
Un estudio detallado sobre la aplicación de nuevos enfoques en el Juego de la
Vida

Data and Metadata. 2023; 2:95
doi: 10.56294/dm202395

ORIGINAL

A detailed study on implementing new approaches in the Game of Life

Serafeim A. Triantafyllou1

ABSTRACT

In 1952, Alan Turing who is considered as a father of Computer Science, based on his previous scientific
research on the theory of computation, he emphasized how important is the analysis of pattern formation
in nature and developed a theory. In his theory, he described specific patterns in nature that could be
formed from basic chemical systems. Turing in his previous studies in the theory of computation, he had
constantly worked on symmetrical patterns that could be formed simultaneously and realized the necessity
for further analysis of pattern formation in biological problems. However, it was until the late 1960s, when
John Conway was the first to introduce the “Game of Life”, an innovative mathematical game based on
cellular automata, having a purpose to utilize the fundamental entities, called as cells, in two possible states
described as “dead” or “alive”. This paper tries to contribute to a better understanding of the “Game of
Life” by implementing algorithmic approaches of this problem in PASCAL and Python programming languages.
Also, inside the paper numerous variations and extensions of the Conway’s Game of Life are proposed that
introduce new ideas and concepts. Furthermore, several machine learning algorithms to learn patterns from
large sets of Game of Life simulations and generate new rules or strategies are described in detail.

Keywords: Game of Life; Cellular Automata; Algorithms.

RESUMEN

En 1952, Alan Turing, considerado el padre de la informática, basándose en su investigación científica previa
sobre la teoría de la computación, destacó la importancia del análisis de la formación de patrones en
la naturaleza y desarrolló una teoría. En su teoría, describió patrones específicos en la naturaleza que
podían formarse a partir de sistemas químicos básicos. Turing, en sus estudios previos sobre la teoría
de la computación, había trabajado constantemente sobre patrones simétricos que podían formarse
simultáneamente y se dio cuenta de la necesidad de profundizar en el análisis de la formación de patrones en
los problemas biológicos. Sin embargo, no fue hasta finales de la década de 1960, cuando John Conway fue el
primero en introducir el “Juego de la Vida”, un innovador juego matemático basado en autómatas celulares,
con el propósito de utilizar las entidades fundamentales, llamadas como células, en dos posibles estados
descritos como “muerto” o “vivo”. Este trabajo trata de contribuir a una mejor comprensión del “Juego
de la Vida” mediante la implementación de aproximaciones algorítmicas de este problema en los lenguajes
de programación PASCAL y Python. Asimismo, dentro del trabajo se proponen numerosas variaciones y
extensiones del Juego de la Vida de Conway que introducen nuevas ideas y conceptos. Además, se describen
en detalle varios algoritmos de aprendizaje automático para aprender patrones a partir de grandes conjuntos
de simulaciones del Juego de la Vida y generar nuevas reglas o estrategias.

© 2023; Los autores. Este es un artículo en acceso abierto, distribuido bajo los términos de una licencia Creative Commons (https://
creativecommons.org/licenses/by/4.0) que permite el uso, distribución y reproducción en cualquier medio siempre que la obra original
sea correctamente citada

1Aristotle University, 54124. Thessaloniki, Greece.

Cite as: Triantafyllou SA. A detailed study on implementing new approaches in the Game of Life. Data and Metadata 2023;2:95. https://
doi.org/10.56294/dm202395.

Submitted: 10-09-2023 Revised: 05-11-2023 Accepted: 28-12-2023 Published: 29-12-2023

Editor: Prof. Dr. Javier González Argote

Guest Editor: Yousef Farhaoui

Note: paper presented at the International Conference on Artificial Intelligence and Smart Environments (ICAISE’2023).

https://crossmark.crossref.org/dialog/?doi=10.56294/dm202395
https://doi.org/10.56294/dm202395
https://orcid.org/0000-0003-2115-8934
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.56294/dm202395
https://doi.org/10.56294/dm202395
https://orcid.org/0000-0003-0257-1176
https://orcid.org/0000-0003-0870-6262

https://doi.org/10.56294/dm202395

Palabras clave: Juego de la Vida; Autómatas Celulares; Algoritmos.

