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ABSTRACT

Identifying and quantifying weeds is a crucial aspect of agriculture for efficiently controlling them. Weeds 
compete with the crop for nutrients, minerals, physical space, sunlight, and water, causing problems in 
crops ranging from low production to economic losses and environmental deterioration of the land. Weed 
quantification is generally a manual process requiring significant time and precision. Convolutional Neural 
Networks (CNN) are very common in weed quantification. Thus, the purpose of this research is the adaptation 
of the ResNeXt50 CNN architecture for semantic segmentation tasks, focused on the automatic quantification 
of weeds (Broadleaf dock, Dandelion, Kikuyo grass, and other unidentified classes) in potato fields using RGB 
images acquired by the DJI Mavic 2 Pro drone. The analytical model was trained following the Knowledge 
Discovery in Databases (KDD) methodology using Python and the TensorFlow-Keras frameworks. The results 
indicate that the modified ResNeXt50 model presented a mean IoU of 0,7350, a performance comparable 
to the values reported by other authors considering fewer weed classes. The Student´s t-test and Pearson 
correlation coefficient were applied to contrast the weed coverage from the model predictions and the 
ground truth, indicating no statistically significant differences between both measurements in most weed 
classes.
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RESUMEN

Identificar y cuantificar las malas hierbas es un aspecto crucial de la agricultura para controlarlas eficazmente. 
Las malas hierbas compiten con el cultivo por los nutrientes, los minerales, el espacio físico, la luz solar y el 
agua, causando problemas en los cultivos que van desde la baja producción hasta pérdidas económicas y el 
deterioro medioambiental de la tierra. La cuantificación de las malas hierbas suele ser un proceso manual 
que requiere mucho tiempo y precisión. Las redes neuronales convolucionales (CNN) son muy comunes en la 
cuantificación de malas hierbas. Así, el propósito de esta investigación es la adaptación de la arquitectura 
CNN ResNeXt50 para tareas de segmentación semántica, enfocada a la cuantificación automática de malas 
hierbas (Broadleaf dock, Dandelion, Kikuyo grass, y otras clases no identificadas) en campos de patatas 
utilizando imágenes RGB adquiridas por el dron DJI Mavic 2 Pro. El modelo analítico se entrenó siguiendo la 
metodología Knowledge Discovery in Databases (KDD) utilizando Python y los frameworks TensorFlow-Keras.
Los resultados indican que el modelo ResNeXt50 modificado presentó un IoU medio de 0,7350, un rendimiento 
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comparable a los valores reportados por otros autores considerando menos clases de maleza. Se aplicaron 
la prueba t de Student y el coeficiente de correlación de Pearson para contrastar la cobertura de maleza 
a partir de las predicciones del modelo y la verdad sobre el terreno, indicando que no había diferencias 
estadísticamente significativas entre ambas mediciones en la mayoría de las clases de maleza.

Palabras clave: Cuantificación de Maleza; Deep Learning; Imágenes UAV; Segmentación Semántica; CNN; 
Resnext50.

INTRODUCTION
Problem statement

According to the United Nations postulate, the demand for food is expected to grow to 70 % by 2050. This 
means that the agricultural sector will have to increase its production to satisfy the food needs, and this 
increase must be sustainable and without significantly harming the environment.(1)

Weeds are undesirable plants because they harm crops by taking over nutrients and space. This results 
in nutritional deficiency problems that generate economic losses for farmers.(2) One method used to combat 
weeds is chemical control. However, farmers commonly apply these chemicals evenly throughout the field,(3) 
affecting the crops.(4)

Precision agriculture (PA) uses technological tools to improve methods of combating weeds.(5) One approach 
used for weed identification is Deep Learning, whose algorithms allow the automatic extraction of features 
from large amounts of data.(6) Convolutional Neural Networks (CNNs) have become very popular in modern 
years(7,8,9,10,11) since current hardware allows these algorithms to be used efficiently 6,12. CNNs have proven to 
offer good results concerning weed identification.(13,14,15) This identification task is challenging since the plants 
(crops and weeds) share similar physical characteristics, the plants overlap, and they are influenced by certain 
environmental conditions.(16)

