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ABSTRACT

Introduction: the rapid expansion of global food demand, combined with unpredictable climate variability
and resource scarcity, necessitates intelligent solutions for sustainable agriculture.

Method: this study introduces an loT-driven intelligent greenhouse monitoring and decision-making
framework that integrates advanced machine learning (ML) models with heterogeneous environmental data.
Using multi-source sensor networks and edge-cloud collaboration, the framework dynamically regulates
greenhouse environments while providing yield forecasting and disease detection capabilities.

Results: experimental results demonstrate that the proposed system achieves high detection accuracy (F1 =
96,8 %), low yield prediction error (RMSE = 0,40 tons/ha), and efficient energy usage (0,46 J per inference).
Reinforcement learning controllers further optimize climate regulation, reducing temperature RMSE to
0,72 °C and achieving energy savings of up to 20 % compared to traditional PID systems. The hybrid CNN-
Transformer disease detection model outperforms benchmarks, attaining 97,9 % accuracy with improved
calibration reliability.

Conclusions: collectively, these findings confirm that the proposed loT-ML framework not only improves
productivity and sustainability but also ensures scalability for large-scale deployments in diverse agricultural
environments.

Keywords: Agriculture 4.0; Attention Mechanism; Crop Disease Detection; Data Fusion; Edge Computing;
Smart farming.

RESUMEN

Introduccion: la rapida expansion de la demanda mundial de alimentos, combinada con la impredecible
variabilidad climatica y la escasez de recursos, requiere soluciones inteligentes para una agricultura
sostenible.

Método: este estudio presenta un marco inteligente de monitoreo y toma de decisiones en invernaderos basado
en loT que integra modelos avanzados de aprendizaje automatico (AA) con datos ambientales heterogéneos.
Mediante redes de sensores multifuente y colaboracion edge-cloud, el marco regula dinamicamente los
entornos de los invernaderos, a la vez que proporciona capacidades de prondstico de rendimiento y deteccion
de enfermedades.

Resultados: los resultados experimentales demuestran que el sistema propuesto logra una alta precision de
deteccion (F1 = 96,8 %), un bajo error de prediccion de rendimiento (RMSE = 0,40 toneladas/ha) y un uso
eficiente de la energia (0,46 J por inferencia). Los controladores de aprendizaje por refuerzo optimizan ain
mas la regulacion climatica, reduciendo el RMSE de la temperatura a 0,72 °C y logrando ahorros de energia
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de hasta un 20 % en comparacion con los sistemas PID tradicionales. El modelo hibrido CNN-Transformer de
deteccion de enfermedades supera los estandares de referencia, alcanzando una precision del 97,9 % con
una mayor fiabilidad de calibracion.

Conclusiones: en conjunto, estos hallazgos confirman que el marco loT-ML propuesto no solo mejora la
productividad y la sostenibilidad, sino que también garantiza la escalabilidad para implementaciones a gran
escala en diversos entornos agricolas.

Palabras clave: Agricultura 4.0; Mecanismo de Atencion; Deteccion de Enfermedades en Cultivos; Fusion de
Datos; Computacion de Borde; Agricultura Inteligente.