INTRODUCCIÓN
The "Game of Life" was first proposed by John Conway, and it is a cellular automaton which rules were

firstly introduced by him in the late 1960s.(1,2,3,4,5,6,7,8,9,10) The detailed description of Conway’s work by Martin
Gardner in the March 1970 Mathematical Games column in Scientific American, made the "Game of Life" popular
to the public.(7,11) Apparently, the "living" is considered as an example of metaphor in the "Game of Life" and
this mathematical game has the potential of a universal Turing machine, which means that it is constructed in
a way to be computed algorithmically.(4,8,9) This Turing machine is constructed from patterns in the Conway’s
"Game of Life" cellular automaton.(5,6) Conway described a method of developing a register machine which can
simulate a Turing machine.(5,9) The Game of Life, invented by him is essentially a cellular automaton, where a
selection of entities called as cells are arranged in a grid of an explicitly predetermined shape. Each cell gets
a state from a binary set and updates its state according to a set of strict rules. Every cell transforms its state
as a function of time and for Conway's "Game of Life", the cells include two states, named as "live" and "dead",
and the necessary rules are driven by the states of the 8 neighboring cells, that are in the "alive" state.(1,4,7)

Τhe first cellular automaton which was developed by John von Neumann in 1966 was complex with its
29 states,(12,13,14) but there are much simpler ones which have only two states. John von Neumann’s cellular
automaton was a complex automaton with 29 different states based on a Universal Turing Machine that can
recreate itself. Later, Christopher G. Langton in 1984, made the things simpler when he created a cellular
automaton with only eight states, which gives up the universality, but still can execute a program (Langton’s
Loops) that can recreate itself.(15) A cellular automaton is a dynamic system arranged in a specified grid of cells
each of which has a specific number of connected discrete states n, and in this paper, we consider n=2 (for the
states set as "live" and "dead").(12,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31) Each state is updated in discrete time steps with
a time function according to specific state rules.(12,14,32,33,34,35,36)

PROPOSED METHOD 	

Detailed Algorithm Analysis
We consider a rectangular axis system with integer subdivisions and specifically we have chosen 9 x 9

subdivisions. Every position could be empty or possessed by a "living" organism with the symbol "*". Supposing
that we are in a first state called as (FIRST GENERATION), we can move to the next state by following the basic
rules:

• Every position and for example the x position has 8 neighbors, the (1,2,3,4,5,6,7,8)
• A "living" organism ("*") could be extinct (death state) and its position to be possessed by a blank symbol,

if and only if, there are lesser than 2 or more than 3 "living" organisms as neighbors.
• In an empty position an organism can be "born" (birth state), if and only if, in this position there are exactly

3 "living" organisms as neighbors.

Implementation of the algorithmic approaches in the PASCAL Programming Language
The decision to implement the algorithmic approaches in Pascal programming language was taken after

careful consideration, because Pascal is a procedural programming language for good programming practices
by using structured programming.(16,37-39) In this section we program in PASCAL programming language and the
source code that is presented in detail, implements the following actions:

1. Create a rectangular axis system 9 x 9 (subroutine - procedure SCREEN).
2. Create a first state (subroutine - procedure FIRST GENERATION).
3. Create a next state starting from an existing state (subroutine - procedure NEXTGENERATION).
4. Finish the generation processes (subroutine - function FINISH).
5. With the help of the subroutines 1-4, a main program that starts from a first state moves to the creation

of new generations, and terminates the overall process when needed, by using the function FINISH. The source
code in PASCAL programming language is the following (see the code in PASCAL programming language):

program PROBLEM(input,output);
uses Crt;
const size = 9;
type mchar = array[0..size+1, 0..size+1] of char;
var chessboard: mchar; generation: integer;
procedure SCREEN(var chessboard: mchar; generation: integer);
var i, j: 1..size;

