channels are symmetrically sorted to ensure comparability. Participant data is normalized to reduce differences.
Data is cut to remove bad fragments and randomly selected for ten-second slices. Each participant’s data is
processed into 10 samples without overlap. A dimension is added to produce numerous convolution kernel
(ConvKern) channels in a technique used as input to facilitate learning of features in both spatial and temporal
aspects. The model input matrix is defined as:

X = {Xleft’Xright} (1)

The matrices, X and X"t represent EEG data from the left and right hemispheres, respectively. Each
matrix has a size of c/2xpoint, where c is the total number of channels and point is the segment length, (i.e.,
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1000). X" and X"" are made up of EEG data from four brain areas in each hemisphere, which are labeled X'
and X" for i=1,2,3,4.

Local-Temporal Feature Extractor (LTFE)

Here, 2D convolution is employed to derive time-based properties of each electrode. The convolution
operation is set up using a parameter-sharing technique to make a local temporal feature extractor that is
specific to the functional properties of brain areas in autism. Each electrode’s time series data runs through
two 2D convolution procedures. The only thing that is different between them is a collection of common
variables. The LTFE model employs Convolutional (Conv) blocks in all four regions and both hemispheres to get
temporal characteristics from smaller areas. The parameters of the ConvKern are shared throughout all regions
of the brain. The parts of a Conv block is 2D Conv layer, an average pooling (AvgPool) layer and an activation
function called ReLU. This method is described as:

B = o (Avgy(Comv2D(X],51))) ()

The variables X" and B represent the raw data input and local temporal feature, respectively, for the i"th
brain area of the r hemisphere in equation (2), where r is an element of the left and right hemispheres and i is
an element of the 1, 2, 3 and 4 sets. The 2D convolution method Conv2D(-) uses a kernel scale of s_1=fs/2, the
RelLU activation function is denoted as o(-), and the average pooling layer Avg, (-) is used to lower the temporal
dimension by half to prevent overfitting and increase robustness.

The EEG frequency commonly used for autism diagnosis ranges from 2Hz to 70Hz. Therefore, a ConvKern
scale of (1,fs/2) is selected to capture temporal features above 2Hz. After the region’s local-temporal features
have been retrieved, the hemibrain’s temporal features can be learned using the same convolution blocks.
Prior to this, combining spatially-related brain region feature maps from the same hemisphere is essential. This
method is described as:

B" =[B],...,B]] 3)
The local-temporal feature extractor produces a final feature map that is computed as:
Tem” =0 (Avgz(ConvZD(Br,sz))) (4)

In equation (4), is a portion of the final phase of feature mapping.

Adaptive Graph Network Learning

The adjacency matrix is created by learning the neighboring feature correlations of electrodes in the
technique, unlike a fixed graph structure. In this study, the graph structures of the left and right hemibrains
are established separately to obtain the adjacency matrices A'" and Aris"t,

Let A, eft, A r‘gh‘—g(x X, ) is used to depict the connections between nodes x; and x;, where 1,j€{1,2,...,n}
represent the nodes in tne hemibrain. The feature map [[Tem)"r provides vectors equwalent to nodes i and j.
The function g(X;, x;) is computed using a learnable weight vector w=(w,,w,,...,o; )eR™ and the attributes of i
and j. The w shares variables across all node connections during the learning process. The ConvKern feature
layers from previous layer averages are used to depict the graph structure of the adjacency matrix as:

e (U(G)T|xn—xm I))

SIPCTEET)

()

A;nn = g(xm:xn) =

The ReLU activation function converts linear units into non-negative numbers. Based on a time feature map
that is dynamic, the adjacency matrix is fine-tuned iteratively by total cross-entropy loss. The cross-entropy
loss function is:

_ _1yB 1 N
LCE - = E batch=1 chasszo Ybatch,class 10g1 Ybatch,class (6)

Finally, A ' and A, et has been computed. This matrix serves as input for a graph network in graph
convolut1onaf learnmg
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Asymmetric-Spatial Feature Extractor (ASFE)

