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ABSTRACT

Cancer, a lethal disease stemming from genetic anomalies and biochemical irregularities, presents a major
global health challenge, with lung and colon cancers being significant contributors to morbidity and mortality.
Timely and precise cancer detection is crucial for optimal treatment decisions, and machine learning and
deep learning techniques offer a promising solution for expediting this process. In this research, a pre-
trained neural network, specifically AlexNet, was fine-tuned with modifications to four layers to adapt it to a
dataset comprising histopathological images of lung and colon tissues. Additionally, a Bayesian optimization
approach was employed for hyperparameter tuning in Convolutional Neural Networks (CNNs) to enhance
recognition accuracy while maintaining computational efficiency. The research utilized a comprehensive
dataset divided into five classes, and in cases of suboptimal results, a Counteracting Suboptimal Image
Processing (CSIP) strategy was applied, focusing on improving images of underperforming classes to reduce
processing time and effort.

Keywords: Hyperparameter Optimization; Malignancy Detection; AlexNet; Histopathology Images;
Counteracting Suboptimal Image Processing (CSIP); Enhanced Histogram Equalization (EHE); Bayesian
Optimization; Deep Learning; Colon Cancer Prediction.

RESUMEN

El cancer, una enfermedad letal derivada de anomalias genéticas e irregularidades bioquimicas, representa
un importante desafio sanitario a nivel mundial, y los canceres de pulmon y colon contribuyen de manera
significativa a la morbilidad y la mortalidad. La deteccion oportuna y precisa del cancer es crucial para tomar
decisiones dptimas de tratamiento, y las técnicas de aprendizaje automatico y aprendizaje profundo ofrecen
una solucion prometedora para acelerar este proceso. En esta investigacion, se ajustd una red neuronal
previamente entrenada, concretamente AlexNet, con modificaciones en cuatro capas para adaptarla a un
conjunto de datos que comprendia imagenes histopatologicas de tejidos pulmonares y de colon. Ademas,
se empled un enfoque de optimizacion bayesiana para el ajuste de hiperparametros en redes neuronales
convolucionales (CNN) para mejorar la precision del reconocimiento y mantener la eficiencia computacional.
La investigacion utilizé un conjunto de datos completo dividido en cinco clases y, en casos de resultados
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suboptimos, se aplico una estrategia de procesamiento de imagenes suboptimas (CSIP) para mejorar las
imagenes de las clases de bajo rendimiento y reducir el tiempo y el esfuerzo de procesamiento.

Palabras clave: Optimizacion de Hiperparametros; Deteccion de Malignidad; Alexnet; Imagenes
Histopatoldgicas; Procesamiento de Imagenes Suboptimas (CSIP); Ecualizacion de Histograma Mejorada
(EHE); Optimizacion Bayesiana; Aprendizaje Profundo; Prediccion de Cancer de Colon.

INTRODUCTION

Cancer prevention is a crucial aspect in the battle against cancer, underscoring the significance of early
diagnosis across all cancer types. However, experts view the precise identification of cancer types and the swift
generation of results as challenging and time-consuming. To address these challenges, it is imperative to stay
abreast of technological advancements and incorporate them into the diagnostic process. It’s worth noting that
each optimization algorithm may not consistently yield the initially targeted point or population with the best
features.

Cancer manifests as the uncontrollable growth of abnormal cells in any organ or tissue of the body, representing
a leading cause of death globally. In 2018 alone, cancer accounted for an estimated 9,6 million deaths, or one in
every six deaths. Lung cancer, comprising both small cell and non-small cell types, contributed to 2,06 million
cases and 1,76 million deaths. Colorectal cancer, covering both colon and rectal cancer, constituted 1,80
million cases and 783 000 deaths.

Lung cancer is categorized into small-cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). SCLC,
comprising 15 % of total cases, is a highly aggressive tumour with neuroendocrine characteristics. NSCLC,
constituting the remaining 85 %, further divides into adenocarcinoma, squamous cell carcinoma, and large
cell carcinoma. Colorectal cancer, specifically adenocarcinoma, represents 96 % of all cases and encompasses
both colon and rectal cancer. Recent advancements involve digitizing entire tissue or cell slides using scanners,
resulting in a plethora of whole slide images (WSls). Machine learning algorithms are then applied to analyze
these WSIs for diagnostic purposes.

