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ABSTRACT

Introduction: in the constant evolution of technology, implementing new services in computer systems 
is crucial. However, the integration of these services presents problems and certain challenges in the 
deployment of applications. Technologies such as Docker and microservices architectures are alternatives 
to alleviate such integration. The aim was to compare the performance efficiency between microservices 
architectures implemented with GraphQL and REST, deployed in Docker and localhost environments. 
Method: a computational experiment was conducted following the Wholin methodology to compare the 
performance efficiency of microservices architectures. The experimental design consisted of deploying both 
a GraphQL API and a REST API with identical functionalities in Docker containers and a localhost environment. 
Both APIs were consumed under controlled complexity and data volume conditions, ensuring a fair evaluation. 
Results: the experiment showed that the average response time in the Docker environment was significantly 
lower compared to the localhost environment. Also, the GraphQL API outperformed the REST API. In addition, 
a research artifact including all the study materials was published on Zenodo to support the replicability of 
the experiment. 
Conclusions: the architecture deployed in Docker is more efficient for microservices execution, particularly 
when GraphQL is used.
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RESUMEN

Introducción: en la constante evolución de la tecnología, la implementación de nuevos servicios en los 
sistemas informáticos es crucial. Sin embargo, la integración de estos servicios presenta problemas y ciertos 
retos en el despliegue de aplicaciones. Tecnologías como Docker y las arquitecturas de microservicios son 
alternativas para paliar dicha integración. El objetivo fue comparar la eficiencia de rendimiento entre 
arquitecturas de microservicios implementadas con GraphQL y REST, desplegadas en entornos Docker y 
localhost. 
Método: se realizó un experimento computacional siguiendo la metodología Wholin para comparar la 
eficiencia de rendimiento de arquitecturas de microservicios. El diseño experimental consistió en desplegar 
una API GraphQL y una API REST con idénticas funcionalidades en contenedores Docker y en un entorno 
localhost. Ambas APIs fueron consumidas bajo condiciones controladas de complejidad y volumen de datos, 
asegurando una evaluación justa. 
Resultados: el experimento mostró que el tiempo medio de respuesta en el entorno Docker fue 
significativamente inferior en comparación con el entorno localhost. Además, la API GraphQL superó a la API REST. 
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Además, se publicó en Zenodo un artefacto de investigación que incluía todos los materiales del estudio para 
apoyar la replicabilidad del experimento. 
Conclusiones: la arquitectura desplegada en Docker es más eficiente para la ejecución de microservicios, 
particularmente cuando se utiliza GraphQL.

Palabras clave: Microservicios; GraphQL; REST; Experimento Computacional; Docker.

INTRODUCTION 
Software development companies present several challenges, among which the integration of services and 

holistic management of their architectures make scalability and portability key factors of change.(1) However, 
code management and collaboration activities in the software development process are complex without 
neglecting the accelerated change of technology, the use of artificial intelligence, and the provision of cloud 
services that are constantly evolving.(2) During software development, when making any modification in the 
code or, in turn, in the life cycle phases, a compilation and deployment of the application is required, which 
produces a long and unfavorable iteration cycle, at least when the methodologies are not well carried out.(1) 
In the software development environment, there are problems such as low execution efficiency, unbalanced 
distribution of resources, and software reuse failures caused by different development environments, without 
leaving aside problems such as the high level of consumption of time and resources in the implementation 
and deployment of applications that cause excessive expenses, failures in the operation of services, and low 
performance of applications.(2) 

To mitigate some of the above problems, the use of microservices solves certain drawbacks, where a 
single application is developed with a set of small services that can be compiled, deployed, and operated 
independently according to the needs of each organization. In the same sense, using containers facilitates 
the development, deployment, and execution of applications using the same environment.(3) Containers allow 
the packaging of an application together with all its dependencies and configurations, ensuring that it works 
consistently in any environment.(3) In this sense, we understand that researching the efficiency of Docker, 
GraphQL and REST to discover what conditions are most efficient for implementing microservices architectures, 
solving compatibility, scalability and performance issues. For the reasons stated above, the following research 
question is defined:

RQ1: how does the choice of deployment environment (Docker or Localhost) and the type of microservices 
architecture (GraphQL or REST) impact the software product’s performance efficiency? 