Graph convolution in EEG data involves approximating graph ConvKern (GConvKern) with the help of
Chebyshev polynomials, reducing computational complexity to K, where K is the Chebyshev polynomials count
used. By integrating hemibrain adjacency matrices with the time-based attributes of every node, both the left
and right hemispheres’ non-Euclidean spatial characteristics are acquired. The Chebyshev GConvKern with K-1
order is:

FJ = gg * GTem” = gg(L)Tem" = Y§23 6, Ty(L)Tem” (7)

In equation (7), g, symbolizes the ConvKern, *G denotes the graph convolution procedure, and L™ symbolizes
the normalized Laplace matrix defined as L™=2/A__ -1, where A__ denotes the maximum eigenvalue. The
eigenvalue diagonal matrix of the normalized Laplace matrix, as per the criteria of the Chebyshev polynomial
of the 1st class, is transformed to an interval [-1,1]. The repititive definition of the initial class of Chebyshev
polynomials is as follows:

To(x) = 1, Ty (x) = x, Typy1 (%) = 2xT (x) = Tpp1 () (@)

This is generated using a iterative formula T, (L ), which denotes the Chebyshev polynomial. Furthermore, 6,
symbolizes the Chebyshev coefficients vector.

Attention-Based Feature Concatenation

Attention strategies are employed to evaluate the spatial and temporal characteristics of the left and
right brains before entering the model. Attention mechanism adjusts its attention based on influence of each
hemisphere on categorization outcomes. The process is illustrated in Figure 3. Global pooling compresses global
features, and the fully connected layer using activation function learns a non-linear relationship between the
left and right hemispheres. EEG asymmetry features in autism are obtained through weighted averaging after
fusion. These fused features are denoted as:

Fusion = GAP (Att([Fleft’ Fright], Q)) — %Zﬁ=1[ﬂ1Fleft’ﬂ2Fright] 9)

In equation 9, K represents the quantity of GConvKerns, Q denotes dimension reduction ratio throughout the
compression of the attention strategy and B,,8, are left and right brain weights resulting after the attention
strategies.

Input X :[X",X‘ej

+
Regional-temporal ’

Feature Learnin / FE?tUFES

Asymmetric-spatial ’

Feature Learnin region-wise

Ekermel

L Fugon ____ L
""'4., kernel-wise
Classification Sae Fusion

Figure 3. Attention-Based Hemibrain Feature Concatenation
Classifier
The final likelihood of an autism diagnosis is the product of training and a classification loss optimization
model, like a cross-entropy loss function. A two-layer classification layer using the ReLU and Softmax functions
receives the spatiotemporal fusion feature matrix as input. The output is defined as:

y = Softmax(W,p o (W, Fusion + b;) + b,) (10)
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Algorithm 1 LA?HGCN Technique
Input: EEG data X=[X' X"¢"t ], True label y, and maximum iterations T:
Output: LA’HGCN recognition (y~)
Initialize: w0«0;
for(t<1:T)
for(re[L,R])
for(i=1:4)
Obtain ith area output Bir using equation (2);
Obtain Bi using equation. (3) and time based hybrid learning result Tem"using Eq.(4);
end for
Obtain A_ " using equation. (5);
Obtain graph Conv learning result F " using equation (7);
end for
Obtain the concatenated weighted sum using attention strategy as equation (9);
end for
Obtain y " by equation. (10);
End

Thus, the LAZHGCN model is trained to distinguish between children with ASD and TD. The model’s
hyperparameters are optimized by QGTO to improve detection accuracy, as detailed in the next section.

Quantum Artificial Gorilla Troops Optimization (AGTO) for Hyperparameter Selection

The AGTO model is inspired by the social behavior of gorillas. Gorillas typically congregate in groups headed
by an adult male called silverback, due to the white hair on their back. The group typically includes adult
females and their offspring. The male gorilla is responsible for defending territory, making decisions, and
guiding the group in finding food. Rivalry for territory and resources is common among gorillas, with male-
female interactions being close and female-female interactions more distant.@®

Exploration Phase

In the gorilla community, a silverback gorilla leads decision-making. Gorillas explore various locations for
food, including familiar and unfamiliar situations. The silverback gorilla represents the ideal solution during
the exploration phase. Additionally, three strategies are activated during this stage, as described in equation
(11). The variable p, ranging [0,1], determines the migration plan for unidentified locations. If rand<p, the
current gorilla’s location moves to an anonymous place, allowing for better coverage of the problem space and
a complete distribution of solutions. If rand>p, two other mechanisms are activated. If rand>1/2, the gorilla
moves towards other gorillas, enhancing exploration. If rand<1/2, the gorillas migrate to known positions,
aiding in escaping local optima.