Transfer Learning Using Pre-Trained ALEXNET Model

Transfer Learning is a method that leverages an existing model to transfer knowledge from one domain to
another. This technique is especially useful for domain adaptation and improving the accuracy of models trained
on smaller datasets. The effectiveness of transfer learning depends on several factors, such as the similarity
between your dataset and the dataset used to train the original model, the size of your dataset, and the available
computational resources. The closer the match between your dataset and the one used in the original model, the
higher the likelihood that the learned parameters and architecture of the model will be beneficial for your data.

In the project, we applied transfer learning to develop convolutional neural networks (CNNs) for cancer
classification. We specifically focused on a form of transfer learning that involves fine-tuning parts of an existing
model to better suit our dataset. This process entails modifying certain parameters of the model while keeping
others unchanged. Initially, we trained an AlexNet Model from scratch with our dataset, adjusting all the
parameters. In the subsequent phase, we evaluated the performance of a classifier by fine-tuning an AlexNet
model that was previously trained on the ImageNet Dataset. This step involved replacing and retraining the
parameters of the output, fully-connected layer of the pre-trained model, while the remaining layers were
left unchanged. By doing so, we aimed to enhance the model’s ability to classify cancer effectively, using the
foundational learning from the ImageNet Dataset as a starting point.

Background of convolutional neural networks

A Convolutional Neural Network (CNN) is a specialized type of Neural Network designed for image processing
and classification. Its input consists of pixel values from an image presented in vector/matrix form. The CNN
processes this input through a series of layers and generates a classification for the image.

The layers in Convolutional Neural Networks typically include four types:

1. Convolutional Layer: this layer identifies patterns in the image by passing its representative matrix
through learnable filters/kernels, each representing distinct visual features in the image. These filters
slide over the image based on specified strides, producing individual feature maps. The layer’s final output
is a transformation of the original image, comprising all the stacked feature maps.

2. Rectified Linear Unit Layer (ReLU): this non-linear activation function, denoted as f(x) = max(x,0),
transforms the output elements of the convolutional layer. By replacing negative values with 0 without
altering the shape, ReLU adjusts the output to a range from 0 to infinity.

https://doi.org/10.56294/dm2025184


https://doi.org/10.56294/dm2025184

3 DM, etal

3. Pooling Layer: this layer conducts down-sampling along the spatial dimensions of the image,
reducing its representation size. By diminishing the number of features in the CNN, the model enhances
computational efficiency while preserving key image features.

4. Fully-Connected Layer: unlike the local connections made by the convolutional layer, each node in
a Fully-Connected Layer establishes connections with all nodes in the preceding layer.

Evolution of Pre-Trained Models

Before the advent of Convolutional Neural Networks (CNNs), image processing primarily revolved around
techniques like edge detection and other methods for extracting features based on raw pixel information.
Subsequently, significant advancements in CNN architectures and increased computer processing power have
substantially elevated the accuracy of CNNs in image processing.

While various pre-trained models exist, our focus centered on AlexNet. This choice stems from AlexNet being
the initial prominent model to incorporate the convolutional layers defining a CNN. This decision aimed to
provide us with a comprehensive understanding of the construction and functioning of CNN models. Additionally,
our computational constraints influenced our choice, as training a larger or deeper model like VGG16 would
demand more computational power than was available. Nevertheless, the use of transfer learning serves to
significantly mitigate the computational expense associated with constructing and training a CNN.

ALEXNET

Developed in 2012, AlexNet marked a significant advancement in CNN evolution. Not only did it emerge as
the victor in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) competition of that year, but it also
boasted an error rate approximately half that of its competitors. The key innovations encompassed training on
multiple GPUs, employing augmented versions of image data for training, adopting the ReLU activation function,
incorporating overlapping pools, and implementing dropout.

