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ABSTRACT

Introduction: the rapid expansion of global food demand, combined with unpredictable climate variability 
and resource scarcity, necessitates intelligent solutions for sustainable agriculture. 
Method: this study introduces an IoT-driven intelligent greenhouse monitoring and decision-making 
framework that integrates advanced machine learning (ML) models with heterogeneous environmental data. 
Using multi-source sensor networks and edge-cloud collaboration, the framework dynamically regulates 
greenhouse environments while providing yield forecasting and disease detection capabilities. 
Results: experimental results demonstrate that the proposed system achieves high detection accuracy (F1 = 
96,8 %), low yield prediction error (RMSE = 0,40 tons/ha), and efficient energy usage (0,46 J per inference). 
Reinforcement learning controllers further optimize climate regulation, reducing temperature RMSE to 
0,72 °C and achieving energy savings of up to 20 % compared to traditional PID systems. The hybrid CNN-
Transformer disease detection model outperforms benchmarks, attaining 97,9 % accuracy with improved 
calibration reliability. 
Conclusions: collectively, these findings confirm that the proposed IoT–ML framework not only improves 
productivity and sustainability but also ensures scalability for large-scale deployments in diverse agricultural 
environments.

Keywords: Agriculture 4.0; Attention Mechanism; Crop Disease Detection; Data Fusion; Edge Computing; 
Smart farming.

RESUMEN

Introducción: la rápida expansión de la demanda mundial de alimentos, combinada con la impredecible 
variabilidad climática y la escasez de recursos, requiere soluciones inteligentes para una agricultura 
sostenible.
Método: este estudio presenta un marco inteligente de monitoreo y toma de decisiones en invernaderos basado 
en IoT que integra modelos avanzados de aprendizaje automático (AA) con datos ambientales heterogéneos. 
Mediante redes de sensores multifuente y colaboración edge-cloud, el marco regula dinámicamente los 
entornos de los invernaderos, a la vez que proporciona capacidades de pronóstico de rendimiento y detección 
de enfermedades.
Resultados: los resultados experimentales demuestran que el sistema propuesto logra una alta precisión de 
detección (F1 = 96,8 %), un bajo error de predicción de rendimiento (RMSE = 0,40 toneladas/ha) y un uso 
eficiente de la energía (0,46 J por inferencia). Los controladores de aprendizaje por refuerzo optimizan aún 
más la regulación climática, reduciendo el RMSE de la temperatura a 0,72 °C y logrando ahorros de energía
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de hasta un 20 % en comparación con los sistemas PID tradicionales. El modelo híbrido CNN-Transformer de 
detección de enfermedades supera los estándares de referencia, alcanzando una precisión del 97,9 % con 
una mayor fiabilidad de calibración.
Conclusiones: en conjunto, estos hallazgos confirman que el marco IoT-ML propuesto no solo mejora la 
productividad y la sostenibilidad, sino que también garantiza la escalabilidad para implementaciones a gran 
escala en diversos entornos agrícolas.

Palabras clave: Agricultura 4.0; Mecanismo de Atención; Detección de Enfermedades en Cultivos; Fusión de 
Datos; Computación de Borde; Agricultura Inteligente.

INTRODUCTION
In large-population countries, where food security, economic stability, and sustainable growth are all 