Data and Metadata. 2023; 2:95 2

https://doi.org/10.56294/dm202395

BEGIN
 ClrScr;
 WRITELN;
 WRITELN('generation : ', generation);
 WRITELN;
 WRITE(' 1 2 3 4 5 6 7 8 9 ');
 WRITELN;
 FOR i := 1 TO size DO
 WRITE(chessboard[i,j]:3);
 WRITELN
END;
procedure FIRSTGENERATION(var chessboard: mchar; var generation: integer);
var i, j: integer; flag: boolean;
BEGIN
 generation := 1;
 FOR i := 0 TO size + 1 DO
 FOR j := 0 TO size + 1 DO
 chessboard[i,j] := ' ';
 flag := FALSE;
 WRITE('to terminate the process give : ');
 WRITELN('(i < 1) OR (i >', size : 2, ' OR j < 1 OR j > ', size : 2, ') ');
 WRITELN;
 REPEAT
 WRITE('give the coordinates i and j of the organism : ');
 READLN(i,j);
 IF (i > 0) AND (i <= size) AND (j > 0) AND (j <= size)
 THEN
 chessboard[i,j] := '*';
 ELSE
 flag := TRUE
 UNTIL flag
END;
procedure NEXTGENERATION(var chessboard: mchar);
var i, j: integer; helpboard: mchar; i1, j1: 0..size+1; neighbors: integer;
BEGIN
 neighbors := 0;
 FOR i1 := i - 1 TO i + 1 DO
 FOR j1 := j - 1 TO j + 1 DO
 IF chessboard[i1,j1] = '*'
 THEN neighbors := neighbors + 1;
 IF chessboard[i,j] = '*'
 THEN neighbors := neighbors - 1;
 helpboard := chessboard;
 FOR i := 1 TO size DO
 FOR j := 1 TO size DO
 BEGIN
 neighbors := 0;
 FOR i1 := i - 1 TO i + 1 DO
 FOR j1 := j - 1 TO j + 1 DO
 IF chessboard[i1,j1] = '*'
 THEN neighbors := neighbors + 1;
 IF chessboard[i,j] = '*'
 THEN neighbors := neighbors - 1;
 IF helpboard[i,j] = ' '
 THEN
 BEGIN
 IF neighbors = 3
 THEN
 helpboard[i,j] := '*';

https://doi.org/10.56294/dm202395

 3 Triantafyllou SA, et al

https://doi.org/10.56294/dm202395

https://doi.org/10.56294/dm202395

 END
 ELSE IF (neighbors < 2) OR (neighbors > 3)
 THEN
 helpboard[i,j] := ' ';
 chessboard := helpboard;
 END
END;
function FINISH: boolean;
var a: char;
BEGIN
 WRITE('next generation ? (for yes press: y) : ');
 READLN(a);
 FINISH := (a = 'y')
END;
BEGIN
 ClrScr;
 FIRSTGENERATION(chessboard, generation);
 SCREEN(chessboard, generation);
 WHILE FINISH DO
 BEGIN
 WRITELN;
 NEXTGENERATION(chessboard);
 generation := generation + 1;
 SCREEN(chessboard, generation)
 END
END.

Presentation of Data and Outcomes
In this section, we present the data and final outcomes after running all the subroutines and the main

program in PASCAL programming language (see the following code and figure 1).
• to terminate the process give : (i < 1) OR (i > 9 OR j < 1 OR j > 9) give the coordinates i and j of the

organism: 4 5
• give the coordinates i and j of the organism: 5 6
• give the coordinates i and j of the organism: 6 6
• give the coordinates i and j of the organism: 4 6
• give the coordinates i and j of the organism: 0 0

Numerous variations and extensions of the Conway’s Game of Life that introduce new ideas and concepts
While the basic rules of Conway’s Game of Life are well-established, there have been numerous variations

and extensions of the game that introduce new ideas and concepts.(19,22,24,25,26) Here are a few innovative
approaches and ideas related to the Game of Life cellular automata:

• Higher Dimensions: exploration of the Game of Life in three or more dimensions. In a 3D grid, cells would
have 26 neighbors instead of 8, leading to even more complex patterns and behaviors. Visualizing these higher-
dimensional automata can be challenging but fascinating.