Weed quantification is an activity that allows for optimal decision-making to control these plants. This 
indicator helps to determine their coverage and, based on that, estimate the optimal amount of herbicide to 
use without significantly harming the crop.(17) Manual weed quantification takes too much time. Thus, many 
farmers choose to carry out this identification and quantification in a very subjective and incorrect way to 
reduce time. However, this approach leads to unreliable data, making weed control decision-making inefficient.
(18,19) Identifying weeds using CNNs makes this process more efficient, as the results are objective.(17) The goal 
is to differentiate weeds from crops and other terrain features, and weed cover is estimated by measuring it 
in a specific area.

The objective of this research is to identify and quantify four categories of weeds: Broadleaf dock (Rumex 
obtusifolius), Dandelion (Taraxacum officinale), Kikuyo grass (Pennisetum clandestinum), and other unidentified 
classes in potato crop fields using drone images. For this end, the ResNeXt50 CNN(20) is adapted for semantic 
segmentation. Potato crops was selected because it is an icon in the northern area of Ecuador, where this 
research is carried out. The categories of weeds treated are the most prevalent ones observed in the region. 
Six versions of this algorithm are tested, with modifications to the architecture to make it more specialized 
and robust for weed segmentation. This adaptation and specialization of the network represents an important 
improvement and contribution to the field of study.

The methodology used for image data analysis is Knowledge Discovery in Databases (KDD),(21) which allows 
the corresponding tasks to be carried out in a structured and orderly manner, from acquiring images on the 
ground to validating and using the algorithm. The algorithm was developed using Python and the TensorFlow-
Keras framework.

A dataset containing images of potato crops in Carchi-Ecuador province was collected in 2023. It includes 
1500 images of potato crop plants and various types of weeds. The dataset (images and masks) is publicly 
available on the GitHub platform for research and

comparison purposes at https://bit.ly/4gi7I3O. This symbolizes another important contribution due to 
the difficulty and time involved in collecting and annotating various weeds in images with their semantic 
segmentation masks.

Related works
Below, we summarize some works closely related to this study that served as a theoretical basis and for 

comparison purposes: 
Cai et al.(22) proposed an improved PSPNet network architecture for crop weed identification. The images 

were collected in a pineapple field in China using the DJI Mavic 2 UAV, with a flight height and speed of 5 m 
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and 2 m/s, respectively. 34 images of 5472×3648 with a 0,1 cm/pixel resolution were captured. The training 
environment was the TensorFlow 2 framework. The best results achieved a Mean IoU of 79,73 %.

Nong et al.(23) proposed a method for semantic segmentation of weeds, called SemiWeedNet, to perform 
semi-supervised training using the DeepLabv3++ architecture. The dataset used was WeedMap, acquired in sugar 
crops from UAVs. 289 RGB images were chosen, where the present classes were crop, weed, and background. 
The training environment selected was the Pytorch framework. As a result, the model reached a mean IoU of 
0,701 for ResNet50 as a backbone and 0,700 for ResNet101.

Shahi et al.(24) compared CNN architectures with different backbones for binary and multiclass semantic 
weed segmentation using the public CoFly-WeedDB dataset, which provides 201 RGB images (1280×720). The 
images were obtained using a DJI Phantom Pro 4 drone over a cotton field in Greece. A total of 3 weed types 
were detected with a class imbalance. The training environment was Google Colab. The results show that for 
binary segmentation, the best model was SegNet with DenseNet121 as the backbone with a Mean IoU of 67,56 
%, while for multiclass segmentation, it was U-Net with EfficientNetB0 as the backbone with a Mean IoU of 
56,21 %.