interconnected with other facets of national development, agriculture has long been seen as the cornerstone. 
Additionally, people view farming as crucial to a nation’s development. Despite the significant advancements 
in farming over the last several decades, traditional techniques are still unable to meet the rising demands 
for crop quality, productivity, and seasonal unpredictability. Bad management, handling diverse soil types, 
and weather fluctuations exacerbate the situation. Additionally, a lot of today’s technologies lack adaptive 
intelligence, fast data processing, and effective deployment frameworks, making them unsuitable for application 
in actual agricultural scenarios.(1,2,3) Addressing these limitations requires integrating ML algorithms with IoT 
platforms to achieve robust, scalable, and cost-effective systems that enhance agricultural productivity. IoT-
Driven Greenhouse Monitoring Framework: Developed an intelligent sensing and decision-making system using 
heterogeneous IoT sensors for real-time monitoring of temperature, humidity, CO₂ levels, and soil moisture 
to optimize greenhouse crop growth. Integration of Machine Learning with IoT: Applied machine learning 
algorithms, particularly the Fuzzy Pairwise K-Means (FPKM) approach, to preprocess and denoise agricultural 
datasets, improving data quality and reliability for predictive analysis.(4,5,6) Modular and Remote-Controlled 
System Design: Designed a greenhouse management architecture that integrates adaptive PID controllers, mobile 
client interfaces, and cloud-based platforms for effective remote supervision and automated environmental 
control. Enhanced Agricultural Productivity and Sustainability: Demonstrated that the proposed IoT-ML 
framework reduces manual labor, optimizes resource utilization, and increases crop quality and yield, laying 
the groundwork for the broader adoption of smart farming technologies. The contributions of this research 
are multifold and address critical gaps in IoT-enabled smart farming. First, it introduces a fully integrated 
IoT–ML framework that combines heterogeneous sensor data, edge computing, and cloud-based analytics to 
enable real-time decision-making for greenhouse management. To enhance data quality, a novel FPKM-based 
preprocessing approach is employed, which effectively denoises and balances heterogeneous agricultural 
datasets, ensuring reliable inputs for predictive modeling. Furthermore, the study advances greenhouse climate 
regulation by implementing reinforcement learning–based controllers (RL-PPO and RL-SAC), which outperform 
conventional PID and MPC methods by delivering faster response times, higher accuracy, and significant energy 
savings. This study presents a hybrid GCN-BiLSTM-Attention model for yield forecasting and a Dual-Branch CNN-
Transformer for illness diagnosis. Both of these models perform noticeably better compared to the top versions 
currently on the market.(7,8,9) The sustainability aspects of the system, which demonstrate significant decreases 
in energy, pesticide, and water use, directly support global efforts to promote resilient and ecologically friendly 
agriculture. The system directly supports these goals. Additionally, the system is environmentally friendly and 
technologically sophisticated. In this research, we have used machine leaning model to develop a innovative 
system based on IoT for enhancing agriculture 

Related Work
Modern farming has seen a significant transformation as a result of the convergence of machine learning 

and the internet of things. This is especially true for precision farming and greenhouse management. Even 
while traditional farming practices have long been effective, they can no longer meet the demands of a 
changing global food supply, climate change, and the need to maximize the use of limited resources. Even if 
standard farming methods have been used for a long time, the situation is still the case. Scholars and industry 
experts have started utilizing Internet of Things (IoT)-based sensing technologies, like intelligent decision-
making frameworks, to address these issues.(10,11,12,13) Machine learning algorithms enhance our capacity to 
interpret data and formulate forecasts. These integrated systems also enable real-time monitoring of the soil’s 
moisture content, temperature, humidity, light intensity, and carbon dioxide levels. Additionally, it is currently 
difficult to combine all of the many data sources into a single, understandable framework for decision-making. 
Unfortunately, agricultural data is often lacking and location-specific, making it challenging to effectively 
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train machine learning models. Research on data fusion, federated learning, and adaptive algorithms that 
generalize across many agricultural settings is necessary to overcome these issues. In conclusion, the 
connected research’s findings indicate that the Internet of Things’ ability to facilitate machine learning and 
sensing might fundamentally alter how agriculture operates. Intelligent systems may increase agricultural 
operations’ resilience, sustainability, and productivity, according to a number of studies. Adaptive temperature 
management in greenhouses, digital twin modeling, and software that forecasts agricultural yields are a few 
instances of this kind of technology.(14,15,16) The direction of future research points toward building systems that 
are not only accurate and efficient but also scalable, robust, and capable of addressing the unique challenges of 
diverse agricultural landscapes. Intelligent agriculture, powered by IoT and ML, is thus poised to play a pivotal 
role in securing food systems for a growing global population.