• Rule Variations: experimenting with different rulesets beyond Conway’s original rules leads to observe that
there are countless possibilities for birth, survival, and death conditions, leading to diverse and unexpected
outcomes. Some rules might promote the growth of complex structures, while others could lead to rapid decay.

• Interactive Game of Life: creation of interactive versions of the Game of Life where users can interact
with the grid in real-time. They can add or remove cells, change the rules on the fly, or even influence the
evolution of the patterns using various tools and controls.

• Evolutionary Algorithms: integration of evolutionary algorithms into the Game of Life to evolve patterns
based on specific criteria. For example, by using genetic algorithms or other evolutionary techniques it is
achievable to create populations of patterns that exhibit desired traits, such as stability, speed of movement,
or complexity.

• Multiplayer Game of Life: development of a multiplayer version of the Game of Life where multiple players
can influence the grid simultaneously. Players can compete or cooperate to create specific patterns or disrupt
each other’s structures, leading to dynamic and competitive gameplay.

• Dynamic Rule Changes: it is possible the rules of the Game of Life to change dynamically based on the
evolving patterns. For example, certain structures or arrangements could trigger rule modifications, leading to
a constantly changing environment where patterns adapt and evolve in response to their surroundings.

Data and Metadata. 2023; 2:95 4

https://doi.org/10.56294/dm202395

Figure 1. Data and Outcomes

• Visualizations and Sonifications: creation of artistic visualizations or sonifications based on the evolving

patterns in the Game of Life. For instance, it is possible to translate the changing cell states into music,
animations, or other forms of art, providing a sensory experience of the automaton's behavior.

• Multi-State Cellular Automata: extending the binary states of live and dead cells to a multi-state system
leads every cell to have multiple states. Also, the rules can be defined to allow transitions between these states
based on the states of neighboring cells. This introduces a new layer of complexity and potential for diverse
patterns.

• Rule Learning and Machine Learning: exploration of machine learning techniques to discover interesting
rules or predict the evolution of specific patterns. For example, it is possible to use neural networks or other
machine learning algorithms to learn patterns from large sets of Game of Life simulations and generate new
rules or strategies for evolving particular structures.

• Probabilistic Cellular Automata: incorporating probabilistic rules where the transition of a cell from one
state to another is not deterministic but probabilistic helps to introduce randomness in the rules that can lead
to stochastic patterns and behaviors, adding an element of unpredictability to the automaton.

• Community-driven Evolution: by creating an online platform where users can propose and vote on new
rules or modifications to existing rules helps to allow the community to collectively influence the evolution
of the Game of Life, leading to a diverse set of rulesets and patterns generated by collaborative efforts. By
exploring these ideas and combining them with the fundamental principles of cellular automata, researchers
and enthusiasts can continue to push the boundaries of what is possible with the Game of Life and similar
automata systems.

• Interactive Evolutionary Interfaces: developing interactive interfaces that allow users to draw, modify,
or manipulate patterns directly and observe how they evolve based on the rules helps to provide real-time
feedback on the viability and stability of the created patterns, encouraging users to explore and experiment
with different designs. These ideas describe the vast potential for exploration and creativity within the realm
of cellular automata, inspiring researchers, developers, and enthusiasts to continue experimenting and pushing
the boundaries of what is possible with the Game of Life and similar automata systems.

Machine learning algorithms to learn patterns from large sets of Game of Life simulations and generate new
rules or strategies

Using machine learning algorithms to learn patterns from large sets of Game of Life simulations and generate
new rules or strategies is an intriguing area of research.(19,22,24,25,26)

The following is an approach outlining how this could be accomplished:
• Data Collection: generate a diverse set of initial configurations for the Game of Life and simulate their

https://doi.org/10.56294/dm202395

 5 Triantafyllou SA, et al

https://doi.org/10.56294/dm202395

https://doi.org/10.56294/dm202395

evolution over many generations. Record the states of cells at each time step. These simulations will form the
dataset for training the machine learning models.