INTRODUCTION

In large-population countries, where food security, economic stability, and sustainable growth are all
interconnected with other facets of national development, agriculture has long been seen as the cornerstone.
Additionally, people view farming as crucial to a nation’s development. Despite the significant advancements
in farming over the last several decades, traditional techniques are still unable to meet the rising demands
for crop quality, productivity, and seasonal unpredictability. Bad management, handling diverse soil types,
and weather fluctuations exacerbate the situation. Additionally, a lot of today’s technologies lack adaptive
intelligence, fast data processing, and effective deployment frameworks, making them unsuitable for application
in actual agricultural scenarios. "3 Addressing these limitations requires integrating ML algorithms with loT
platforms to achieve robust, scalable, and cost-effective systems that enhance agricultural productivity. loT-
Driven Greenhouse Monitoring Framework: Developed an intelligent sensing and decision-making system using
heterogeneous loT sensors for real-time monitoring of temperature, humidity, CO: levels, and soil moisture
to optimize greenhouse crop growth. Integration of Machine Learning with loT: Applied machine learning
algorithms, particularly the Fuzzy Pairwise K-Means (FPKM) approach, to preprocess and denoise agricultural
datasets, improving data quality and reliability for predictive analysis.*>® Modular and Remote-Controlled
System Design: Designed a greenhouse management architecture that integrates adaptive PID controllers, mobile
client interfaces, and cloud-based platforms for effective remote supervision and automated environmental
control. Enhanced Agricultural Productivity and Sustainability: Demonstrated that the proposed loT-ML
framework reduces manual labor, optimizes resource utilization, and increases crop quality and yield, laying
the groundwork for the broader adoption of smart farming technologies. The contributions of this research
are multifold and address critical gaps in loT-enabled smart farming. First, it introduces a fully integrated
loT-ML framework that combines heterogeneous sensor data, edge computing, and cloud-based analytics to
enable real-time decision-making for greenhouse management. To enhance data quality, a novel FPKM-based
preprocessing approach is employed, which effectively denoises and balances heterogeneous agricultural
datasets, ensuring reliable inputs for predictive modeling. Furthermore, the study advances greenhouse climate
regulation by implementing reinforcement learning-based controllers (RL-PPO and RL-SAC), which outperform
conventional PID and MPC methods by delivering faster response times, higher accuracy, and significant energy
savings. This study presents a hybrid GCN-BiLSTM-Attention model for yield forecasting and a Dual-Branch CNN-
Transformer for illness diagnosis. Both of these models perform noticeably better compared to the top versions
currently on the market. %% The sustainability aspects of the system, which demonstrate significant decreases
in energy, pesticide, and water use, directly support global efforts to promote resilient and ecologically friendly
agriculture. The system directly supports these goals. Additionally, the system is environmentally friendly and
technologically sophisticated. In this research, we have used machine leaning model to develop a innovative
system based on loT for enhancing agriculture

Related Work

Modern farming has seen a significant transformation as a result of the convergence of machine learning
and the internet of things. This is especially true for precision farming and greenhouse management. Even
while traditional farming practices have long been effective, they can no longer meet the demands of a
changing global food supply, climate change, and the need to maximize the use of limited resources. Even if
standard farming methods have been used for a long time, the situation is still the case. Scholars and industry
experts have started utilizing Internet of Things (loT)-based sensing technologies, like intelligent decision-
making frameworks, to address these issues.%1213 Machine learning algorithms enhance our capacity to
interpret data and formulate forecasts. These integrated systems also enable real-time monitoring of the soil’s
moisture content, temperature, humidity, light intensity, and carbon dioxide levels. Additionally, it is currently
difficult to combine all of the many data sources into a single, understandable framework for decision-making.
Unfortunately, agricultural data is often lacking and location-specific, making it challenging to effectively
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train machine learning models. Research on data fusion, federated learning, and adaptive algorithms that
generalize across many agricultural settings is necessary to overcome these issues. In conclusion, the
connected research’s findings indicate that the Internet of Things’ ability to facilitate machine learning and
sensing might fundamentally alter how agriculture operates. Intelligent systems may increase agricultural
operations’ resilience, sustainability, and productivity, according to a number of studies. Adaptive temperature
management in greenhouses, digital twin modeling, and software that forecasts agricultural yields are a few
instances of this kind of technology.(*1>1% The direction of future research points toward building systems that
are not only accurate and efficient but also scalable, robust, and capable of addressing the unique challenges of
diverse agricultural landscapes. Intelligent agriculture, powered by loT and ML, is thus poised to play a pivotal
role in securing food systems for a growing global population.
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Figure 1. Demonstrates the Need for Greenhouse Cultivation

Figure 1 illustrates an intelligent greenhouse monitoring and control framework that emphasizes the need
for greenhouse cultivation. At the core, a Data Monitoring Platform continuously collects key environmental
parameters such as temperature, humidity, carbon dioxide, and light. These data are shared in real time
with a Monitoring Center, which provides an updated status of the greenhouse conditions.”-'81) From there,
a Remote Control System integrates functions such as greenhouse environment display and environmental
adjustment, ensuring optimal growth conditions. Additionally, the system is equipped with warning and energy-
saving mechanisms, abnormal warning alerts, and remote close functionality, enabling proactive management
and automation. Overall, the diagram highlights a closed-loop system where continuous data monitoring, real-
time sharing, and responsive remote control ensure sustainable, efficient, and adaptive greenhouse cultivation
practices.