Figure 1. Demonstrates the Need for Greenhouse Cultivation

Figure 1 illustrates an intelligent greenhouse monitoring and control framework that emphasizes the need 
for greenhouse cultivation. At the core, a Data Monitoring Platform continuously collects key environmental 
parameters such as temperature, humidity, carbon dioxide, and light. These data are shared in real time 
with a Monitoring Center, which provides an updated status of the greenhouse conditions.(17,18,19) From there, 
a Remote Control System integrates functions such as greenhouse environment display and environmental 
adjustment, ensuring optimal growth conditions. Additionally, the system is equipped with warning and energy-
saving mechanisms, abnormal warning alerts, and remote close functionality, enabling proactive management 
and automation. Overall, the diagram highlights a closed-loop system where continuous data monitoring, real-
time sharing, and responsive remote control ensure sustainable, efficient, and adaptive greenhouse cultivation 
practices.

METHOD
The core objective of the proposed method is to develop a highly accurate, intelligent, and sustainable crop 

yield prediction and disease detection framework that leverages multi-source environmental data, IoT-based 
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smart agriculture infrastructure, and advanced deep learning architectures. Unlike traditional methods that 
rely solely on empirical models, this framework integrates heterogeneous data streams (soil pH, agro-climatic 
patterns, fertilizer usage, precipitation, temperature, humidity, sunlight intensity, and disease presence) into 
a multi-layered predictive pipeline.

Data Acquisition and Fusion
Data is collected from IoT-enabled multisensory nodes deployed in greenhouses and open fields. These 

sensors continuously monitor temperature, humidity, soil moisture, pH, CO₂ concentration, and light intensity.
(20,21) Satellite imagery and weather forecast APIs are integrated to capture external macro-environmental 
conditions. A data fusion engine merges these multi-modal streams, ensuring redundancy removal, anomaly 
correction, and temporal alignment. To address data quality, an FPKM-driven clustering with anomaly filtering 
is applied, which prioritizes least-congested clusters, ensuring balanced data representation for subsequent 
model training.

Intelligent Greenhouse Control with IoT-Edge
A three-tier IoT architecture (perception, network, and application) supports smart greenhouse operations. 

In the perception layer, sensors capture environmental metrics, while the network layer relays them to 
the cloud through low-power protocols (MQTT/CoAP). The application layer integrates an AI-enabled fuzzy 
adaptive PID controller for real-time adjustments of temperature, humidity, and ventilation. Edge computing 
nodes preprocess sensor data to reduce latency and energy overhead, ensuring sustainability in large-scale 
deployments.(22,23) This integration ensures dynamic greenhouse optimization, minimizing energy loss, stabilizing 
crop growth conditions, and reducing the dependency on manual interventions.

Deep Learning Framework for Yield Prediction
The yield prediction model combines spatial-temporal deep learning with hybrid neural networks: Stage 

1 (Preprocessing): Time-series normalization and spatial encoding using Graph Convolutional Networks (GCN) 
to capture interdependencies among geographical regions. Stage 2 (Feature Learning): Parallel training of 
Bidirectional Long Short-Term Memory (Bi-LSTM) networks for temporal dynamics and Convolutional Neural 
Networks (CNNs) for soil and climate feature extraction. Stage 3 (Hybrid Fusion): An Attention-augmented 
BPNN-RNN hybrid model integrates learned spatial-temporal features. The attention layer emphasizes high-
impact environmental factors such as rainfall variability, pest infection spikes, and fertilizer imbalance. Stage 
4 (Prediction): The final regression head estimates crop yield, validated against ground-truth harvest data using 
MAE, RMSE, and R² metrics.

Crop Disease Detection and Sustainability Integration
To reduce pesticide misuse and improve sustainability, a dual-branch CNN-Transformer architecture is 

introduced for disease detection in cassava and rice. The CNN extracts localized texture features from leaf 
imagery, while the Transformer captures long-range contextual dependencies. Detected disease likelihoods are 
cross-referenced with IoT environmental data (humidity, temperature) to provide early intervention alerts.
(24,25,26) This AI-powered framework not only forecasts yields but also prevents losses from pathogens, thus 
aligning with sustainable agriculture goals (SDG-2 & SDG-12).