• Feature Extraction: extract relevant features from the simulation data that can capture the characteristics
of evolving patterns. These features could include the density of live cells, the presence of specific structures,
the frequency of pattern oscillations, and other metrics describing the evolving patterns.

• Labeling the Dataset: label the dataset based on specific criteria. For instance, you might label certain
patterns as "interesting" if they exhibit complex behavior, stability, or unique structures. Patterns that lead
to rapid expansion or contraction could also be labeled differently. The labeling process provides supervised
learning signals for the machine learning models.

• Model Selection: choose appropriate machine learning algorithms for the task. Neural networks, particularly
recurrent neural networks (RNNs) or long short-term memory networks (LSTMs), can capture sequential patterns
over time steps. Alternatively, you can explore other algorithms like decision trees, random forests, or even
genetic algorithms, depending on the nature of the problem.

• Training the Models: train the selected machine learning models using the labeled dataset. The models
learn to recognize patterns associated with specific labels. During training, the models adjust their parameters
to minimize prediction errors and improve their ability to classify patterns.

• Rule Generation: once the model is trained, it can be used to generate new rules or strategies. For
example, in the context of the Game of Life, the model could predict which initial configurations are likely to
lead to interesting, stable, or complex patterns. These predictions can guide the generation of new rules or
strategies for creating specific types of patterns.

• Evaluation and Refinement: evaluate the generated rules or strategies by simulating the Game of Life
with these rules and observing the resulting patterns. Refine the machine learning models and training process
based on the quality and diversity of the generated patterns. Iteratively improve the models to achieve more
accurate and desirable outcomes.

• Pattern Analysis and Visualization: analyze the results to gain insights into the learned patterns. Visualize
the clusters or predicted labels to understand the similarities and differences between different patterns.
Visualization tools such as t-SNE or PCA can help reduce high-dimensional feature space to 2D or 3D for better
understanding.

• Pattern Generation and Exploration: use the trained models to generate new patterns by providing specific
input conditions or by exploring the latent space of learned patterns. Experiment with the generated patterns
to see if they align with known Game of Life structures or if they reveal novel configurations.

• Iterative Exploration: continue the iterative process of generating new rules, evaluating the patterns, and
refining the models. Experiment with different model architectures, features, and training strategies to explore
the vast space of possible rules and strategies within the Game of Life. By following this approach, machine
learning algorithms can be leveraged to discover novel patterns, rules, and strategies within the Game of Life,
showcasing the potential of combining artificial intelligence with cellular automata simulations.
t-SNE (t-distributed Stochastic Neighbor Embedding) and PCA (Principal Component Analysis)

Both t-SNE (t-distributed Stochastic Neighbor Embedding) and PCA (Principal Component Analysis) are
dimensionality reduction techniques commonly used for visualizing high-dimensional data in a lower-dimensional
space. While these techniques are not specific to the Game of Life, they can be applied to visualize patterns
and structures generated by the Game of Life simulations. An approach of utilizing t-SNE and PCA to visualize
Game of Life patterns is the following:

• Data Preparation: prepare the data representing Game of Life patterns. This data should be in a structured
format where each row corresponds to a pattern, and the columns represent features extracted from the
patterns.

• Feature Extraction: extract relevant features from the Game of Life patterns and ensure that the features
capture the important characteristics of the patterns.

• Data Normalization: normalize the feature data so that all features have similar scales. Standardizing the
features (subtracting mean and dividing by standard deviation) is a common normalization technique.