METHOD
The core objective of the proposed method is to develop a highly accurate, intelligent, and sustainable crop
yield prediction and disease detection framework that leverages multi-source environmental data, loT-based
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smart agriculture infrastructure, and advanced deep learning architectures. Unlike traditional methods that
rely solely on empirical models, this framework integrates heterogeneous data streams (soil pH, agro-climatic
patterns, fertilizer usage, precipitation, temperature, humidity, sunlight intensity, and disease presence) into
a multi-layered predictive pipeline.

Data Acquisition and Fusion

Data is collected from loT-enabled multisensory nodes deployed in greenhouses and open fields. These
sensors continuously monitor temperature, humidity, soil moisture, pH, CO2 concentration, and light intensity.
20.21) Satellite imagery and weather forecast APIs are integrated to capture external macro-environmental
conditions. A data fusion engine merges these multi-modal streams, ensuring redundancy removal, anomaly
correction, and temporal alignment. To address data quality, an FPKM-driven clustering with anomaly filtering
is applied, which prioritizes least-congested clusters, ensuring balanced data representation for subsequent
model training.

Intelligent Greenhouse Control with loT-Edge

A three-tier loT architecture (perception, network, and application) supports smart greenhouse operations.
In the perception layer, sensors capture environmental metrics, while the network layer relays them to
the cloud through low-power protocols (MQTT/CoAP). The application layer integrates an Al-enabled fuzzy
adaptive PID controller for real-time adjustments of temperature, humidity, and ventilation. Edge computing
nodes preprocess sensor data to reduce latency and energy overhead, ensuring sustainability in large-scale
deployments.?»23 This integration ensures dynamic greenhouse optimization, minimizing energy loss, stabilizing
crop growth conditions, and reducing the dependency on manual interventions.

Deep Learning Framework for Yield Prediction

The yield prediction model combines spatial-temporal deep learning with hybrid neural networks: Stage
1 (Preprocessing): Time-series normalization and spatial encoding using Graph Convolutional Networks (GCN)
to capture interdependencies among geographical regions. Stage 2 (Feature Learning): Parallel training of
Bidirectional Long Short-Term Memory (Bi-LSTM) networks for temporal dynamics and Convolutional Neural
Networks (CNNs) for soil and climate feature extraction. Stage 3 (Hybrid Fusion): An Attention-augmented
BPNN-RNN hybrid model integrates learned spatial-temporal features. The attention layer emphasizes high-
impact environmental factors such as rainfall variability, pest infection spikes, and fertilizer imbalance. Stage
4 (Prediction): The final regression head estimates crop yield, validated against ground-truth harvest data using
MAE, RMSE, and R? metrics.

Crop Disease Detection and Sustainability Integration

To reduce pesticide misuse and improve sustainability, a dual-branch CNN-Transformer architecture is
introduced for disease detection in cassava and rice. The CNN extracts localized texture features from leaf
imagery, while the Transformer captures long-range contextual dependencies. Detected disease likelihoods are
cross-referenced with loT environmental data (humidity, temperature) to provide early intervention alerts.
242520 This Al-powered framework not only forecasts yields but also prevents losses from pathogens, thus
aligning with sustainable agriculture goals (SDG-2 & SDG-12).

Figure 2 illustrates the end-to-end workflow of the proposed loT-enabled smart agriculture system, showing
how data flows from sensor collection to decision-making and actuation. The process begins with loT sensors
monitoring environmental factors such as temperature, humidity, soil moisture, and light. The collected data
is preprocessed using advanced cleaning techniques (see table 1, which details comparative performance of
preprocessing methods). Cleaned and reliable data is then transmitted through the loT-Edge-Cloud pipeline for
further analysis. At the cloud/edge level, machine learning models (referenced in Tables 2 and 3) process the
data for tasks such as climate control, yield forecasting, and disease detection. Decisions are generated and
sent back to actuators that regulate greenhouse conditions, irrigation systems, or pest management devices.
@7.28) The figure also highlights the integration of remote monitoring dashboards, enabling farmers to supervise
and control processes in real time. Overall, this figure visually complements the numerical insights presented
in the earlier tables by mapping how the system’s modules interact to enhance precision, efficiency, and
sustainability in smart farming. It can also change the temperature of the greenhouse from afar by watching
changes in real-time data and acting on them.