Figure 2 illustrates the end-to-end workflow of the proposed IoT-enabled smart agriculture system, showing 
how data flows from sensor collection to decision-making and actuation. The process begins with IoT sensors 
monitoring environmental factors such as temperature, humidity, soil moisture, and light. The collected data 
is preprocessed using advanced cleaning techniques (see table 1, which details comparative performance of 
preprocessing methods). Cleaned and reliable data is then transmitted through the IoT–Edge–Cloud pipeline for 
further analysis. At the cloud/edge level, machine learning models (referenced in Tables 2 and 3) process the 
data for tasks such as climate control, yield forecasting, and disease detection. Decisions are generated and 
sent back to actuators that regulate greenhouse conditions, irrigation systems, or pest management devices.
(27,28) The figure also highlights the integration of remote monitoring dashboards, enabling farmers to supervise 
and control processes in real time. Overall, this figure visually complements the numerical insights presented 
in the earlier tables by mapping how the system’s modules interact to enhance precision, efficiency, and 
sustainability in smart farming. It can also change the temperature of the greenhouse from afar by watching 
changes in real-time data and acting on them. 

System Workflow
The end-to-end system integrates data acquisition, preprocessing, intelligent greenhouse control, hybrid 

deep learning modeling, and sustainable decision-making. Farmers access results via a cloud-enabled dashboard 
that provides real-time insights, predictive analytics, and disease alerts, empowering them to make informed 
decisions on irrigation, fertilizer use, and pest control.
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Figure 2. System Workflow of IoT-Enabled Smart Agriculture Framework

Figure 3. End-to-End Framework of the Proposed Crop Yield and Disease Prediction System

Figure 3 illustrates the complete layered pipeline of the proposed methodology. It begins with Data 
Acquisition, where IoT sensors and satellite/weather APIs collect heterogeneous environmental and crop-
related data. This raw information undergoes Data Fusion & Preprocessing, where anomalies, inconsistencies, 
and redundant records are filtered and aligned for consistency. The refined data is then processed by a Hybrid 
Deep Learning Module that integrates Graph Convolutional Networks (GCN), BiLSTM for temporal sequences, 
CNN for spatial features, and an Attention mechanism to emphasize key variables.(29,30,31,32) From this unified 
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learning stage, the model produces two primary outputs—Yield Prediction and Disease Detection. Finally, results 
are delivered through a Cloud Dashboard, enabling farmers to make informed and real-time decisions about 
crop management.

Figure 4. Hybrid Neural Network Model Integrating Spatial, Temporal, and Regional Features for Yield and Disease 
Prediction

Figure 4 depicts the hybrid neural network framework designed for predicting crop yield and detecting plant 
diseases using multi-source data. The model begins with inputs from environmental datasets and leaf images, 
which are processed in parallel branches. The CNN branch extracts spatial features such as texture and color 
variations from leaf imagery, while the BiLSTM branch (not shown explicitly in this schematic but included in 
the methodology) captures sequential temporal dynamics of environmental data. Additionally, the GCN branch 
models regional dependencies, capturing interrelationships between spatially distributed agricultural zones. 
Together, the system provides a comprehensive AI-powered decision-support tool for precision agriculture.

RESULTS
Table 1 presents a comparative evaluation of five advanced methods for handling noisy and incomplete 

agricultural time-series data. The results highlight that while traditional approaches such as FPKM and KNN-
Impute + Kalman Filter perform reasonably well, newer techniques like STL + Matrix Profile and LSTM-based 
Denoising Autoencoder achieve superior accuracy. The LSTM-DAE in particular shows the lowest NRMSE (0,029) 
and sMAPE (4,9 %), along with the highest Outlier F1 score (96,2 %) and coverage (99,4 %). However, this improved 
accuracy comes with slightly lower throughput compared to simpler methods. Overall, Table 1 demonstrates 
that deep learning and hybrid statistical approaches significantly enhance data quality, ensuring reliable inputs 
for IoT-enabled smart farming decision systems.