Our proposed solution to the research question is a computational experiment. This experiment will 
compare the performance efficiency of GraphQL and REST microservices architectures using APIs deployed in 
a Docker container (virtualized environment) and a localhost environment. The ‘response time’ metric, based 
on the ISO/IEC 25023 standard,(4) will be used to measure performance efficiency. This research is not just an 
academic exercise. It contributes to the fulfillment of Objective 9: “Industry, innovation and infrastructure. 
Technological advances are also essential for finding permanent solutions to economic challenges...” of the 
Sustainable Development Goals developed by the UN and UNESCO.(5) It’s a step towards finding permanent 
solutions to economic challenges through technological innovation.

The rest of the document presents the following sections: Background, explaining software architectures, 
containers, experimentation in software engineering, and software product quality. Method, where the 
phases of the experimental process are explained, especially the design. Development, where it explains the 
operationalization and execution of the experiment. Results, where the main findings of the computational 
experiment are detailed. Threats to validity, it explains the types of threats found in the experiment. Discussion, 
the results of RQ1 are discussed. Conclusions and future work specify the future lines of research.

Background
Software Architecture

Santos et al.(6) determine that by not carefully analyzing the quality of th e architecture before the 
construction of a system, problems can occur, and the later these are detected, the greater the impact. It is 
considered that 50 % of the delayed projects and 35 % of those exceeding the production cost need help with 
the software architecture. The main purpose of the architecture is to support the software life cycle in order 
to facilitate development, implementation, and maintenance.(7) Among the main benefits are: i) increases 
software quality, ii) improves project delivery times, iii) reduces development costs.

Microservice Oriented Architecture
Yaryina et al.(8) see microservices as an approach to developing a single application with small services, each 

running in its process and communicating with lightweight mechanisms, often an API (Application Programming 
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Interface) of HTTP resources. One of the characteristics of these services is that they can be written in different 
programming languages and use different data storage technologies. Today, it is a well-established approach to 
modularity and agility, as each microservice becomes an independent development unit.(9) Microservices can 
be tested and deployed individually because each has its own lifecycle; they can also be combined with each 
other because of the advantage of language and technology independence.(10) Among the benefits are: i) service 
management, ii) independence, iii) modularity, iv) data management, v) fault tolerance.

REST architecture
The REST (Representational State Transfer) architecture is based on Uniform Resource Identifiers (URI), 

which provide a unique resource identifier, and on the Hypertext Transfer Protocol (HTTP), which defines the 
type of operation to be performed on the resource.(11) It is an architectural style based on the client-server 
paradigm that enables scalability, availability, and performance to be defined in distributed systems. REST-
based APIs are exposed through endpoints, and each endpoint returns the information defined according to the 
operation.(12)

GraphQL architecture
GraphQL is a query language for implementing web services. It was developed internally at Facebook as an 

alternative to REST-based applications.(13) In GraphQL, the data required by the services are defined dynamically, 
while with REST, the server returns a JSON document with all the fields, even if the client only requires one.(12) 
Some terms used by GraphQL are data types, queries, and mutations.(14)

Docker
Docker is an open-source platform that follows a client-server architecture and aims to automate distributed 

application deployment based on containers. A container is in charge of packaging everything indispensable 
for the system to work; therefore, there is no need to worry about software versioning or computer resources 
since they are inside a container.(15) Docker is a lightweight virtualization solution that improves the execution 
of a container and decreases memory consumption by sharing the same kernel between the host and a virtual 
container.(16)

Experimentation in Software Engineering
Experimentation in software engineering makes it possible to determine the cause of certain results. 

Experimentation is not very simple because a design must be established that solves the statistical power 
that generalizes the results through hypothesis testing methods.(17) One of the advantages of experimentation 
is the control of subjects, objects, and instrumentation.(18) Controlled and computational experiments,(19) 
require following an experimental process to determine the scope, planning, operationalization, analysis, 
interpretation, presentation of results, and packaging of research artifacts.(20)

Characteristics and measures of software quality
The ISO/IEC 25000 family of standards provides quality models for computer systems and software products. 