• Dimensionality Reduction: a) PCA (Principal Component Analysis): apply PCA to reduce the dimensions
of the feature space. PCA identifies the principal components, which are linear combinations of the original
features that capture the most variance in the data. You can visualize patterns in the reduced-dimensional
space using the first few principal components. An example in Python using scikit-learn is the following:

from sklearn.decomposition import PCA
 # Apply PCA
pca = PCA(n_components=2)
 # Reduce to 2 dimensions for visualization
reduced_data_pca = pca.fit_transform(normalized_data)
Visualization using reduced_data_pca

Data and Metadata. 2023; 2:95 6

https://doi.org/10.56294/dm202395

(Plotting code will depend on the plotting library you are using)
b) t-SNE (t-distributed Stochastic Neighbor Embedding): Apply t-SNE to reduce the dimensions further. t-SNE

is particularly good at capturing non-linear relationships in the data. It projects the data points into a lower-
dimensional space while preserving local similarities between data points. An example in Python using scikit-
learn is the following:

from sklearn.manifold import TSNE
Apply t-SNE
tsne = TSNE(n_components=2, perplexity=30, random_state=42) reduced_data_tsne = tsne.fit_

transform(normalized_data)
Visualization using reduced_data_tsne
(Plotting code will depend on the plotting library you are using)
• Visualization: once a person has the reduced-dimensional data (either through t-SNE or PCA), he/she can

use a plotting library like Matplotlib, Seaborn, or Plotly in Python to visualize the patterns in 2D. Each point
in the visualization represents a Game of Life pattern, and the patterns with similar characteristics will be
clustered together in the reduced-dimensional space. We should remember that the choice of parameters, such
as the number of components for PCA or the perplexity for t-SNE, can significantly impact the visualization
results.

CONCLUSIONS AND FUTURE WORK
The "Game of Life" cellular automaton is a characteristic paradigm of a parallel collision-based computing

machine, and its rules were invented by John Conway in the late 1960s. Nowadays, we are still getting inspiration
from Conway’s discovery. Dr. Conway was among one of the pioneers in the field of cellular automata and by
introducing the "Game of Life", he introduced new scientific achievements in the domain of complexity science,
with simulations that can be used to identify patterns and model problems like ants to traffic and many others
such as clouds to galaxies. This paper tried to contribute to a better understanding of the "Game of Life" by
implementing algorithmic approaches of this problem in PASCAL and Python programming languages. Also,
inside the paper numerous variations and extensions of the Conway's Game of Life are proposed that introduce
new ideas and concepts. Furthermore, several machine learning algorithms to learn patterns from large sets
of Game of Life simulations and generate new rules or strategies are described in detail. Future studies aim
to study further the "Game of Life" and its dynamics to identify patterns and model many important problems.

REFERENCES

1.Bays, C. (2010). Introduction to Cellular Automata and Conway’s Game of Life. In: Adamatzky, A. (eds)
Game of Life Cellular Automata. Springer, London. https://doi.org/10.1007/978-1-84996-217-9_1

2. Caballero, L., Hodge, B. and Hernandez, S. (2016) “Conway's ‘Game of life’ and the epigenetic principle,”
Frontiers in Cellular and Infection Microbiology, 6. Available at: https://doi.org/10.3389/fcimb.2016.00057.

3. Wainwright, R. (2010). Conway’s Game of Life: Early Personal Recollections. In: Adamatzky, A. (eds) Game
of Life Cellular Automata. Springer, London. https://doi.org/10.1007/978-1-84996-217-9_2

4. Rendell, P. (2002). Turing Universality of the Game of Life. In: Adamatzky, A. (eds) Collision-Based
Computing. Springer, London. https://doi.org/10.1007/978-1-4471-0129-1_18

5. Rendell P. Conway’s Game Life Turing Machine http://www.rendell.uk.co/gol

6. Turing A.M. On computable numbers, with applications to the entscheidungsproblem Proc. London Math.
Soc. 42 (1937 230–265.