Table 1. Performance of Advanced Time-Series Cleaning and Imputation Methods in Smart Farming Applications

Method NRMSE (↓) sMAPE (%) 
(↓)

Outlier F1 
(%) (↑)

Coverage after 
Cleaning (%) (↑)

Throughput 
(records/s) (↑)

FPKM (Least‑Congested‑First) 0,041 6,8 92,8 98,9 8100

KNN‑Impute + Kalman Filter 0,038 6,3 93,4 99,1 7600

MICE + RobustScaler 0,036 6,0 94,6 99,2 6800

STL (Seasonal‑Trend) + Matrix Profile 0,033 5,5 95,1 99,3 5400

Denoising Autoencoder (LSTM‑DAE) 0,029 4,9 96,2 99,4 6200
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Figure 5. Impact of Preprocessing and Compression Techniques on Model Accuracy and Yield Prediction

Figure 5 illustrates the results of the ablation study summarized in table 2, where successive enhancements 
such as FPKM cleaning, edge preprocessing, INT8 quantization, pruning, and knowledge distillation are 
incrementally added to the baseline model. The Detection F1 score shows a consistent upward trend, rising from 
93,1 % in the baseline to 96,8 % in the full configuration. At the same time, the Yield RMSE steadily decreases 
from 0,54 tons/ha to 0,40 tons/ha, highlighting improved accuracy in yield estimation. This visualization makes 
it clear that each optimization step contributes positively, and the combination of all methods results in the 
most accurate and efficient system for IoT-enabled smart farming.

Table 2. Comparative Performance of Classical and Modern Controllers for Greenhouse Climate Regulation

Controller
Temp 
RMSE 

(°C) (↓)

Humidity 
RMSE 

(%RH) (↓)

IAE 
(°C·min) 

(↓)

ITAE 
(°C·min²) 

(↓)

Settling 
Time 

(min) (↓)
Overshoot 

(%) (↓)
Energy 
(kWh/

day) (↓)

Control 
Latency p95 

(ms) (↓)
PID 1,85 5,9 312 4720 28 7,5 42,1 210

Fuzzy‑PID 1,12 3,7 211 3310 17 4,1 37,8 165

Model Predictive 
Control (MPC)

0,92 3,1 168 2850 14 3,3 35,2 150

RL‑SAC 0,81 2,8 149 2410 12 2,7 34,1 128

RL‑PPO (Proposed) 0,72 2,4 133 2190 10 2,2 32,6 118

Table 2 compares the effectiveness of different control strategies for regulating greenhouse temperature 
and humidity. The results show that traditional PID control delivers basic stability but suffers from higher 
error rates, longer settling times (28 minutes), and greater energy consumption. Fuzzy-PID improves both 
accuracy and efficiency by reducing RMSE and energy usage. Model Predictive Control (MPC) further enhances 
performance with lower overshoot (3,3 %) and improved integral performance indices (IAE/ITAE). Among modern 
approaches, Reinforcement Learning controllers (SAC and PPO) provide the best results. The proposed RL-PPO 
achieves the lowest temperature RMSE (0,72 °C), fastest settling time (10 minutes), minimal overshoot (2,2 %), 
and the highest energy efficiency (32,6 kWh/day). Overall, Table 2 demonstrates that reinforcement learning–
based controllers significantly outperform classical methods in precision, responsiveness, and sustainability for 
IoT-enabled greenhouse management.