Gao et al.(5) developed a method for weed segmentation and mapping in maize fields. The UAV-based image 
data was collected in Belgium. The study classified three classes (weed, maize, soil) regardless of different 
weed species. A 12 coaxial rotors UAV, equipped with a lightweight visual camera, at 20 m above ground 
altitude, 6000×4000 was used. The images consisted of over 10,000 images. The deep learning architecture 
used in the study is similar to U-Net and SegNet, with a higher number of network parameters. The study 
utilized Python and the TensorFlow framework, achieving a mean IoU of 0,767 in the field test dataset and 
0,617 in the UAV orthomosaic imagery.

The literature shows that the number of weed classes identified is limited, mainly addressing a binary 
semantic segmentation task (weed and background) or a multiclass of 3 categories (crop, weed, and background). 

The remainder of the manuscript is as follows: Section 2 presents the methodology, dataset, and software 
used in developing this study for detecting and quantifying weeds. Section 3 shows the main results and 
statistical tests obtained in this proposal.  Section 4 indicates the discussion with other related research, and 
finally, the conclusions and future work are presented in Section 5.

METHOD
KDD Methodology

The Knowledge Discovery in Databases (KDD) methodology(21) was used for image data management and 
analysis, which consists of five phases: Data collection; Data selection, preprocessing, and transformation; Data 
mining; Evaluation and Interpretation. These are detailed below:

Data collection
RGB mages (5472×3648) were collected from 7 different potato crop fields in Carchi- Ecuador, to incorporate 

variability in climatic conditions, land, and plants. 2447 images were captured from May to December 2023. 
The DJI Mavic 2 Pro UAV was used with the Android DroneDeploy application v5.7 to configure all the flight 
parameters: flight height 9 m, flight speed 1 m/s, and cm/px ratio 0,25.  Figure 1 shows examples of images 
collected in potato fields containing different types of weeds.

Figure 1. Examples of RGB images (5472×3648) taken at 9 m height by the DJI Mavic 2 Pro UAV in potato fields in Carchi-
Ecuador

Data selection, preprocessing, and transformation
Images not suitable for the research were discarded according to the following criteria: (i) images that do 

not contain weeds, (ii) images with an exaggerated density of weeds, (iii) adjacent images, and (iv) blurred 
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images. After image selection, 108 RGB images were maintained. 250×250 sub-image extraction from the 
images is used for manual image annotation.(25) This choice is because such resolution almost completely covers 
most large plants in the original images. Adobe Photoshop 2020 was used to delimit and extract the sub-images, 
as indicated in figure 2. 

Figure 2. Example of delimiting and extracting a 250×250 sub-image

During the extraction of the sub-images, each was categorized, considering the most significant type of 
plant present in each sub-image, which may contain various kinds of plants.

Weeds with the greatest coverage in the seven crop fields visited were chosen, mainly Broadleaf dock, 
Dandelion, and Kikuyu. In addition, a category called “other weeds” was used for plants that were difficult to 
identify visually (unknown or small plants) and those with a low presence in the fields visited. 

A total of 1500 correctly classified 250×250 sub-images were obtained. This task required approximately 
25 hours of work. Each extracted sub-image was then resized to a resolution of 128×128 for image annotation 
for semantic segmentation and to be compatible with the input of the RestNeXt50 CNN architecture detailed 
below. The online platform used for image annotation was Roboflow,(26) which offers functionality to determine 
the number of individuals (plants) in the entire dataset, as detailed in table 1.

Table 1. Number of individuals for each type of plant and their 
percentage in the dataset

Type of plant Number of plants %

Broadleaf dock 978 14,43

Dandelion 321 4,73

Kikuyo 2670 39,41

Other weeds 997 14,71

Potato (crop) 1808 26,69

Total 6774 100

The class with the fewest individuals is Dandelion (4,73 %), which causes a significant class imbalance in the 
dataset. Manual annotation on the 1500 128×128 sub-images (6774 plants) required 150 work hours and took 
approximately 6 minutes for each sub-image.