From the characteristics and sub-characteristics defined in this family, it is possible to measure, validate, and 
evaluate software product quality.(21) In this study, we will employ the “Performance Efficiency” characteristic 
stated in the software product quality model of ISO/IEC 25010.(22) We will use the “Average Response Time” 
metric to measure this efficiency, according to ISO/IEC 25023.(4)

METHOD
Experimental Setting
Goal Definition

We used the (GQM) approach,(23) to define the objective of the experiment, considering the following:
•	 Analyze microservices architectures in the software deployment process.
•	 In order to compare the performance efficiency, validating with the response time metric.
•	 Concerning software quality.
•	 From a researcher’s point of view.
•	 In the context of a computational laboratory.

Factors and Treatments
The research factor in the experiment is software architecture, focusing specifically on the deployment of 

APIs as microservices; the treatments were:
•	 Deployment of microservices in a virtualized environment using Docker.
•	 Deployment of microservices in a localhost environment.
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In each environment a GraphQL API and a REST API were deployed.

Variables
“Microservices-oriented software architecture” was defined as an independent variable, represented by 

the GraphQL and REST APIs, deployed in the Docker and localhost environments. On the other hand, “Software 
product quality” was established as a dependent variable, measured in terms of the characteristic “Performance 
efficiency”.

Next, it describes how the metric “Average response time”, referred to in the characteristic “Performance 
Efficiency” of the ISO/IEC 25010 standard,(22) is operationalized.

Average response time: It refers to the time a request takes to complete, i.e., the average time it takes to 
complete an asynchronous process.(4) The measurement function when applying was:

Where:
Ai = time to start job i.
Bi = time to complete job i.
n = number of measurements.

Hypothesis
The following hypotheses were defined and derived from research question RQ1

•	 H0: (Null hypothesis): there is no significant difference in software product quality when deploying 
GraphQL and/or REST microservices in a virtualized Docker environment or a localhost environment. 
The software quality of microservices is similar in both environments, regardless of the type of API used 
(GraphQL or REST).

•	 H1: (Alternative Hypothesis 1): there is a significant difference in software product quality when 
deploying GraphQL and/or REST microservices in a virtualized environment using Docker. It is posited 
that the software quality of GraphQL and/or REST microservices deployed in Docker is superior to that 
obtained when deployed in a localhost environment. 

•	 H2: (Alternative Hypothesis 2): there is a significant difference in software product quality when 
deploying GraphQL and/or REST microservices in a localhost environment. It is posited that the software 
quality of GraphQL and/or REST microservices deployed on localhost is superior to that obtained when 
deployed in a virtualized Docker environment.

Design
A computational laboratory was designed with the necessary conditions to compare the performance efficiency 

of microservices implemented with GraphQL and REST APIs deployed in Docker and localhost environments. 
Four use cases (CU) were defined to simulate controlled workloads, with equivalence in the number of records 
and data manipulation complexity for each API. Table 1 shows the experiment design.

Table 1. Experiment design

Use Case REST (Docker - localhost)
number of records

GraphQL (Docker - localhost)
number of records

CU1 1,100,1000,10000 1,100,1000,10000

CU2 1,100,1000,10000,100000 1,100,1000,10000,100000

CU3 1,100,1000,10000,100000 1,100,1000,10000,100000

CU4 1,100,1000,10000,100000 1,100,1000,10000,100000

CU1 focuses on data insertion, while CU2, CU3, and CU4 correspond to data queries with increasing 
complexity, ranging from the relationship with one table to the interaction with three tables in a relational 
database. This approach allows for the evaluation of the behavior of architectures and deployment environments 
under different workload levels. Each CU will be run five times for each number of records; these repetitions 
guarantee the reduction of variability and biases, providing more accurate and reliable results.
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Experimental Tasks
The experiment contemplates the implementation of two functionally identical APIs for GraphQL and REST, 

where 16 Experimental Tasks (ET) that will execute the four use cases in Docker and localhost environments 
were designed, as detailed in table 2.