( (up = lp) Xy + 1, rand < p
GX(t+1) = (rp,—C)xX.(t)+LXxH, randZ% (11)
X(t)—Lx (L X (X(6) - GXT(t))) +13 % (X(t) = GX,.(), rand < %

In equation (11), GX(t+1) represents the gorilla candidate location vector for the succeeding t iteration,
X(t) denotes the present gorilla location vector, r,r,,r, and rand are random values in [0,1] altered in every
iteration, u, and |, denote variables’ upper and lower limits, X is a unsystematically nominated gorilla in
the population, and GX is a unsystematically nominated vector of gorilla candidate locations that includes
locations updated in all stages. Moreover, C,L, and H are determined as follows:

C=cos(2><r4)+1><(1— T) (12)

max

In equation (12), T is the present iteration, T__ is the maximum iteration, and r, denotes uniform distribution
in 0 to 1. While value of C changes somewhat in the later stages, it changes considerably in the beginning. This
allows for greater randomness in the early stage to explore a global optimal solution, while in the later stage,

it decreases to facilitate rapid convergence.

L=Cxl (13)
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In equation (13), L represents a random integer produced by a normal distribution between -1 and 1, while L
is a parameter that models the leadership of a silverback gorilla. Silverback gorillas may make errors in foraging
or group management due to their inexperience. By following a leader, they can gain valuable experience and
achieve greater stability. Equation (13) is a way to simulate the influence of a silverback gorilla’s leadership.
Also, H is determined as follows:

H=2ZxX() (14)
Z=[-C,C] (15)

Upon completion of this phase, the fitness values (i.e., detection accuracy) of GX and X are determined.
When the fitness value of GX(t) is smaller than that of X(t), the location of GX(t) will swap the location of X(t).

Exploitation Phase

The GTO algorithm calls upon two behaviors throughout its exploitation phase: accompanying the silverback
and competing with mature female gorillas. The silverback gorilla leads the group, makes choices, directs
movements, and ensures safety. The silverback’s decisions are followed by all of the group’s gorillas. However,
as the silverback may weaken or die, a new leader may emerge through rivalry within the group. The choice
between these behaviors is determined by the value in equation 12. If C>W, following the silverback is selected;
otherwise, rivaling with adult female gorillas is chosen, where the optimization procedure begins with the
setting of a parameter, W.

Following the Silverback

The recently formed gorilla group is led by a young and strong silverback, with other young males following
his lead effectively. They obey his commands to search for food in different areas and stick together as a
cohesive unit. This strategy is implemented when C>W is met, using equation 16 for simulation.

GX(t+1)=LxXMxX(t)— Xsilverback) + X(t) (16)

1
1 g /g
M= (|52 ex @) (17)
g=2" (18)
In equations (16,17,18), In iteration t, GX. (t) is the candidate position vector of all gorillas, and X ..., iS

the location vector of the silverback gorilla (best answer).

2. Rivaling with Adult Female Gorillas

If C<W, the exploitation phase will use the second behavior. During the adolescent years, gorilla males
engage in mating wars with other gorillas in order to increase their population and choose adult females.
Disputes inside the group might escalate into physical altercations and drag on for days. This behavior is
simulated by equation (19), as follows:

GX(t) = Xsilverback - (Xsilverback X Q - X(t) X Q) X A (19)
Q=2xrs—1 (20)
A=BxE (1)

In equations. (19,20,21,22), Q represents the intensity of the simulated gorilla’s rivalry, r,rand are the
random numbers in [0,1] for a normal distribution, E mimics the effect of aggression on the solution dimension,
B is the parameter established before to the optimization process, and A is the coefficient vector that mimics
the intensity of rivalry. Any value from a normal distribution in the problem dimension can equal E if rand is
greater than or equal to 1/2. On the other hand, E might represent a normal distribution random number.