AlexNet’s architecture consists of a total of 60 000 parameters distributed across eight layers, comprising
five convolutional layers and three fully connected layers. Further innovations included training on two GPUs
and incorporating augmented versions of images (flipped, scaled, noised, etc.) for training purposes. The model
also embraced RelU (Rectified Linear Unit) activation functions, departing from the standard tanh (hyperbolic
tangent) at the time. This adjustment not only reduced the training time but also served as a solution to the
“vanishing gradient” problem. The pooling layers introduced a stride (in AlexNet, with a length of 4 pixels),
resulting in an overlap between local receptive fields and significantly minimizing model errors.
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Figure 1. ImageNet classification with deep convolutional neural networks

Bayesian Optimization Algorithm

The Bayesian optimization algorithm seeks to minimize a scalar objective function f(x) over a bounded
domain, where x represents the input. This function may be deterministic or stochastic, implying that it can
yield varying outcomes when assessed at the same point x.

Bayesian Optimization

Bayesian optimization is recognized as an exceptionally versatile strategy for optimizing expensive “black
box” functions without derivatives. The term “black box” refers to the situation where only the input and
output of the model are observable, and the internal workings of the model remain unclear. In recent years,
Bayesian optimization has found widespread application in various domains, including environmental monitoring,
interactive user interfaces, materials and drug design, machine learning, and reinforcement learning, owing to
its robust optimization capabilities.
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Although hand-tuning is a viable option, it is often perceived as time-consuming and subjective. Grid Search
and Random Search are alternative optimization methods that do not require direct human intervention. Grid
search exhaustively explores a predefined subset of hyperparameter spaces, while random search, without
optimizing the problem gradient, selects hyperparameters randomly within the specified search space. Both
methods, however, can be time-consuming. Bayesian global optimization techniques offer a solution to this
problem by efficiently combining priors of the problem, aiding in deciding whether the next point in the search
space should be explored or exploited.

Bayesian optimization steps
Develop a surrogate probability model for the objective function.
Identify the hyperparameters that exhibit optimal performance on the surrogate model.
Implement these identified hyperparameters on the actual objective function.
Update the surrogate model to integrate the new outcomes.
Iterate through steps 2-4 until reaching the maximum iterations or the allotted time.

Bayesian analysis finds application in various domains where abundant heterogeneous or noisy data is
present, or whenever a comprehensive understanding of uncertainty is essential.

Literature review

In their November 2022 publication, Reyhaneh Manafi-Farid and Emran Askari highlight the critical role of
fluorodeoxyglucose Positron Emission Tomography and Computed Tomography (FDG-PET/CT) in lung cancer
detection and management. Lung cancer, known for its high mortality rate, necessitates innovative diagnostic
and prognostic tools. Manafi-Farid and Askari delve deep into the utility of FDG-PET/CT in diagnosing lung
cancer, assessing treatment response, and predicting outcomes. They emphasize the technique’s ability to
provide qualitative and conventional quantitative indices from imaging data.

Additionally, the authors shed light on the emerging field of radiomics, which involves sophisticated
algorithms to extract detailed data from medical images. Radiomics is increasingly significant in enhancing
the diagnostic capabilities and therapeutic implications of FDG-PET/CT in lung cancer treatment. The article
offers an overview of the technical aspects of radiomics, discussing its integration into current medical imaging
practices and its potential to revolutionize lung cancer management.

Sumeet Hindocha and Thomas G. Charlton’s research, conducted in October 2022, centers on the
development of radiomic models for predicting outcomes in non-small cell lung cancer (NSCLC) patients
undergoing radiotherapy. Their primary objective is to classify patients based on their risk of recurrence and
overall survival post-treatment. This approach could pave the way for more personalized surveillance and
timely interventions, ultimately improving patient outcomes.

Hindocha and Charlton’s models amalgamate radiomic and clinical features, validated through extensive
cross-validation and external testing. The results indicate that these models effectively stratify patients into
low and high-risk groups, with a substantial disparity in survival times between these groups. This research lays
the foundation for future clinical trials and underscores the potential of integrating radiomic-based prediction
models into routine radiotherapy workflows, facilitating a more personalized approach to cancer treatment.