Figure 6 illustrates the scalability of three system configurations—Baseline IoT, Optimized Edge, and the 
Proposed System—by mapping the relationship between the number of IoT nodes, throughput, and latency. 
The red circles (Baseline IoT) show that while throughput increases with node count, latency also rises sharply, 
reaching over 800 ms at higher loads. The blue triangles (Optimized Edge) indicate improved scalability, with 
higher throughput and moderate latency. The green squares (Proposed System) demonstrate the best balance, 
maintaining the lowest latency (<300 ms) while supporting higher throughput and a larger number of IoT nodes. 
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Figure 6. Latency–Throughput–Scalability Comparison of IoT, Edge, and Proposed Systems

This confirms that the proposed framework significantly enhances system responsiveness, efficiency, and 
scalability compared to conventional approaches.

Table 3. Evaluation of Advanced Sequence Models for Crop Yield Forecasting

Model MAE (tons/
ha) (↓)

RMSE 
(tons/ha) 

(↓)
MAPE (%) 

(↓)
Pinball 
Loss 

τ=0,9 (↓)
Calibration 

ECE (↓)
Inference 
Latency 
(ms) (↓)

CatBoost (Tabular) 0,46 0,69 9,1 0,124 0,038 6,9

N‑BEATS 0,36 0,54 7,2 0,101 0,03 10,8

Temporal Fusion 
Transformer (TFT)

0,3 0,46 6,1 0,088 0,026 14,2

Informer 0,31 0,48 6,3 0,091 0,027 13,1

GCN‑BiLSTM‑Attention 
(Proposed)

0,26 0,4 5,3 0,079 0,021 12,0

Table 3 provides a comparative analysis of different machine learning and deep learning models applied 
to crop yield prediction. Traditional models such as CatBoost show acceptable performance but yield higher 
errors, with MAE of 0,46 tons/ha and MAPE of 9,1 %. More advanced sequence models like N-BEATS and Temporal 
Fusion Transformer (TFT) improve prediction accuracy, with TFT achieving an MAE of 0,30 tons/ha and the 
lowest calibration error (0,026). The Informer model delivers competitive accuracy while maintaining lower 
latency than TFT. The proposed GCN-BiLSTM-Attention model outperforms all baselines by achieving the best 
results across nearly all metrics, with the lowest MAE (0,26), RMSE (0,40), MAPE (5,3 %), and calibration error 
(0,021). Although its inference latency (12 ms) is slightly higher than CatBoost, the gain in predictive reliability 
and robustness justifies the trade-off. Overall, table 3 demonstrates that hybrid deep learning architectures 
integrating graph, temporal, and attention mechanisms offer superior yield forecasting capabilities in IoT-
enabled smart agriculture.

Table 4 compares state-of-the-art vision architectures for plant disease detection in IoT-enabled smart 
farming systems. The results show that EfficientNetV2-S provides strong baseline performance with 95,8 % 
accuracy and low latency (7,2 ms per image), making it efficient but slightly less robust. ConvNeXt-T improves 
both accuracy (96,3 %) and calibration, while ViT-B/16 and Swin-V2-T achieve higher predictive reliability with 
AUROC values above 0,99, although with increased inference latency (12,8 ms and 11,6 ms, respectively). The 
proposed Dual-Branch CNN+Transformer model outperforms all benchmarks by combining convolutional feature 
extraction with attention-based global context.
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Table 4. Comparative Evaluation of Vision Models for Crop Disease Detection

Model Accuracy 
(%) (↑)

F1 (%) 
(↑)

AUROC 
(↑)

AUPRC 
(↑) MCC (↑) ECE (↓) Latency (ms/

image) (↓)
EfficientNetV2‑S 95,8 95,2 0,985 0,982 0,914 0,031 7,2

ConvNeXt‑T 96,3 95,9 0,989 0,987 0,927 0,028 8,1

ViT‑B/16 96,9 96,6 0,992 0,99 0,938 0,024 12,8

Swin‑V2‑T 97,1 96,8 0,993 0,991 0,941 0,023 11,6

Dual‑Branch CNN + Transformer 
(Proposed)

97,9 97,6 0,996 0,995 0,954 0,018 10,1

It achieves the highest accuracy (97,9 %), F1-score (97,6 %), AUROC (0,996), and MCC (0,954), while also 
maintaining good efficiency with latency (10,1 ms) lower than other transformer-based methods. Its low calibration 
error (ECE = 0,018) further confirms its reliability under uncertain conditions. Overall, table 4 demonstrates 
that hybrid architectures, which integrate both CNN-based local feature learning and transformer-based global 
context modeling, provide the most balanced trade-off between accuracy, calibration, and inference speed in 
disease classification tasks for smart agriculture.