Table 2. Distribution of experimental tasks

Use 
Case

GraphQL API
Docker 

GraphQL API
localhost

REST API
Docker

REST API
localhost

CU1 ET01 ET02 ET03 ET04

CU2 ET05 ET06 ET07 ET08

CU3 ET09 ET10 ET11 ET12

CU4 ET13 ET14 ET15 ET16

The experimental lab architecture was designed so the same computer could host both the localhost and 
virtualized Docker environments. First, the necessary tools (PostgreSQL, NGINX) were installed and configured 
to deploy the GraphQL and REST APIs in the localhost environment. Subsequently, in this environment, Docker 
was configured in a manner equivalent to localhost. Finally, a client application was deployed on localhost to 
consume the GraphQL and REST APIs deployed in both environments. Figure 1 shows the detailed architecture 
of the experimental lab.

Figure 1. Experimental laboratory architecture
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DEVELOPMENT 
Instrumentation

This section specifies the infrastructure, technologies, and libraries used in the computational laboratory:

Computer description 
•	 Operating System: Linux Ubuntu 22.04 64-bit.
•	 Processor: AMD Ryzen 7 4700U with Radeon Graphics 2.00 GHz.
•	 Memory: RAM 16.0 GB.

Development Environment
•	 IDE integrated development environment: Visual Studio Code v1.67.2.
•	 Programming Language: Typescript v4.7.4.
•	 Javascript runtime environment: NodeJS v16.17.
•	 npm library for the GRAPHQL API: @nestjs/graphql v10.1.1, @nestjs/apollo v10.1.0, @nestjs/core 

v9.0.0, @nestjs/server-express v3.10.2.
•	 Database Structure Mapping: @nestjs/typeorm v9.0.1, typeorm v0.3.9.
•	 Database driver (PostgreSQL): pg v8.8.0.
•	 Client application for REST API consumption: Postman v9.18.3.
•	 Client application for GRAPHQL API consumption: GraphQL Playground.

Data collection and analysis
•	 Microsoft Excel 365.
•	 IBM SPSS v27.0.

Table 3 shows the structure of the experiment’s data collection.

Table 3. Data collection structure

Variable Description

Sample Sample number (auto numeric)

Architecture GraphQL or REST

Environment Docker or localhost

Use Case Executed use case

Repetition Number of the repetition (between 1 to 5)

No. Records Number of records queried or inserted

Time Response time of the use case execution, captured in milliseconds

Experiment Execution
This experiment was carried out in September 2022.

•	 Preparation of the experimental laboratory. To ensure the functionality of the experimental lab, 
a functional test was executed for each use case in the APIs (GraphQL and REST) of the environments 
(Docker and localhost), according to the distribution detailed in table 3.

•	 Execution of the experiment. After testing the functionality of the experimental tasks, the 
experiment was run iteratively for each architecture in each environment. Each client application run 
executed five iterations of the use case for each number of records in the GraphQL and REST architectures. 
For CU1 (data insertion), a distribution of 1, 100, 1000, and 10,000 records was used, while in CU2-CU4 
(data queries), a distribution of 1, 100, 1000, 10,000, and 100,000 records was used, see table 1. In 
total, 380 samples were obtained in each run (iteration). Figure 2 illustrates the detailed process for 
each iteration.

•	 Data Collection. At the end of the four iterations of the client application, according to the 
experimental design (table 1), the distribution of experimental tasks (table 3), and the execution process 
(figure 2), a total of 1520 samples were collected. These data were stored in a Microsoft Excel 365 file 
for analysis and tabulation. Examples of response times (in milliseconds) captured from the Visual Studio 
Code console because of running the client application are presented in figure 3. The data were copied 
and pasted into the Microsoft Excel 365 file in table 4.
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Figure 2. Experimental process in the execution of the client application

Figure 3. Results of the GraphQL client application run on Docker

Table 4. Collection of GraphQL execution results on Docker

Sample Architecture Environment Use 
Case Repetition No. 