7. M. Gardner. Mathematical games: The fantastic combinations of John Conway's new solitaire Game 'Life'.
Scientific American, 1970. 5, 11

8. Yurii Rogozhin. Small universal Turing machines. Theor. Comput. Sci., 168(2): 215-240, November 1996.
ISSN 0304-3975. 2, 13, 46

9. Smith. Universality of Wolfram's 2, 3 Turing Machine, 2007. the Wolfram 2,3 Turing Machine Research
Prize. 55, 185

10. S. Wolfram. Universality and complexity in cellular automata. Physica, 10D: 1-35, 1984. 4, 6, 13, 55,

https://doi.org/10.56294/dm202395

 7 Triantafyllou SA, et al

https://doi.org/10.1007/978-1-84996-217-9_1
https://doi.org/10.3389/fcimb.2016.00057
https://doi.org/10.1007/978-1-84996-217-9_2
https://doi.org/10.1007/978-1-4471-0129-1_18
http://www.rendell.uk.co/gol
https://doi.org/10.56294/dm202395

https://doi.org/10.56294/dm202395

185, 200

11. Martin Gardner, Mathematical games: The fantastic combinations of john conway’s new solitaire game
“life”, Scientific American 223 (1970), 120–123.

12. Kazakov, Dimitar & Sweet, Matthew. (2004). Evolving the Game of Life. Lecture Notes in Computer
Science. 3394. 10.1007/978-3-540-32274-0_9.

13. Hirte, R. (2022). John Horton Conway’s Game of Life, An overview and examples.

14. John von Neumann, Theory of self-reproducing automata, Edited by Arthur W. Burks(1966).

15. Christopher G Langton, Self-reproduction in cellular automata, Physica D: Nonlinear Phenomena 10
(1984), no. 1-2, 135–144.

16. Zaks, R. (1981). Introduction to Pascal (including UCSD Pascal). SYBEX Inc..

17. Triantafyllou, S.A. (2023). A Quantitative Research About MOOCs and EdTech Tools for Distance Learning.
In: Auer, M.E., El-Seoud, S.A., Karam, O.H. (eds) Artificial Intelligence and Online Engineering. REV 2022.
Lecture Notes in Networks and Systems, vol 524. Springer, Cham. https://doi.org/10.1007/978-3-031-17091-
1_52

18. Triantafyllou, S.A. (2022). TPACK and Toondoo Digital Storytelling Tool Transform Teaching and Learning.
In: Florez, H., Gomez, H. (eds) Applied Informatics. ICAI 2022. Communications in Computer and Information
Science, vol 1643. Springer, Cham. https://doi.org/10.1007/978-3-031-19647-8_24

19. Adamatzky, A. (Ed.). (2010). Game of life cellular automata (Vol. 1). London: Springer.

20. Triantafyllou, S. A. (2022). "Work in progress: Educational Technology and Knowledge Tracing Models,"
2022 IEEE World Engineering Education Conference (EDUNINE), 2022, pp. 1-4, https://doi.org/10.1109/
EDUNINE53672.2022.9782335.

21. Triantafyllou, S. A. (2022). Magic squares in order 4K+2. 2022 30th National Conference with International
Participation (TELECOM). https://doi.org/10.1109/TELECOM56127.2022.10017312

22. Rennard, J. P. (2002). Implementation of logical functions in the Game of Life. In Collisionbased
computing (pp. 491-512). London: Springer London.

23. Triantafyllou, S.A. (2023). A Detailed Study on the 8 Queens Problem Based on Algorithmic Approaches
Implemented in PASCAL Programming Language. In: Silhavy, R., Silhavy, P. (eds) Software Engineering Research
in System Science. CSOC 2023. Lecture Notes in Networks and Systems, vol 722. Springer, Cham. https://doi.
org/10.1007/978-3-031-35311-6_18

24. Springer, J. M., & Kenyon, G. T. (2021). It's hard for neural networks to learn the game of life. In 2021
International Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE.

25. Durand, B., & Róka, Z. (1999). The game of life: universality revisited. In Cellular Automata: a Parallel
Model (pp. 51-74). Dordrecht: Springer Netherlands.

26. Rendell, P. (2011). A universal turing machine in conway's game of life. In 2011 International Conference
on High Performance Computing & Simulation (pp. 764-772). IEEE.