The annotated dataset was split into training, validation, and testing sets in the ratio of 80 % (1200 sub-
images), 10 % (150 sub-images), and 10 % (150 sub-images), respectively. The 80/10/10 split is a good balance 
in general, where one wants to maximize data usage for model training without sacrificing adequate validation 
(hyperparameter tuning) or testing of the model’s generalization ability on unseen data.

Data augmentation was then performed to extend the dataset size and improve the model training. The 
operations applied to the sub-images were a 25 % increase and decrease in brightness, Gaussian blur with a 5×5 
kernel, and rotations at angles of 90, 180, and 270°. Seven types of data augmentation were applied, obtaining 
8400 images for the model training set.

Data mining
This phase consists of 2 main parts: the choice of the Deep Learning algorithm and its training
The Deep Learning Algorithm (ResNeXt50)

The ResNeXt(20) is an improved variant of the residual network ResNet,(27) that uses residual blocks to 
train very deep networks more effectively. In this study, the ResNeXt50 neural network architecture with 50 
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layers was specifically used, with certain adaptations in the architecture to perform semantic segmentation. 
ResNeXt50 maintains the balance between computational efficiency and performance due to the addition of 
cardinality. Cardinality is the number of parallel transformations (branches) performed on the data within a 
residual block. For example, if a block has a cardinality of 32, it means that 32 branches are executing parallel 
transformations. Cardinality is a key concept introduced in the ResNeXt architecture to improve the network’s 
ability to learn rich and diverse features without significantly increasing computational complexity. In this 
study, the cardinality was C=2, since there would only be two branches within the residual block, seeking a 
balance between computational requirements and accuracy.

For ResNeXt to be used for semantic segmentation, the ResNet architecture was modified,(28) removing 
the fully connected layers and replacing them with convolutional layers and upsampling layers to obtain the 
semantic segmentation mask, as shown in figure 9. The modified ResNeXt architecture generally consists of two 
parts: an encoder and a decoder. The encoder performs feature extraction from the image, while the decoder 
is responsible for reconstruction and semantic segmentation.

ResNeXt50 training
Six versions of the ResNeXt50 architecture were proposed, where modifications were made to the architecture 

and the hyperparameters used by different authors.(29,30,31,32,33,34) One-hot encoding was used for ResNeXt50 
predictions (6 classes). The training environment chosen was Kaggle, which used GPUs.
 
Baseline model (version 1)

The baseline model is the original ResNeXt50 architecture(28) for semantic segmentation. The training 
hyperparameters chosen were batch size=8, number of epochs=100, learning rate=0,0001, and optimizer=Adam.
 
Version 2 of the model

The architecture of the baseline model has 8×8, 16×16, and 32×32 upsampling layers in the decoder part, 
which is responsible for the semantic segmentation mask. This causes the feature maps to increase their 
dimension too quickly. Therefore, the first proposal for version 2 was to replace these upsampling layers with 
2×2 dimensions so that the feature maps increase their dimension gradually and not abruptly. For example, 
the single 8×8 upsampling layer was replaced by 3 2×2 layers, the 16×16 layer by 4 2×2 layers, and the 32×32 
layer by 5 2×2 layers. This makes the silhouettes of the plants in the semantic segmentation masks more similar 
and fit the ground truth, resulting in a more specialized type of architecture for semantic weed segmentation 
using UAV images. This idea is because it is better to apply masks of small sizes in a cascade fashion.(36) These 
changes allow the network to better focus on different object scales and fine details, delineating weed edges 
more clearly (including small plants) and improving the accuracy of semantic segmentation.

The second major modification was the replacement of the ReLU activation function with the Mish function(37) 
which offers a negative range of values, a greater capacity to model complex features (in small weeds), and an 
ability to improve model generalization.

The third proposal in this version was to implement a function that decreases the value of the learning rate 
as the model training epochs progress so that it converges as far as possible to the global minimum in a more 
controlled manner than at the beginning of training.(38)

To this end, where the cosine annealing function is used to vary the learning rate. Thus, the learning rate 
decreases as a cosine function over the epochs, allowing smooth fluctuations and continuous decay.(39)

Figure 9 visualizes the resulting diagram of the architecture of version 2 of the model. The training 
hyperparameters chosen here were batch size=8, number of epochs=100, learning rate=0,0001 with decay 
every ten epochs (cycle) using the cosine annealing function, and optimizer=Adam.