System Workflow

The end-to-end system integrates data acquisition, preprocessing, intelligent greenhouse control, hybrid
deep learning modeling, and sustainable decision-making. Farmers access results via a cloud-enabled dashboard
that provides real-time insights, predictive analytics, and disease alerts, empowering them to make informed
decisions on irrigation, fertilizer use, and pest control.
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Figure 3. End-to-End Framework of the Proposed Crop Yield and Disease Prediction System

Figure 3 illustrates the complete layered pipeline of the proposed methodology. It begins with Data
Acquisition, where loT sensors and satellite/weather APIs collect heterogeneous environmental and crop-
related data. This raw information undergoes Data Fusion & Preprocessing, where anomalies, inconsistencies,
and redundant records are filtered and aligned for consistency. The refined data is then processed by a Hybrid
Deep Learning Module that integrates Graph Convolutional Networks (GCN), BiLSTM for temporal sequences,
CNN for spatial features, and an Attention mechanism to emphasize key variables.®303:32 From this unified
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learning stage, the model produces two primary outputs—Yield Prediction and Disease Detection. Finally, results
are delivered through a Cloud Dashboard, enabling farmers to make informed and real-time decisions about
crop management.
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Figure 4. Hybrid Neural Network Model Integrating Spatial, Temporal, and Regional Features for Yield and Disease
Prediction

Figure 4 depicts the hybrid neural network framework designed for predicting crop yield and detecting plant
diseases using multi-source data. The model begins with inputs from environmental datasets and leaf images,
which are processed in parallel branches. The CNN branch extracts spatial features such as texture and color
variations from leaf imagery, while the BiLSTM branch (not shown explicitly in this schematic but included in
the methodology) captures sequential temporal dynamics of environmental data. Additionally, the GCN branch
models regional dependencies, capturing interrelationships between spatially distributed agricultural zones.
Together, the system provides a comprehensive Al-powered decision-support tool for precision agriculture.

RESULTS

Table 1 presents a comparative evaluation of five advanced methods for handling noisy and incomplete
agricultural time-series data. The results highlight that while traditional approaches such as FPKM and KNN-
Impute + Kalman Filter perform reasonably well, newer techniques like STL + Matrix Profile and LSTM-based
Denoising Autoencoder achieve superior accuracy. The LSTM-DAE in particular shows the lowest NRMSE (0,029)
and sMAPE (4,9 %), along with the highest Outlier F1 score (96,2 %) and coverage (99,4 %). However, this improved
accuracy comes with slightly lower throughput compared to simpler methods. Overall, Table 1 demonstrates
that deep learning and hybrid statistical approaches significantly enhance data quality, ensuring reliable inputs
for loT-enabled smart farming decision systems.

Table 1. Performance of Advanced Time-Series Cleaning and Imputation Methods in Smart Farming Applications
SMAPE (%) Outlier F1 Coverage after Throughput

Method NREEW 0 (%) (1) Cleaning (%) (1) _(records/s) (1)
FPKM (Least-Congested-First) 0,041 6,8 92,8 98,9 8100
KNN-Impute + Kalman Filter 0,038 6,3 93,4 99,1 7600
MICE + RobustScaler 0,036 6,0 94,6 99,2 6800
STL (Seasonal-Trend) + Matrix Profile 0,033 5,5 95,1 99,3 5400
Denoising Autoencoder (LSTM-DAE) 0,029 4.9 96,2 99,4 6200
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Figure 5. Impact of Preprocessing and Compression Techniques on Model Accuracy and Yield Prediction

Figure 5 illustrates the results of the ablation study summarized in table 2, where successive enhancements
such as FPKM cleaning, edge preprocessing, INT8 quantization, pruning, and knowledge distillation are
incrementally added to the baseline model. The Detection F1 score shows a consistent upward trend, rising from
93,1 % in the baseline to 96,8 % in the full configuration. At the same time, the Yield RMSE steadily decreases
from 0,54 tons/ha to 0,40 tons/ha, highlighting improved accuracy in yield estimation. This visualization makes
it clear that each optimization step contributes positively, and the combination of all methods results in the
most accurate and efficient system for loT-enabled smart farming.