Records
Time 
(ms)

326 GraphQL Docker CU2 1 100000 1335

327 GraphQL Docker CU2 2 100000 1208

328 GraphQL Docker CU2 3 100000 1346

329 GraphQL Docker CU2 4 100000 1212

330 GraphQL Docker CU2 5 100000 1161

RESULTS
This section presents the analysis of the results obtained from executing the computational experiment 

proposed in this study. It specifically analyzes the “average response time” metric of GraphQL and REST 
architectures deployed in Docker and localhost environments and its impact on “performance efficiency,” 
considered a key feature of software quality. A percentage analysis of the performance efficiency for each use 
case is then provided, comparing the average response time of both architectures in the different deployment 
environments.

Table 5 presents the percentage analysis for use case 1. The results clearly demonstrate that the GraphQL 
architecture improved by 29,64 % in performance efficiency in the Docker environment compared to running 
it on localhost. Similarly, REST achieved a 38,79 % improvement on Docker versus localhost. These compelling 
results allow us to confidently determine that, in the data insertion use case, Docker is significantly more 
efficient than the localhost environment.
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Table 5. Percentage of performance efficiency - CU1

Environment/
Architecture

Average response 
time

Environment/
Architecture

Average 
response time

Docker/
GraphQL

224,33 Docker/REST 222,75 0,70 % REST more efficient than 
GraphQL in Docker

Localhost/
GraphQL

318,83 Localhost/REST 363,91 12,39 % GraphQL more efficient 
than REST on localhost

29,64 % Docker/
GraphQL efficiency

38,79 % Docker/
REST efficiency

Table 6 presents the percentage analysis of use case 2, where it is observed that the GraphQL architecture 
is 38,79 % more efficient in the Docker environment compared to its execution on localhost. On the other hand, 
the REST architecture shows a 43,33 % higher efficiency in Docker than in localhost. These results, once again, 
allow us to confidently determine that, in the case of simple queries to a database table, the virtualized Docker 
environment is significantly more efficient than the localhost environment.

Table 6. Percentage of performance efficiency – CU2

Environment/
Architecture

Average 
response time

Environment/
Architecture

Average 
response time

Docker/
GraphQL

289,60 Docker/REST 281,54 2,79 % GraphQL more efficient 
than REST in Docker

Localhost/
GraphQL

481,02 Localhost/REST 496,79 3,17 % GraphQL more efficient 
than REST on localhost

39,79 %
Docker/GraphQL 

efficiency

43,33 %
Docker/REST 

efficiency

Table 7 presents the percentage analysis of use case 3, where it is observed that GraphQL architecture is 
20,44 % more efficient in the Docker environment compared to localhost. On the other hand, REST shows a 
20,73 % higher efficiency in Docker compared to localhost. These results allow us to determine that, in the case 
of queries involving two tables of a database, the virtualized Docker environment is more efficient than the 
localhost environment.

Table 7. Percentage of performance efficiency – CU3

Environment/
Architecture

Average response 
time

Environment/
Architecture

Average 
response time

Docker/
GraphQL

682,20 Docker/REST 711,95 4,18 % GraphQL more efficient 
than REST in Docker 

Localhost/
GraphQL

857,44 Localhost/REST 898,11 4,53 % GraphQL more efficient 
than REST on localhost 

20,44 %
Docker/GraphQL 

efficiency

20,73 %
Docker/REST 

efficiency

Table 8. Percentage of performance efficiency – CU4

Environment/
Architecture

Average response 
time

Environment/
Architecture

Average 
response time

Docker/
GraphQL

2140,51 Docker/
REST

2158,57 0,84 % GraphQL more efficient 
than REST in Docker

Localhost/
GraphQL

2302,71 Localhost/
REST

2697,58 14,64 % GraphQL more efficient 
than REST on localhost

7,04 %
Docker/GraphQL 

efficiency

19,98 %
Docker/REST 

efficiency
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Table 8 shows the percentage analysis of use case 4, where it is observed that the GraphQL architecture is 7,04 
% more efficient in the Docker environment compared to localhost. On the other hand, the REST architecture 
shows a 19,98 % improvement in efficiency in Docker versus localhost. These results allow us to determine that, 
in the case of queries involving three tables of a database, the virtualized Docker environment is more efficient 
than the localhost environment.