Version 3 of the model
The modifications already proposed and the foundations of the ResNeXt architecture are considered, where 

it indicates that cardinality helps to improve the prediction results since the network should be wider than 
deep.(20) Therefore, the same identity blocks used in the encoder part of the network were implemented in the 
decoder part, which was in charge of generating the semantic segmentation mask. The resulting architecture 
of the model can be seen in figure 9. The training hyperparameters chosen here were as before: batch size=8, 
number of epochs=100, learning rate=0,0001 with decay every ten epochs (cycle) using the cosine annealing 
function, and optimizer=Adam.

Versions 4, 5, and 6 of the models
Because the architecture proposed in version 3 of the model was sufficiently robust in preliminary 

results, it was decided to use it in versions 4, 5, and 6 but testing with different combinations of the training 
hyperparameters indicated in table 2.
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Table 2. Hyperparameter values   used in versions 4, 5, and 6 of the models

Hyper parameters Version 4 Version 5 Version 6

Batch size 16 32 2

Number of epochs 100 200 100

Learning rate 0,00001 0,0001 with decay using 
the cosine annealing func-

tion.

0,001 with decay using 
the cosine annealing 

function.

Optimizer Adam Adam Adam

Evaluation and Interpretation
For the performance evaluation of the six versions of ResNeXt50, three common metrics in semantic 

segmentation were used: dice loss, mean dice coefficient, and mean intersection over union (IoU).
Dice loss is a function used, especially when imbalanced classes exist. It measures the match between the 

ground truth masks and the one predicted by the model at the shape and overlap level. Its range is defined 
between [0,1], with 0 indicating a perfect match between the segmentation masks.(40)

Mean Dice Coefficient is a metric used to evaluate the accuracy of models that segment or classify pixels 
into different classes. Its value range is between [0,1], with 1 indicating a perfect match between segmentation 
masks.(35) 

Mean IoU is another widely used metric to evaluate the accuracy of semantic segmentation models. It 
provides a clear and balanced view of the model’s performance across all classes and is robust in class imbalance 
situations. Its value range is between [0,1], where values close to 1 indicate that the model has excellent 
segmentation performance and high accuracy in class prediction.

Regarding the interpretation of the model, the purpose is to give a value meaning to the predictions made 
by the model, providing information that is understandable and useful for decision-making. Equation 1 is useful 
for calculating weed coverage:(17)

Weed coverage = (Weed area)/(Total area)×100 %

 
Figure 3. The entire process for automatic weed quantification from UAV images using the best model ResNeXt50

To obtain the weed area, the number of pixels belonging to each category (Broadleaf dock, Dandelion, 
Kikuyu, other weeds) provided by the model’s semantic segmentation mask must be calculated. The entire 
process for weed quantification is shown in figure 3.

Data and Metadata. 2025; 4:194  6 

https://doi.org/10.56294/dm2025194


As the 2802×1868 images are post-processed, the pixels belonging to each category of plant found are 
counted, and then weed coverage (equation 1) is applied for each type of plant. 

Finally, to contrast the weed coverages calculated from the predictions of the best model (ResNeXt50) and 
the ground truth, the Student’s t-test and Pearson correlation coefficient (r) statistical tests were used to verify 
whether there are statistically significant differences and a linear association between both measurements,(41) 
respectively.

RESULTS 
ResNeXt50 performance metrics

Figures 4 to 6 show the training curves of the six proposed versions of ResNeXt50 on the validation set (10 
%) using the three-performance metrics.

Figure 4. Dice loss metric on the validation set of the six proposed versions of ResNeXt50

Figure 5. Mean dice coefficient metric on the validation set of the six proposed versions of ResNeXt50

Table 3 summarizes the values   obtained in the validation stage of the evaluation metrics of the six versions 
of ResNeXt50.