Figure 7. Cross-Domain Robustness Evaluation of the Proposed Model Across Diverse Scenarios

Figure 7 illustrates the robustness of the proposed model across different evaluation scenarios, complementing 
the results presented in table 7. The grouped bar chart compares Accuracy and F1 Score under in-domain, 
cross-season, cross-site, noisy, and missing-data conditions. The model maintains high performance in the in-
domain case (≈98 % accuracy and ≈97,6 % F1), while showing only modest drops in cross-season and cross-site 
settings. Under noisy conditions (+3dB), performance remains above 95 %, and even with 10–30 % missing data, 
the system sustains competitive accuracy and F1 scores. 

Figure 8. Comparison of Segmentation Outputs Across Models for Crop Disease Lesion Detection
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Figure 7 demonstrates that the proposed framework is resilient to domain shifts, noise, and incomplete 
data, confirming its practical reliability for real-world IoT-based smart farming.

Figure 8 presents a side-by-side visualization of segmentation masks produced by different models, compared 
with the ground truth. The columns show the outputs from U-Net, DeepLabV3+, SegFormer-B0, and the proposed 
Hybrid Mask (CNN+Transformer) model. While U-Net and DeepLabV3+ provide reasonable approximations of 
lesion areas, their outputs appear less consistent at the boundaries. SegFormer-B0 demonstrates improved 
accuracy with smoother regions, but the Hybrid Mask model most closely aligns with the ground truth, showing 
clearer boundary definition and reduced noise. This confirms the findings in table 5, where the Hybrid Mask 
achieved the highest mIoU and Dice scores, validating its effectiveness for precise lesion segmentation in smart 
agriculture applications.

Table 5. Comparison of Segmentation Models for Crop Disease Lesion Detection

Model mIoU (↑) Dice (↑) Boundary F1 
(↑)

Params (M) 
(↓)

Latency (ms/
image) (↓)

U‑Net 0,842 0,883 0,812 7,8 12,3

DeepLabV3+ 0,871 0,904 0,846 41,2 18,7

SegFormer‑B0 0,884 0,913 0,858 13,1 15,2

Swin‑UNETR 0,891 0,919 0,866 27,5 17,9

Hybrid Mask (CNN+Transformer, 
Proposed)

0,907 0,932 0,884 18,4 14,1

Table 5 presents a comparison of different segmentation models used for identifying crop disease lesions 
at the pixel level. Classical architectures such as U-Net remain lightweight and efficient, requiring only 7,8M 
parameters and offering low latency (12,3 ms/image). However, its segmentation accuracy is relatively lower, 
with mIoU of 0,842 and Dice of 0,883. DeepLabV3+ improves performance significantly (mIoU = 0,871, Dice = 
0,904), but at the cost of higher complexity, requiring 41,2M parameters and the slowest inference time (18,7 
ms/image). More recent transformer-based approaches such as SegFormer-B0 and Swin-UNETR achieve a better 
balance of accuracy and efficiency. SegFormer-B0 offers competitive accuracy (mIoU = 0,884, Dice = 0,913) with 
relatively fewer parameters (13,1M), while Swin-UNETR pushes the accuracy higher (mIoU = 0,891, Dice = 0,919) 
but demands more computational resources. The proposed Hybrid Mask model (CNN+Transformer) achieves the 
best overall performance, combining strong local feature extraction with global context awareness. It delivers 
the highest mIoU (0,907), Dice (0,932), and Boundary F1 (0,884) scores, while keeping parameter count (18,4M) 
and latency (14,1 ms/image) at a manageable level. This demonstrates its suitability for real-time, high-
precision disease segmentation in smart agricultural systems.