Figure 4 summarizes the average response time of GraphQL and REST APIs, grouped by Docker and localhost 
environments.

Figure 4. Average performance efficiency value between GraphQL and REST

Likewise, table 9 summarizes the performance efficiency percentages obtained in the execution of all use 
cases for the GraphQL and REST APIs, highlighting that the Docker environment was more efficient compared 
to the localhost environment.

Table 9. Percentage of Docker performance efficiency 
compared to localhost

Use case Docker/GraphQL Docker/REST

CU1 29,64 % 38,79 %

CU2 39,79 % 43,33 %

CU3 20,44 % 20,73 %

CU4 7,04 % 19,98 %

Average 24,23 % 30,71 %

Finally, table 10 summarizes the performance efficiency percentages of GraphQL compared to REST, obtained 
from running all use cases in the Docker and localhost environments. The results show that GraphQL is more 
efficient than REST in most cases.

Table 10. Percentage of GraphQL performance efficiency compared with REST

Use case Efficiency GraphQL/REST 
on Docker 

Efficiency
GraphQL/REST on localhost

CU1 -0,70 % 12,39 %

CU2 -2,79 % 3,17 %

CU3 4,18 % 4,53 %

CU4 0,84 % 14,64 %

Average 0,38 % 8,68 %
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Statistical analysis of the result
The overall statistical results show that the average efficiency value for GraphQL in the localhost environment 

was 1025,328 (mean) with a standard deviation of 2319,840 and a 95 % confidence interval [552,753-1497,904]. 
On the other hand, REST had a mean value of 1149,820, with a standard deviation of 2709,509 and a 95 % 
confidence interval [597,865-1701,775], these values being higher than those of GraphQL. Despite this, the 
mean response time of GraphQL was determined to be more efficient than REST in the localhost environment.

Similarly, the statistical analysis for the Docker architecture shows that the mean efficiency value for 
GraphQL was 866,262 with a standard deviation of 2108,299 and a 95 % confidence interval [436,780-1295,745]. 
On the other hand, REST presented a mean value of 876,39 with a standard deviation of 2132,421 and a 95 % 
confidence interval [441,994-1310,787]. These results determined that GraphQL response time is more efficient 
than REST in the Docker architecture.

Threats to validity
A series of situations were defined, factors that reinforce the weaknesses or limitations that could threaten 

the validity of the results of the experiment:
•	 Internal Validity: the experimental lab was developed by building REST APIs and GraphQL for 

real data from a banking module, using the SCRUM agile development framework. Iterative-incremental 
monitoring was performed, and technical support was provided for the requirements raised in the tasks 
and the design of the experiment. In addition, acceptance tests were performed for each implemented 
use case, which contributed to ensuring internal validity.

•	 External Validity: in the context of the experimental laboratory, an application of a financial 
system belonging to a private entity was used, which allowed obtaining a close approximation to the data 
used in the industrial practice of software engineering. The experimental tasks included operations of 
simple-medium complexity, covering common data query and insertion scenarios. While generalization 
of the results to more complex tasks is limited, the study’s focus on basic data manipulation operations 
opens exciting possibilities for future research into behavior in more complex systems.

•	 Construct Validity: specific constructs were defined for the execution phase of the experiment to 
automate the measurement of performance efficiency in each use case and to evaluate the impact of 
the architectures in the deployment of GraphQL and REST services on software quality. These constructs 
were not just developed but developed in consensus among the experimenters, ensuring that everyone’s 
expertise was considered and validated through acceptance testing.

•	 Validity of Conclusion: to mitigate possible threats to the conclusions, the study was supported 
with a statistical analysis of the results obtained in the experiment, ensuring that the findings are based 
on reliable data.