Published in June 2022, Hamid Abdollahi and Erika Chin’s article explores the integration of radiomics
into radiation therapy, a critical component of personalized medicine. Radiomics, through the extraction and
analysis of complex image features, can significantly impact various aspects of radiation therapy, from patient
selection to post-treatment monitoring. The authors introduce the concept of radiomics-guided radiation
therapy (RGRT), emphasizing its potential to optimize treatment protocols, enhance patient outcomes, and
minimize side effects.

The article reviews several applications of radiomics in radiation therapy, including its role in disease
detection, diagnosis, prognosis, and response assessment. While acknowledging the challenges associated
with implementing RGRT, such as data standardization and algorithm validation, it underscores the enormous
potential of radiomics to transform radiation therapy into a more precise and effective treatment modality.

Ajni KAjai and A. Anitha’s groundbreaking study, published in 2022, introduces an innovative approach to lung
cancer detection using artificial intelligence (Al). They developed a deep learning model nhamed Deep Radial
Recurrent Feedforward Neural Nets (DRRFNN), specifically tailored for lung cancer classification. Leveraging
the power of deep learning and Python programming, this model achieves high accuracy in diagnosing lung
cancer.

The authors conduct a comparative analysis, pitting DRRFNN against existing models like LSTM, GRUs, RBF,
DBN, FNN, and ANN, ultimately demonstrating its superior performance. This research underscores the potential
of Al and deep learning in revolutionizing medical diagnostics, particularly in the early detection of lung cancer.
By employing advanced models like DRRFNN, the methodology for detecting lung cancer could become faster,
more efficient, and potentially life-saving by identifying more patients at an early stage.
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In their 2021 research, Nadia Brancati and Massimo La Rosa address the rising incidence of Head and Neck
Squamous Cell Carcinoma (HNSCC). Their study introduces a novel machine learning method that utilizes
radiomic features extracted from CT and PET images to stage the disease. This non-invasive approach has
the potential to revolutionize the diagnosis and monitoring of HNSCC, which traditionally relies on clinical
evaluation and histopathological examination.

The authors’ method includes a selection step to eliminate dataset redundancy, followed by the application
of machine learning algorithms for accurate disease staging. The research demonstrates high accuracy in
classifying HNSCC in terms of pN-Stage, pT-Stage, and Overall Stage, underscoring the efficiency of using
radiomics in cancer staging. Applied to a diverse patient cohort, this approach shows promise in enhancing
early diagnosis and personalized treatment, potentially reducing the need for invasive biopsy procedures.

d Image Dataset

Acquiring Histopathology Images

Improved Images

Class Selective Image Processing

Figure 2. Block Diagram of Model with Convolutional Neural Networks (CNNs)

METHOD

In the proposed methodology, we start by acquiring histopathology images and resizing them to fit the
model’s specifications. These resized images are then used for training and validating the model. The initial
outcomes of the model are assessed using metrics such as accuracy, precision, F1-score, recall, specificity, and
misclassification rate. If these results are not up to the desired standard, we apply the Customized Selective
Image Processing (CSIP) strategy.

The CSIP technique specifically targets the class or classes where the model’s performance is suboptimal.
For these identified underperforming classes, Enhanced Histogram Equalization (EHE) is employed to improve
image quality. This selective approach ensures that only the images in need of enhancement are processed,
which significantly reduces the time and effort required compared to processing the entire dataset.

Once the EHE process is applied, it redistributes the intensity values within the images, effectively enhancing
the contrast. This step is crucial because improved image contrast can lead to better feature recognition and,
consequently, better model performance. After the EHE treatment, all images from the underperforming class
are replaced with their enhanced versions in the dataset. The model is then rerun with this updated set of
images for training and validation.

The key advantage of this method is its efficiency and targeted nature. By focusing only on the images from
classes where the model struggles, the CSIP strategy optimizes resource use. Enhanced Histogram Equalization,
known for its efficiency and speed in contrast enhancement, further contributes to this streamlined approach.
By enhancing only the necessary images and reintegrating them into the training and validation process, the
model’s performance is expected to improve specifically in the areas where it was previously lacking.