The proposed ResNeXt50 version 6 performed best in all evaluation metrics. This indicates that the modified 
network architecture and the optimal combination of hyperparameters played important roles in the model’s 
performance. 

Table 4 details the IoU obtained in each class of the best ResNeXt50 v6 model dataset on the test set (10 %, 
150 images), that is, on data not seen during training.

https://doi.org/10.56294/dm2025194
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Figure 6. Mean IoU metric on the validation set of the six proposed versions of ResNeXt50

Table 3. Evaluation metrics were reached in the six versions of ResNeXt50 
on the validation set (10 % of the dataset, 150 images) for 100 epochs

Version Dice loss Mean dice coefficient Mean IoU

Baseline 0,326 0,710 0,630

Version 2 0,289 0,763 0,690

Version 3 0,291 0,761 0,686

Version 4 0,406 0,593 0,529

Version 5 0,357 0,665 0,586

Version 6 0,260 0,806 0,743

Table 4. IoU metric of each ResNeXt50 v6 model dataset class on the test set (10 %, 150 images)

Version Background 
IoU

Broadleaf 
dock IoU

Dandelion  
IoU

Kikuyo 
IoU

Other 
weeds IoU

Potato 
IoU

Mean 
IoU

Dice 
Loss

Mean Dice 
Coefficient

Version 
6

0,956 0,826 0,583 0,703 0,434 0,908 0,735 0,265 0,787

The class with the highest IoU is the background, which agrees with results obtained by other researchers(22,23,24) 
due to its significant presence in all the images in the dataset. The second class with the highest IoU value 
is Potato, which is in the same situation. The class with the lowest IoU is “other weeds” because this class 
encompasses the different types of weeds that could not be visually identified as a specific category. This makes 
it difficult for the CNN to find and learn unique patterns of the plants in this category, significantly harming 
the mean IoU of the model. Still, the best version 6 obtained a mean IoU of 0,735, indicating that, on average, 
the model segments all six classes well. In addition, a Mean Dice Coefficient=0,787 and Dice Loss=0,265 were 
obtained.

The performance of the model on the validation (table 3) and test (table 4) sets are comparable, i.e., the 
difference in each evaluation metric is small (≤ 2 %), indicating that both data sets are representative, and the 
model generalizes well to unseen data. Figure 7 shows the RGB images, ground truth masks, and predictions of 
the best version of RestNeXt50 v6 on four example sub-images of 128×128.

The predicted segmentation mask matches the ground truth, especially in the image (c), which is more 
evident due to several weeds.
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Figure 7. RGB images (first row), Ground truth (second row), and ResNeXt50 v6 model prediction (third row) on four 
examples of 128×128 sub-images. Kikuyu weed appears in mustard yellow, dandelion in orange, yellow dock in blue, 

potato crop in green, and other weeds in purple

Statistical validation of model predictions 
The Student’s t-test is a parametric statistical test to determine whether there is a significant difference in 

the weed coverage means between the ground truth and the values predicted by the best model (version 6). 
This allows us to objectively determine whether the predictions of ResNeXt50 v6 are reliable. In this case, they 
are considered dependent samples in the test since the manual assessments (ground truth) and those predicted 
by the model are carried out on the same set of images.(42) The null hypothesis H0 and alternative hypothesis 
H1 are established as follows:

H0: d=0 (There is no significant difference in the weed coverage means of both groups)
H1: d ≠0 

The decision rule is: If p-value ≤ 0,05, reject H0.
Statistical evaluation was applied on the test set (10 %) containing 150 images of 128×128 using IBM SPSS 

v26 software. The paired t-test assumes the differences between paired observations (ground truth and model) 
follow a normal distribution. The sample is large enough (n ≥ 30) so that, according to the Central Limit 
Theorem, the differences approximate a normal distribution.(42) This makes the t-test valid and robust, even 
without explicit verification of the normality of the differences. 