DISCUSSION
The adoption of microservices architectures and deployment in virtualized environments such as Docker has 

transformed how services are developed, deployed, and scaled in today’s computing systems.(24) The reduction 
in response time observed in the Docker architecture versus the localhost environment can be attributed to 
several reasons. First, encapsulating services within containers provides isolation that eliminates many of the 
conflicts typical of traditional environments, such as configuration issues, incompatible library versions, or 
discrepancies between development and production environments. It is important to note that, according to 
ISO/IEC 25010 standards,(22) performance efficiency has become a critical factor in evaluating software systems, 
especially in distributed applications.(25) 

In this study, it was possible to observe the reduction in response time in the Docker architecture versus the 
localhost environment; this can be attributed to several reasons. First, the encapsulation of services within 
containers provides isolation that eliminates many of the conflicts typical of traditional environments, such 
as configuration problems, incompatible versions of libraries, or discrepancies between development and 
production environments.

Docker’s advantage in microservices management also lies in its ability to scale horizontally more efficiently, 
allowing new containers to be created in a matter of seconds, which can be vital for applications that require 
high availability and fault tolerance. This scalability contrasts with the limitations of the localhost environment, 
where service replication can involve much slower and more demanding processes in terms of system resources. 
The experiment results underscore the efficiency of GraphQL in the Docker architecture. This aligns with 
previous research, highlighting its ability to reduce data overhead and optimize specific queries, in contrast to 
the broader and less controlled approach of REST. This efficiency in inter-service communication is particularly 
valuable in scenarios where there is a need to optimize latency and minimize bandwidth usage. Despite the 
clear benefits, it is crucial to keep in mind the challenges inherent in implementing containers in microservices 
architectures. The complexity of orchestrating and monitoring multiple containers can lead to operational 
overhead if the right tools, such as Kubernetes, are not implemented.(26) The above-discussed results support 
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the adoption of Docker architectures, especially in scenarios where response time efficiency and scalability are 
priorities. Furthermore, the use of GraphQL combined with Docker can support the development of applications 
that are adaptable to current performance demands.

CONCLUSIONS
The present study has shown that the virtualized Docker environment offers higher efficiency in deploying API 

services than the localhost environment. GraphQL and REST obtained better response times and higher overall 
efficiency in Docker, highlighting REST with an efficiency of 30,71 % and GraphQL with 24,23 %. Complementary, 
it was observed that the efficiency of GraphQL versus REST was remarkable in most cases, especially in localhost, 
where GraphQL showed an average efficiency of 8,68 %, compared to a modest 0,38 % in Docker. However, 
REST showed an advantage in some specific cases such as insertion and simple data queries in the Docker 
environment, demonstrating its potential for use when APIs that perform simple data manipulation actions are 
needed. The results also indicate that the average response time increases with the complexity of the queries, 
especially in those cases involving relationships between several tables. In summary, the virtualized Docker 
environment has proven to be more efficient for deploying API services, and its combination with the GraphQL 
architecture offers a promising approach for applications that require data handling efficiency and reduced 
response time. Therefore, according to the results obtained, H1: (Alternative Hypothesis 1) is accepted: There 
is a significant difference in software product quality when deploying GraphQL and/or REST microservices 
in a virtualized environment using Docker. It is proposed that the software quality of GraphQL and/or REST 
microservices deployed in Docker is superior to that obtained when deployed in a localhost environment.

Future Work
Based on the results of this study, several future works can be considered, such as:

•	 Testing in High Complexity Scenarios: while this study focused on simple-medium complexity use 
cases, it would be valuable to expand the research to higher complexity tasks, such as queries involving 
multiple relationships between tables or more complex integrations with other services.

•	 Security Assessment and Fault Tolerance: fFuture studies could focus on assessing security and fault 
tolerance in Docker and GraphQL-based architectures to identify potential vulnerabilities and propose 
solutions to improve system robustness.

•	 Cache Optimization in GraphQL: since REST showed an advantage in some cases due to caching, 
future research could explore implementing caching mechanisms in GraphQL to improve its performance 
further and reduce response times.

•	 Exploration of Other Orchestration Platforms: although Docker has proven efficient, research could 
be extended by evaluating other container orchestration platforms, such as Kubernetes, to get a broader 
view of the impact on efficiency and scalability.

Research artefact
The set of items included in the research artifact to support the reproducibility of the present experiment 

is available in the Zenodo repository.(27)
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