The proposed system offers several significant advantages, particularly in optimizing model performance
and enhancing image quality:

Input as Parameter Ranges: unlike traditional methods where specific points are selected based on
assumptions, this system inputs a range for each parameter. This approach is advantageous as it provides a
broader scope for the model to identify the most effective parameter values, ensuring a more comprehensive
exploration of the parameter space.

Randomization of Candidate Points: to avoid excessive focus on suboptimal parameters, candidate points
are randomized. This strategy ensures that the model does not waste time evaluating poor parameter choices.
The randomization adds an element of diversity to the parameter selection process, preventing the model from
getting stuck in potentially less advantageous regions of the parameter space.
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Figure 3. Block diagram of Proposed System

Balanced Exploration and Exploitation through Bayesian Optimization: One of the key strengths of this system
is its use of Bayesian Optimization, which adeptly balances exploration (investigating new, potentially better
parameters) and exploitation (utilizing known good parameters). This balance is achieved as the algorithm
intelligently samples points in the parameter space where it predicts the optimal values are likely to be found.
Such a strategic approach can significantly improve the model’s efficiency and effectiveness.

Enhanced Contrast in Images: The system is particularly beneficial in situations where images have data
represented by close contrast values. It increases the overall contrast of these images by redistributing the
intensity values more evenly across the histogram. This redistribution allows areas of the image with lower
contrast to achieve higher contrast, which is crucial for better visualization and analysis. Improved contrast
makes it easier to discern details and features in images, which is particularly valuable in fields like medical
imaging or remote sensing.

Overall, the proposed system offers a sophisticated approach to optimizing model parameters and enhancing
image quality, making it a valuable tool in various applications where accuracy and efficiency are paramount.

Bayesian Optimization to Optimize CNN

Bayesian optimization, a powerful tool for hyperparameter optimization in deep learning, is a sequential
model-based approach combining a probabilistic surrogate model (prior distribution and observation model)
with a loss function to select an optimal sequence of queries, minimizing expected loss.

Bayesian Optimization Libraries

BayesOpt, a Bayesian optimization library under Affero General Public License (AGPL), effectively tackles
non-linear and hyperparameter optimization problems. It uses function distribution to establish a proxy model
of unknown functions for optimal solution finding and applies active learning to select query points.

Implementation of Bayesian Optimization on CNN

This project aims to apply Bayesian optimization to CNN models for a three-way classification task,
combining it with CNN models to find optimal hyperparameters. The process involves:

e Preparing pre-processed images as input data.

Defining the CNN model and network structure.
Defining an objective function taking hyperparameters as input.
Using Bayesian optimization objects to minimize classification error on the validation set.
Obtaining optimal hyperparameters for model classification.
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Bayesian optimization was applied to optimize Mini-Batch Size, Epoch, Initial Learning Rate, and Momentum.
Preliminary network training determined the approximate search range of hyperparameters. The search ranges
were not continuous intervals but discrete values within an approximate range.

The B-CNN models combined selected hyperparameter values to form various combinations, with validation
accuracies determining the best model through Bayesian optimization, focusing on minimizing the classification
error of the validation set.

v

Raw image Pooling layer 2
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Figure 4. Architecture of the improved CNN
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Fully connected layer 2

In this research, we present a comprehensive approach that combines Bayesian optimization with machine
learning algorithms to enhance the accuracy of a CNN model for cancer detection classification. The process
of applying Bayesian optimization to the CNN model is detailed, using the Keras library for building the CNN
model and an open-source Bayesian optimization library for the optimization task. Studies have indicated that
Bayesian optimization tends to surpass other methods like random search and grid search in efficiency.

Bayesian optimization is particularly advantageous as it is less sensitive to the initial boundary selection. It can
adaptively expand the search space, enabling the identification of optimal hyperparameters within predefined
bounds to improve model performance. This optimization method integrates prior function distribution with
sample data to derive a function’s posterior. The optimal values are then determined based on this posterior
information and specific criteria.

Enhanced Histogram Equalization (EHE)

Histogram Equalization is a widely-used technique for image improvement, offering more visually appealing
results compared to histogram stretching. It aims to flatten the histogram of the resulting image, enhancing
both dark and light pixels.