Applying the Student´s t-test on the coverage of the Broadleaf dock weed, a p-value = 0,068 was obtained. 
Therefore, according to the decision rule, H0 is not rejected, indicating no significant difference between 
coverage measurements. The Pearson correlation coefficient r = 0,995 (p < 0,05) indicates a very high linear 
association between both measurements.

Using the t-test on the coverage of the Dandelion, a p-value = 0,726 was reached, indicating no significant 
difference between both coverage measurements. The coefficient r = 0,892 (p < 0,05) means a high linear 
association between both measurements.

Utilizing the t-test on the coverage of the Kikuyo, a p-value = 0,323 was achieved, indicating no significant 
difference between both coverage measurements. The coefficient r = 0,994 (p < 0,05) suggests a very high 
linear association between both measurements.

Continuing with the t-test on “other weeds” coverage, a p-value = 0,039 was obtained, indicating a significant 
difference between both coverage measurements. The coefficient r = 0,953 (p < 0,05) shows a very high linear 
association between both measurements.

Lastly, with the t-test on the coverage of potato crops, a p-value = 0,027 was reached, indicating a significant 
difference between both coverage measurements. The coefficient r = 0,997 (p < 0,05) means a very high linear 
association between both measurements.

https://doi.org/10.56294/dm2025194

 9    Vinueza K, et al

https://doi.org/10.56294/dm2025194


https://doi.org/10.56294/dm2025194

It was concluded that the ResNeXt50 v6 model has a high concordance concerning the predictions of the three 
specific weed types (Broadleaf dock, Dandelion, and Kikuyo). However, this level of agreement is reduced for 
detecting weeds belonging to the “other classes” category and potato crops. This may be due to the significant 
imbalance of classes in the dataset since they are the minority and majority categories. Furthermore, this 
could be due to several factors related to unusual characteristics of the plants (size, shape, density), variability 
in light conditions, capture angles, presence of shadows, overlapping plants, abrupt changes in the texture, 
presence of species not adequately represented in the training data, noise in the images (mislabeled, blurry 
examples) and foreign objects (stones, sticks, branches).

Focusing on the potato class, a high IoU of 0,908 is maintained (table 4), but contradictorily, there are 
significant differences between the actual and predicted measurements according to the Student’s t-test. This 
means that, although the model predicts the potato well, on average, there are certain atypical images where 
the coverage prediction is substantially different from the actual coverage (ground truth). This was evidenced 
by the presence of moderate and extreme outliers identified in a box plot regarding the significant difference 
in coverage between the Ground truth and the model v6. Figure 8 shows some example images with significant 
coverage differences in the test set due to some unusual factors of the plants and the dataset mentioned above.

(a) (b) (c) (d) (e)

Figure 8. Images (128×128) of the ground truth (first row) and predicted (second row) with the largest differences in 
plant coverage on the test set. Kikuyu weed appears in mustard yellow, Dandelion in orange, Broadleaf dock in blue, 

Potato crop in green, and other weeds in purple

The model v6 was trained on the Kaggle platform for 100 epochs in 12,9 hours (considered medium), with a 
relatively fast inference time (128×128 image) of 94 milliseconds (10,6 fps) and a large size of 668 MB.

DISCUSSION
The ResNeXt50 architecture, was used for the semantic segmentation task. Six versions are proposed. The 

first 3 modify the architecture so that the upsampling masks better fit the silhouettes and fine details of the 
plants. This adaptation and specialization of the network represents an important improvement and contribution 
to the field of study. The other three remaining versions experimented with different hyperparameters.

According to table 3, model version 6 is the best model, with a mean IoU of 0,743. Version 4 is the worst 
model, with a mean IoU of 0,529, whereas the baseline version obtains a modest mean IoU of 0,630. This 
shows that the modifications proposed in our work to the architecture in the upsampling layers are successful, 
adjusting better to the silhouettes of the plants, considering the small size ones that turn out to be a very 
challenging task using UAV images.(43)

Table 5 compares our proposal against different CNN models used in semantic weed segmentation using UAV 
images on the test set.