27. Rodríguez-Pérez JA. Strengthening the Implementation of the One Health Approach in the Americas:
Interagency Collaboration, Comprehensive Policies, and Information Exchange. Seminars in Medical Writing and
Education 2022;1:11-11. https://doi.org/10.56294/mw202211.

28. Farhaoui, Y.and All, Big Data Mining and Analytics, 2023, 6(3), pp. I–II, DOI: 10.26599/BDMA.2022.9020045

29. Gonzalez-Argote D, Gonzalez-Argote J. Generation of graphs from scientific journal metadata with

Data and Metadata. 2023; 2:95 8

https://doi.org/10.56294/dm202395
https://doi.org/10.1007/978-3-031-17091-1_52
https://doi.org/10.1007/978-3-031-17091-1_52
https://doi.org/10.1007/978-3-031-19647-8_24
https://doi.org/10.1109/EDUNINE53672.2022.9782335
https://doi.org/10.1109/EDUNINE53672.2022.9782335
https://doi.org/10.1109/TELECOM56127.2022.10017312
https://doi.org/10.1007/978-3-031-35311-6_18
https://doi.org/10.1007/978-3-031-35311-6_18
https://doi.org/10.56294/mw202211

the OAI-PMH system. Seminars in Medical Writing and Education 2023;2:43-43. https://doi.org/10.56294/
mw202343.

30. Farhaoui, Y. , "Big data analytics applied for control systems" Lecture Notes in Networks and Systems,
2018, 25, pp. 408–415. https://doi.org/10.1007/978-3-319-69137-4_36

31. Rodríguez FAR, Flores LG, Vitón-Castillo AA. Artificial intelligence and machine learning: present and
future applications in health sciences. Seminars in Medical Writing and Education 2022;1:9-9. https://doi.
org/10.56294/mw20229.

32. Alaoui, S.S., and all. "Hate Speech Detection Using Text Mining and Machine Learning", International
Journal of Decision Support System Technology, 2022, 14(1), 80. DOI: 10.4018/IJDSST.286680

33. Alaoui, S.S.,and All "Data openness for efficient e-governance in the age of big data", International
Journal of Cloud Computing, 2021, 10(5-6), pp. 522–532, https://doi.org/10.1504/IJCC.2021.120391

34. Vidal AAR de C. Modelamiento y análisis del comportamiento de la variable: Generación de Energía
Eléctrica, en el sector eléctrico peruano utilizando la metodología Box and Jenkins, para la predicción de este
recurso. Sincretismo 2020;1.

35. Tarik, A., and all."Recommender System for Orientation Student" Lecture Notes in Networks and Systems,
2020, 81, pp. 367–370. https://doi.org/10.1007/978-3-030-23672-4_27

36. Sossi Alaoui, S., and all. "A comparative study of the four well-known classification algorithms in data
mining", Lecture Notes in Networks and Systems, 2018, 25, pp. 362–373. https://doi.org/10.1007/978-3-319-
69137-4_32

FINANCING
No financing.

CONFLICT OF INTEREST
The authors declare that there is no conflict of interest.

AUTHORSHIP CONTRIBUTION
Conceptualization: Serafeim A. Triantafyllou.
Research: Serafeim A. Triantafyllou.
Drafting - original draft: Serafeim A. Triantafyllou.
Writing - proofreading and editing: Serafeim A. Triantafyllou.

https://doi.org/10.56294/dm202395

 9 Triantafyllou SA, et al

https://doi.org/10.56294/mw202343
https://doi.org/10.56294/mw202343
https://doi.org/10.1007/978-3-319-69137-4_36
https://doi.org/10.56294/mw20229
https://doi.org/10.56294/mw20229
https://doi.org/10.1504/IJCC.2021.120391
https://doi.org/10.1007/978-3-030-23672-4_27
https://doi.org/10.1007/978-3-319-69137-4_32
https://doi.org/10.1007/978-3-319-69137-4_32
https://doi.org/10.56294/dm202395

	Marcador 1