The pre-processing stage using EHE is critical for preparing histopathology images for feature extraction.
Issues like blurriness, poor border recognition, artifacts, and overlapping, often due to uneven staining, are
addressed by EHE. This technique enhances image contrast by improving poor boundary edges at the pixel level
and boosting local contrast. EHE is particularly suitable for histopathological images, enhancing features that
are crucial for accurate analysis.

The EHE method involves decomposing the original image into high-frequency and low-frequency components.
The low-frequency components are enhanced using EHE, while high-frequency components are left as is to
avoid amplifying noise. After reconstruction using inverse DWT, EHE is applied again to further enhance image
details.

RESULTS AND DISUSSION

Performance evaluation of machine learning models in this project is done using a confusion matrix and
metrics like precision, F1-score, accuracy, and recall. Accuracy is defined as the proportion of correctly
classified instances (True Positives and True Negatives) out of all instances:
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Accuracy = (TP + TN) / (TP + FP + TN + FN)

Precision measures the proportion of true positives among all positives identified:
Precision = TP / (TP + FP)

Recall, or sensitivity, calculates the percentage of actual positives correctly identified:

Recall = TP / (TP + FN)

The F1-score provides a balance between precision and recall, representing their harmonic mean:
F1-score = 2 x (Precision x Recall) / (Precision + Recall)

These metrics are crucial for assessing the model’s ability to accurately classify cancerous tissues, which is
essential for effective diagnosis and treatment planning.

Figure 6. Histogram Images for different lung cancer

Lung and colon cancers rank among the leading causes of death globally, making early and accurate detection
crucial for enhancing therapeutic outcomes and increasing survival rates. The primary objective of this project
was to develop a method for the efficient and precise diagnosis of lung and colon cancers.

A key component of this project was the focus on image quality improvement, specifically through image
contrast enhancement. The chosen method for this purpose was histogram equalization, recognized for its
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efficiency and computational speed. Histogram Equalization (HE) is particularly effective in adjusting the
contrast of images, making it easier to identify and analyze key features in medical imaging.
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Figure 9. Colon aca data
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To optimize the performance of our cancer detection model, we implemented an Enhanced Histogram
Equalization (EHE) technique. However, instead of applying EHE to the entire dataset, we strategically targeted
only the images from underperforming classes. This selective approach was designed to save time and reduce
computational costs, while still significantly improving the classification accuracy of the model.
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Figure 10. Histogram Image of Colon aca
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Our proposed methodology, which combines targeted contrast enhancement with sophisticated machine learning
algorithms, demonstrated promising results. When benchmarked against existing methods in lung and colon cancer
detection, our approach showed an improvement in detecting these cancers. This advancement in early cancer detection
methodology could be a pivotal step in medical diagnostics, offering a more effective tool for healthcare professionals in
the fight against these prevalent cancers.
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Figure 15. Lung aca data
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Figure 17. Processing Image of Lung aca

Figure 18. Lung ndata
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Figure 21. Lung sca Data
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Figure 22. Histogram Image of Lung sca

Figure 23. Processing Image of Lung sca
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Figure 24. F-Measure Performance
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Figure 25. Recall Performance
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Figure 26. Precision Performance
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Figure 27. Accuracy Performance

CONCLUSIONS

This research endeavour aimed to enhance the detection of lung and colon cancer utilizing deep learning
techniques. Initially, our model achieved an accuracy rate of 89 %. To elevate its performance, we introduced
the Bayesian Optimization Algorithm - Enhanced Histogram Equalization (BAO-EHE) method, resulting in an
accuracy exceeding 99 %. Our research outperformed existing methods, simultaneously reducing both time
and computational costs. Key research metrics included a 99 % accuracy, 99 % precision, a 99,78 % recall rate,
and a 99,66 % F1-score, unequivocally affirming the efficacy of our research in the realm of colon and lung
cancer classification. Notably, our research excelled in colon cancer detection, offering valuable support to
pathologists in the verification of their diagnoses. Our future research plans encompass the extensive testing of
our model on diverse datasets and the exploration of hybrid optimization techniques. This research innovation
holds the promise of advancing disease diagnosis, ultimately contributing to improved patient outcomes and
enhanced survival rates.
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