Upon completion of this phase, a group formation operation is carried out to estimate the fitness value of
all GX solutions. If the fitness value of GX(t) is less than X(t), then GX(t) solution is utilized as the X(t) solution.
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The silverback is selected as the best option that was found from the whole population.

Quantum Mechanism

This study integrates quantum mechanics into the GTO algorithm to improve its capability to balance
exploration and exploitation in the search space. Quantum mechanics is used as an additional strategy for
location updating, particularly during the exploitation stage, to enhance the algorithm’s performance in
discovering optimal solutions. The Monte Carlo technique is employed to determine the new solution x__ such
as updating location of each gorilla as follows:

g = 1 (W)XGX(t)+1r,(1-w)XGX(t) (23)
T1+T2
Z+ a X (Mbest; — X(t)) X In 1 , h>=
GX(t+1) = ( l ) (”) 2 (24)

z—a X (Mbest; — X(t)) X In (%) Or else

o= 0.5X(Trax—T)
T—0.5

(25)

In equations (23) & (25), a represents the contraction-expansion coefficient, which is gradually decreased
through the curse of iterations to control the convergence rate and find the global optimum, u and w follow
a normal distribution with parameters between 0 and 1, while h takes on a value between 0 and 1 at random.
The mean of the X_silverback locations is also known as Mbest, which stands for the population’s best result.
It is determined as:

Mbest = < ¥, GX;() (26)

A flowchart of this QGTO is presented in figure 4. Thus, the QGTO selects the optimal hyperparameters
of the LAZHGCN model to improve model training and ASD detection accuracy. Table 1 displays the optimal
hyperparameters selected by the QGTO algorithm for the LAZHGCN model.

Initialize gorillas and set parameters (population size (N), maximum
number of iterations (T,ax), p, and B

v

Evaluate gorilla fitness (i.e., detection accuracy)

No -
fT<=T

Amaxdu
Y

Update C and L using Eqgns. (12) & (13)

No
ifi<=N

Update location of gorilla using Eq. (11)
\ 2

Calculate the fitness values of gorilla and if new solutions are better
than previous solutions, then replace them

v

abejg uopesojdxy
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Set the best solution as the location of silverback gorilla

Update location of
gorilla using Eq. (16)

Update location of
gorilla using Eq. (19)

Calculate the fitness values of gorilla and if new solutions are better «
than previous solutions, then replace them

v

Set the best solution as the location of silverback gorilla

afielg uoneyojdxy

v Quantum Mechanics

Update the position using Eq. (24)

v

Calculate the fitness value for the new solution

.2

Set the best solution

FEsss s s s .-y

[ERRP N )

T e

Y

Return the best solution (optimal hyperparameters for LA2HGCN)

Figure 4. Flowchart of QGTO Algorithm for Optimal Hyperparameter Selection

Table 1. List of Hyperparameters for LA?lHGCN Model for ASD Detection and Diagnosis

Parameters Search Space Optimal Range
No. of graph convolutional layers [2,3,4] 3
Number of hidden layers [1, 2] 1
Training rate [0.0001, 0.1] 0,01
Dropout rate [0,2, 0,3, 0,4, 0,5] 0,5
Number of epochs [100, 300] 200
Batch size [32, 64, 128, 256, 512] 256
Optimizer [Stochastic gradient descent, Adam] Adam

Loss [Cross-entropy, mean squared error]  Cross-entropy

RESULTS

This division assesses the robustness of suggested DEBCWGAN-OLAZHGCN technique using two distinct EEG
datasets as described in Section 3.1. The model’s performance is compared with existing models, such as Rest-
HGCN, " DEBCWGAN-rest-HGCN, "> VMD-SVM, " Improved AlexNet,? and DCGAN-CNN-LSTM.?" The experiment
is carried out on a laptop with an Intel® Core TM i5-4210 CPU @ 3GHz, 4GB RAM, and a 1TB HDD on Windows 10
64-bit. The two datasets were used to implement all existing and proposed models in MATLAB 2019b in order to
quantify performance enhancements.