Table 5. Comparison of CNN models used in semantic weed segmentation using UAVs
Authors Year Model architecture Number of classes Mean IoU
Cai et al.(22) 2023 PSPNet with ECA module 2 classes: weed and background 0,7973
Nong et al.(23) 2022 DeepLabv3++ with ResNet50 backbone 3 classes: crop, weed, and 

background
0,7010

Shahi et al.(24) 2023 SegNet with DenseNet121 backbone
U-net with EfficientNetB0 backbone

2 classes: weed and background
4 classes: Johnson grass, field 
bindweed, purslane, and background

0,6756

0,5621
Gao et al.(5) 2024 Similar to U-Net and SegNet 3 classes: weed, maize, and soil 0,767
This proposal 2024 ResNeXt50 v6 adapted for semantic 

segmentation
6 classes: Broadleaf dock, Dandelion, 
Kikuyo, other weeds, Potato, and 
background

0,7350
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The PSPNet model is the best, with a mean IoU of 0,7973, followed by the U-net architecture with mean 
IoU=0,767 and our ResNeXt v6 model with a mean IoU of 0,7350. All three models have the mean IoU metrics in 
the same order of magnitude, indicating no drastic difference. Furthermore, our model is superior to the other 
models, DeepLabv3++, SegNet, and U-net, with 0,7010, 0,6756, and 0,5621, respectively.

Regarding the number of classes, the value in Cai et al.(22) is the best mean IoU focused on identifying only 
two categories, background and weeds, while our work analyzes six classes: background, potato crop, and 
four types of weeds. Shahi et al.(24) propose two approaches: the first one, which makes a binary classification 
with background and weeds, and the other multiclass approach that analyzes four classes, the background and 
three types of weeds, obtaining a mean IoU of 0,6756 and 0,5621, respectively. In Gao et al. 5 analyze only 
three classes (weed, maize, and soil), unlike ours, which identifies six classes. This shows that the greater the 
number of categories in the data set, the lower the value in the mean IoU metric. However, our study provides 
a semantic segmentation model with a mean IoU comparable to other algorithms but trained on a dataset with 
a larger number of classes, representing an important contribution to the field of study. 

Regarding this study’s limitations: The dataset’s number of classes is restricted to six categories. The 
collected and annotated dataset has a significant imbalance of classes, mainly concerning the Dandelion and 
“other weeds” categories. Another restriction is the exclusive use of the ResNeXt50 architecture focused on 
semantic segmentation, leaving aside other current deep architectures or a combination of them.

Furthermore, most embedded devices consider our model large (668 MB). Finally, our work uses a low-cost 
UAV to capture RGB images, mainly because they are popular and affordable, offering a cost-efficient solution.(17)

CONCLUSIONS 

Figure 9. The modified architecture of the ResNeXt50 model for semantic segmentation (our proposal)
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The study proposes an adapted version of the ResNeXt50 architecture for the semantic segmentation of 
several types of weeds from drone images. Six categories are successfully processed: background, Potato, 
Broadleaf dock, Dandelion, Kikuyu, and other weeds. The adaptation consists mainly of modifying parameters 
of the upsampling layers in the decoder of the architecture used to better adjust the resulting segmentation 
to the silhouettes of the plants under study. Model training uses a custom dataset from several lands in Carchi-
Ecuador. The model obtains comparable results (mean IoU=0,735) to those existing in the literature (table 5), 
reaching a relatively fast inference time (128×128 image) of 94 milliseconds (10,6 fps).

Future work would suggest increasing the variability of images and weed classes in the data set, prioritizing 
class balancing. It would also be advised to experiment with some combination of modern deep networks 
based on CNN or Transformers. Lighter models optimized for embedded devices applying techniques such as 
quantization or pruning are also recommended. Weed mapping is necessary for creating georeferenced maps 
that indicate the spatial distribution and density of weeds within a field following this research line.
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