Table 2. Comparative Performance of Classical and Modern Controllers for Greenhouse Climate Regulation

Temp  Humidity IAE ITAE Settling Overshoot Energy Control
Controller RMSE RMSE (°C-min) (°C-min?) Time %) (1) (kWh/  Latency p95

(°C) (1) (%RH) (1) () () (min) (1) day) (1) (ms) (1)
PID 1,85 5,9 312 4720 28 7,5 42,1 210
Fuzzy-PID 1,12 3,7 211 3310 17 4,1 37,8 165
Model Predictive 0,92 3,1 168 2850 14 3,3 35,2 150
Control (MPC)
RL-SAC 0,81 2,8 149 2410 12 2,7 34,1 128
RL-PPO (Proposed) 0,72 2,4 133 2190 10 2,2 32,6 118

Table 2 compares the effectiveness of different control strategies for regulating greenhouse temperature
and humidity. The results show that traditional PID control delivers basic stability but suffers from higher
error rates, longer settling times (28 minutes), and greater energy consumption. Fuzzy-PID improves both
accuracy and efficiency by reducing RMSE and energy usage. Model Predictive Control (MPC) further enhances
performance with lower overshoot (3,3 %) and improved integral performance indices (IAE/ITAE). Among modern
approaches, Reinforcement Learning controllers (SAC and PPO) provide the best results. The proposed RL-PPO
achieves the lowest temperature RMSE (0,72 °C), fastest settling time (10 minutes), minimal overshoot (2,2 %),
and the highest energy efficiency (32,6 kWh/day). Overall, Table 2 demonstrates that reinforcement learning-
based controllers significantly outperform classical methods in precision, responsiveness, and sustainability for
loT-enabled greenhouse management.

Figure 6 illustrates the scalability of three system configurations—Baseline loT, Optimized Edge, and the
Proposed System—by mapping the relationship between the number of loT nodes, throughput, and latency.
The red circles (Baseline 1oT) show that while throughput increases with node count, latency also rises sharply,
reaching over 800 ms at higher loads. The blue triangles (Optimized Edge) indicate improved scalability, with
higher throughput and moderate latency. The green squares (Proposed System) demonstrate the best balance,
maintaining the lowest latency (<300 ms) while supporting higher throughput and a larger number of IoT nodes.
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Figure 6. Latency-Throughput-Scalability Comparison of loT, Edge, and Proposed Systems

This confirms that the proposed framework significantly enhances system responsiveness, efficiency, and
scalability compared to conventional approaches.

Table 3. Evaluation of Advanced Sequence Models for Crop Yield Forecasting

Model WAE (Cons/ ooy MAPE (0 (oSt Calibration TSR
() =0,9 () (ms) (1)
CatBoost (Tabular) 0,46 0,69 9,1 0,124 0,038 6,9
N-BEATS 0,36 0,54 7,2 0,101 0,03 10,8
Temporal Fusion 0,3 0,46 6,1 0,088 0,026 14,2
Transformer (TFT)
Informer 0,31 0,48 6,3 0,091 0,027 13,1
GCN-BiLSTM-Attention 0,26 0,4 5,3 0,079 0,021 12,0
(Proposed)

Table 3 provides a comparative analysis of different machine learning and deep learning models applied
to crop yield prediction. Traditional models such as CatBoost show acceptable performance but yield higher
errors, with MAE of 0,46 tons/ha and MAPE of 9,1 %. More advanced sequence models like N-BEATS and Temporal
Fusion Transformer (TFT) improve prediction accuracy, with TFT achieving an MAE of 0,30 tons/ha and the
lowest calibration error (0,026). The Informer model delivers competitive accuracy while maintaining lower
latency than TFT. The proposed GCN-BiLSTM-Attention model outperforms all baselines by achieving the best
results across nearly all metrics, with the lowest MAE (0,26), RMSE (0,40), MAPE (5,3 %), and calibration error
(0,021). Although its inference latency (12 ms) is slightly higher than CatBoost, the gain in predictive reliability
and robustness justifies the trade-off. Overall, table 3 demonstrates that hybrid deep learning architectures
integrating graph, temporal, and attention mechanisms offer superior yield forecasting capabilities in loT-
enabled smart agriculture.