Performance Evaluation Measures
The effectiveness of ASD detection models can be assessed by means of the subsequent measures:
e Accuracy is the proportion of exactly recognized cases among the total cases assessed.
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True Positive (TP)+True Negative (TN)
TP+TN+False Positive (FP)+False Negative (FN)

Accuracy =

(27)

In equation (27), TP occurs when the network correctly identifies a subject with ASD as having ASD. TN
occurs when the network correctly identifies a subject without ASD as not having ASD. FP arises when the
network mistakenly identifies a subject without ASD as having ASD. FN arises when the network mistakenly
identifies a subject with ASD as not having ASD.

e Precision, recall, and F1 score are determined as follows:

TP

Precision = (28)
TP+FP
TP
Recall = (29)
TP+FN
2XPrecisionxRecall
F1 = — (30)
Precision+Recall

Convergence Curve of QGTO Algorithm

1.0

—eo— QGTO Convergence

Fitness Value

T
0 20 40 60 80 100
Iterations

Figure 5. Convergence Curve of QGTO Algorithm

Figure 5 displays the convergence curve of the QGTO model, showcasing the improvement in fitness value over
iterations. The curve demonstrates a rapid initial enhancement followed by a gradual plateau as the algorithm
converges towards an optimal solution. This indicates the QGTO’s effective balance between exploration and
exploitation, facilitating effective exploration of the search domain while evading neighborhood optimums.

Figure 6 compares the DEBCWGAN-OLAZHGCN model with existing models on the EEG Dataset for ASD.
The DEBCWGAN-OLAZHGCN outperforms other models in detecting children with ASD due to effective training
using a large-scale dataset. Compared to VMD-SVM, improved AlexNet, DCGAN-CNN-LSTM, Rest-HGCN, and
DEBCWGAN-Rest-HGCN, the proposed model shows an increase in precision by 42,25 %, 32,77 %, 23,84 %, 13,81
%, and 10,65 %, recall by 42,51 %, 26,28 %, 21,56 %, 14,02 %, and 0,84 %, F1-score by 42,39 %, 29,44 %, 22,7 %,
13,92 %, and 2,84 %, and accuracy by 42,55 %, 26,72 %, 23,56 %, 14,05 %, and 3,68 %, respectively.

Figure 7 compares the proposed DEBCWGAN-OLAZHGCN model with existing models on the ABC-CT dataset
for classifying children with ASD. The DEBCWGAN-OLA?HGCN model outperforms other models due to effective
training with a large-scale dataset. Compared to VMD-SVM, improved AlexNet, DCGAN-CNN-LSTM, Rest-HGCN,
and DEBCWGAN-Rest-HGCN, the anticipated technique attains a higher precision, recall, F1-score, and accuracy.
Precision is improved by 13,72 %, 8,73 %, 6,56 %, 4,32 %, and 0,52 %, recall by 17,73 %, 10,67 %, 6,5 %, 4,4 %,
and 0,6 %, F1-score by 15,73 %, 9,71 %, 6,53 %, 4,37 %, and 0,57 %, and accuracy by 29,18 %, 19,24 %, 13,13 %,
10,73 %, and 4,73 %, respectively.
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Figure 6. Comparison of DEBCWGAN-OLA’HGCN Model against Existing Models on EEG Dataset for ASD
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Figure 7. Comparison of DEBCWGAN-OLAZHGCN Model against Existing Models on ABC-CT Dataset

CONCLUSIONS

The study shows how the OLAZHGCN model and DEBCWGAN can work together to improve the detection
of ASD by using both resting-state and task-based EEG data. The LAZHGCN model made it easier to acquire
different spatial and temporal aspects from EEG recordings. The addition of a new QGTO to the LA?HGCN
improved its hyperparameters, which led to better accuracy in classifying ASD than earlier methods. These new
results point to a viable path for future research and therapeutic use. The DEBCWGAN-OLA?HGCN model was
able to correctly identify 95,04 % of EEG data for ASD and 92,27 % of ABC-CT data for ASD, showing that it might
be used to locate ASD early and accurately.
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