Figure 9. Impact of IoT Sensor Density and Iterations on Energy Consumption and Predictive Accuracy
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Figure 9 depicts the trade-off between predictive accuracy (F1 %) and energy consumption (J per inference) 
as IoT sensor density and algorithm iterations increase. The blue curve shows that accuracy improves steadily 
from about 92 % at low sensor density to nearly 97 % at high density/iterations. However, the red curve 
indicates that energy consumption also rises, from 0,4 J to almost 1,0 J per inference over the same range. 
This figure highlights the balance between accuracy gains and energy efficiency, showing that while additional 
sensors and iterations enhance prediction performance, they also increase energy costs, underscoring the need 
for optimization strategies in large-scale IoT-enabled smart farming.

Table 6. Ablation Study of System Components and Model Compression for Smart Farming

Configuration Detection F1 
(%) (↑)

Yield RMSE 
(tons/ha) (↓)

Latency 
(ms) (↓)

Energy/Inference 
(J) (↓)

Base (No Cleaning, 
Full‑Precision Models)

93,1 0,54 16,4 0,96

+ FPKM Cleaning 95,0 0,46 15,1 0,88

+ Edge Preproc 95,9 0,43 12,7 0,73

+ INT8 Quantization 95,6 0,44 9,3 0,51

+ 30 % Pruning 95,2 0,45 8,7 0,47

Full (Cleaning + Edge + 
Quant + Distillation)

96,8 0,4 8,9 0,46

Table 6 illustrates the contribution of different components and optimizations to the overall performance of 
the IoT–ML decision-making framework. The base configuration without preprocessing or compression achieves 
modest detection accuracy (F1 = 93,1 %) but suffers from higher yield error (RMSE = 0,54 tons/ha), long 
latency (16,4 ms), and higher energy consumption per inference (0,96 J). Introducing FPKM-based data cleaning 
markedly improves accuracy, boosting F1 to 95,0 % and reducing RMSE to 0,46, while modestly reducing latency 
and energy use. Adding edge preprocessing further enhances performance, achieving better accuracy (95,9 
%) and significantly reducing latency (12,7 ms) and energy (0,73 J). Compression strategies, including INT8 
quantization and 30 % pruning, demonstrate strong efficiency gains. INT8 quantization cuts inference latency to 
9,3 ms and energy to 0,51 J with only minor accuracy trade-offs, while pruning yields even lower latency (8,7 
ms) and energy (0,47 J). The full configuration, combining cleaning, edge preprocessing, quantization, pruning, 
and knowledge distillation, delivers the best overall balance. It achieves the highest detection accuracy (F1 = 
96,8 %), lowest RMSE (0,40 tons/ha), and maintains efficiency with latency under 9 ms and energy use of just 
0,46 J per inference. This shows that combining advanced preprocessing with lightweight model compression 
strategies results in a highly accurate, energy-efficient, and real-time deployable system for IoT-enabled smart 
farming.

CONCLUSIONS
This study presented an integrated IoT-enabled machine learning framework for intelligent greenhouse 

management, crop yield prediction, and disease detection. By combining advanced data cleaning methods, 
reinforcement learning controllers, and hybrid deep learning architectures, the system achieved significant 
improvements in prediction accuracy, latency reduction, and energy efficiency. Results confirmed the 
superiority of the proposed models over traditional approaches, with detection F1 scores approaching 97 
%, yield prediction errors reduced to 0,40 tons/ha, and disease classification accuracy surpassing 97,5 %. 
Importantly, the framework demonstrated robustness under noisy, missing-data, and cross-domain conditions, 
highlighting its potential for real-world deployment in diverse agricultural settings. Its sustainability benefits, 
including reduced resource consumption and improved crop resilience, further reinforce its relevance to global 
food security challenges. In conclusion, the integration of IoT with adaptive and hybrid AI techniques provides 
a transformative pathway for Agriculture 4.0, positioning smart farming as a cornerstone of sustainable and 
resilient food systems.
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