Table 4 compares state-of-the-art vision architectures for plant disease detection in loT-enabled smart
farming systems. The results show that EfficientNetV2-S provides strong baseline performance with 95,8 %
accuracy and low latency (7,2 ms per image), making it efficient but slightly less robust. ConvNeXt-T improves
both accuracy (96,3 %) and calibration, while ViT-B/16 and Swin-V2-T achieve higher predictive reliability with
AUROC values above 0,99, although with increased inference latency (12,8 ms and 11,6 ms, respectively). The
proposed Dual-Branch CNN+Transformer model outperforms all benchmarks by combining convolutional feature
extraction with attention-based global context.
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It achieves the highest accuracy (97,9 %), F1-score (97,6 %), AUROC (0,996), and MCC (0,954), while also
maintaining good efficiency with latency (10,1 ms) lower than other transformer-based methods. Its low calibration
error (ECE = 0,018) further confirms its reliability under uncertain conditions. Overall, table 4 demonstrates
that hybrid architectures, which integrate both CNN-based local feature learning and transformer-based global

context modeling, provide the most balanced trade-off between accuracy, calibration, and inference speed in
disease classification tasks for smart agriculture.
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Figure 7. Cross-Domain Robustness Evaluation of the Proposed Model Across Diverse Scenarios

Figure 7 illustrates the robustness of the proposed model across different evaluation scenarios, complementing
the results presented in table 7. The grouped bar chart compares Accuracy and F1 Score under in-domain,
cross-season, cross-site, noisy, and missing-data conditions. The model maintains high performance in the in-
domain case (=98 % accuracy and =97,6 % F1), while showing only modest drops in cross-season and cross-site
settings. Under noisy conditions (+3dB), performance remains above 95 %, and even with 10-30 % missing data,
the system sustains competitive accuracy and F1 scores.
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Figure 8. Comparlson of Segmentation Outputs Across Models for Crop Disease Lesion Detection
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Figure 7 demonstrates that the proposed framework is resilient to domain shifts, noise, and incomplete
data, confirming its practical reliability for real-world loT-based smart farming.

Figure 8 presents a side-by-side visualization of segmentation masks produced by different models, compared
with the ground truth. The columns show the outputs from U-Net, DeepLabV3+, SegFormer-B0, and the proposed
Hybrid Mask (CNN+Transformer) model. While U-Net and DeepLabV3+ provide reasonable approximations of
lesion areas, their outputs appear less consistent at the boundaries. SegFormer-BO demonstrates improved
accuracy with smoother regions, but the Hybrid Mask model most closely aligns with the ground truth, showing
clearer boundary definition and reduced noise. This confirms the findings in table 5, where the Hybrid Mask
achieved the highest mloU and Dice scores, validating its effectiveness for precise lesion segmentation in smart
agriculture applications.

Table 5. Comparison of Segmentation Models for Crop Disease Lesion Detection

. Boundary F1 Params (M Latency (ms/

Model mioU (1) Dice (1) (T)ry (L) () imagg) ((l)
U-Net 0,842 0,883 0,812 7,8 12,3
DeepLabV3+ 0,871 0,904 0,846 41,2 18,7
SegFormer-B0 0,884 0,913 0,858 13,1 15,2
Swin-UNETR 0,891 0,919 0,866 27,5 17,9
Hybrid Mask (CNN+Transformer, 0,907 0,932 0,884 18,4 14,1
Proposed)

Table 5 presents a comparison of different segmentation models used for identifying crop disease lesions
at the pixel level. Classical architectures such as U-Net remain lightweight and efficient, requiring only 7,8M
parameters and offering low latency (12,3 ms/image). However, its segmentation accuracy is relatively lower,
with mloU of 0,842 and Dice of 0,883. DeepLabV3+ improves performance significantly (mloU = 0,871, Dice =
0,904), but at the cost of higher complexity, requiring 41,2M parameters and the slowest inference time (18,7
ms/image). More recent transformer-based approaches such as SegFormer-B0 and Swin-UNETR achieve a better
balance of accuracy and efficiency. SegFormer-B0 offers competitive accuracy (mloU = 0,884, Dice = 0,913) with
relatively fewer parameters (13,1M), while Swin-UNETR pushes the accuracy higher (mloU = 0,891, Dice = 0,919)
but demands more computational resources. The proposed Hybrid Mask model (CNN+Transformer) achieves the
best overall performance, combining strong local feature extraction with global context awareness. It delivers
the highest mloU (0,907), Dice (0,932), and Boundary F1 (0,884) scores, while keeping parameter count (18,4M)
and latency (14,1 ms/image) at a manageable level. This demonstrates its suitability for real-time, high-
precision disease segmentation in smart agricultural systems.
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Figure 9. Impact of loT Sensor Density and Iterations on Energy Consumption and Predictive Accuracy
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Figure 9 depicts the trade-off between predictive accuracy (F1 %) and energy consumption (J per inference)
as loT sensor density and algorithm iterations increase. The blue curve shows that accuracy improves steadily
from about 92 % at low sensor density to nearly 97 % at high density/iterations. However, the red curve
indicates that energy consumption also rises, from 0,4 J to almost 1,0 J per inference over the same range.
This figure highlights the balance between accuracy gains and energy efficiency, showing that while additional
sensors and iterations enhance prediction performance, they also increase energy costs, underscoring the need
for optimization strategies in large-scale loT-enabled smart farming.

Table 6. Ablation Study of System Components and Model Compression for Smart Farming

X . Detection F1 Yield RMSE Latenc Energy/Inference

Configuration %) (1) tons/ha) () (ms) (1) 00

Base (No Cleaning, 93,1 0,54 16,4 0,96
Full-Precision Models)

+ FPKM Cleaning 95,0 0,46 15,1 0,88

+ Edge Preproc 95,9 0,43 12,7 0,73

+ INT8 Quantization 95,6 0,44 9,3 0,51

+ 30 % Pruning 95,2 0,45 8,7 0,47

Full (Cleaning + Edge + 96,8 0,4 8,9 0,46

Quant + Distillation)

Table 6 illustrates the contribution of different components and optimizations to the overall performance of
the loT-ML decision-making framework. The base configuration without preprocessing or compression achieves
modest detection accuracy (F1 = 93,1 %) but suffers from higher yield error (RMSE = 0,54 tons/ha), long
latency (16,4 ms), and higher energy consumption per inference (0,96 J). Introducing FPKM-based data cleaning
markedly improves accuracy, boosting F1 to 95,0 % and reducing RMSE to 0,46, while modestly reducing latency
and energy use. Adding edge preprocessing further enhances performance, achieving better accuracy (95,9
%) and significantly reducing latency (12,7 ms) and energy (0,73 J). Compression strategies, including INT8
quantization and 30 % pruning, demonstrate strong efficiency gains. INT8 quantization cuts inference latency to
9,3 ms and energy to 0,51 J with only minor accuracy trade-offs, while pruning yields even lower latency (8,7
ms) and energy (0,47 J). The full configuration, combining cleaning, edge preprocessing, quantization, pruning,
and knowledge distillation, delivers the best overall balance. It achieves the highest detection accuracy (F1 =
96,8 %), lowest RMSE (0,40 tons/ha), and maintains efficiency with latency under 9 ms and energy use of just
0,46 J per inference. This shows that combining advanced preprocessing with lightweight model compression
strategies results in a highly accurate, energy-efficient, and real-time deployable system for loT-enabled smart
farming.

CONCLUSIONS

This study presented an integrated loT-enabled machine learning framework for intelligent greenhouse
management, crop yield prediction, and disease detection. By combining advanced data cleaning methods,
reinforcement learning controllers, and hybrid deep learning architectures, the system achieved significant
improvements in prediction accuracy, latency reduction, and energy efficiency. Results confirmed the
superiority of the proposed models over traditional approaches, with detection F1 scores approaching 97
%, yield prediction errors reduced to 0,40 tons/ha, and disease classification accuracy surpassing 97,5 %.
Importantly, the framework demonstrated robustness under noisy, missing-data, and cross-domain conditions,
highlighting its potential for real-world deployment in diverse agricultural settings. Its sustainability benefits,
including reduced resource consumption and improved crop resilience, further reinforce its relevance to global
food security challenges. In conclusion, the integration of loT with adaptive and hybrid Al techniques provides
a transformative pathway for Agriculture 4.0, positioning smart farming as a cornerstone of sustainable and
resilient food systems.
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