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ABSTRACT

Decision-making in current industrial contexts has shifted from intuition to a data-driven approach, requiring 
prompt processing of huge datasets. However, conventional Multi-Criteria Decision Making (MCDM) methodologies 
fall short of navigating the intricacy of large datasets. This paper introduces an innovative decision-support 
system integrating multi-criteria methods with machine learning techniques such as artificial neural networks. 
The proposed six-step framework aims to optimize operational decisions by analyzing real-time performance 
data. The research contributes to the advancement of decision-making methodologies in the industrial field, 
offering dynamic responsiveness and improved recommendations compared to traditional MCDM methods. While 
results are promising, future work should focus on robustness testing particularly in terms of its dependence 
on real-time data, to ensure sustained efficacy and mitigate potential biases in recommendations over time.

Keywords: Decision making, Industrial real-time performance, Multi-Criteria Decision Making, AHP, Artificial 
Neural Network.

RESUMEN

La toma de decisiones en los contextos industriales actuales ha pasado de ser intuitiva a un enfoque basado en 
datos, lo que requiere el procesamiento rápido de grandes conjuntos de datos. Sin embargo, las metodologías 
convencionales de Toma de Decisiones Multicriterio (MCDM) no logran manejar la complejidad de grandes 
conjuntos de datos. Este artículo presenta un sistema innovador de soporte a la decisión que integra métodos 
multicriterio con técnicas de aprendizaje automático, como redes neuronales artificiales. El marco propuesto de 
seis pasos tiene como objetivo optimizar las decisiones operativas mediante el análisis de datos de rendimiento 
en tiempo real. La investigación contribuye al avance de las metodologías de toma de decisiones en el campo 
industrial, ofreciendo una capacidad de respuesta dinámica y recomendaciones mejoradas en comparación con 
los métodos MCDM tradicionales. Aunque los resultados son prometedores, el trabajo futuro debe centrarse 
en la prueba de robustez, particularmente en términos de su dependencia de los datos en tiempo real, para 
asegurar una eficacia sostenida y mitigar posibles sesgos en las recomendaciones a lo largo del tiempo.

Palabras clave: Toma de decisiones, rendimiento industrial en tiempo real, Toma de Decisiones Multicriterio, 
AHP, Red Neuronal Artificial.

INTRODUCTION 
Decision-making in industrial settings has undergone a notable transformation, transitioning from intuitive 

judgment relying on experience to a data-driven approach in the information era leveraging data to gain insights 
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into customers’ needs and preferences as well as market conditions to inform decisions, leading continuous 
improvement of process to enhance operational efficiency, and ultimately boost profitability. Literature reveals 
a wide range of multi-criteria decision-making methods used for data-driven industrial decision-making problem-
solving. The process is complex and involves multiple steps, including identifying a business problem, seeking 
information about different possible decisions, evaluating the alternatives based on the gathered information 
culminating in the selection, implementing the decision in business operations, and monitoring the situation 
to make adjustments if needed.(1) 

Meanwhile, the ability of conventional MCDMs to deliver effective decisions that stem from a comprehensive 
evaluation of alternatives is compromised by their inability to handle large datasets associated with several 
factors that characterize modern industrial operations, especially since modern processes are designed to be 
data centered endowing capabilities for the creation and utilization of large datasets (big data) thus rendering 
them rule-based and case-oriented.(2) 

Therefore, industrials are challenged to explore machine learning frameworks to transform disparate data 
into actionable intelligence for optimal decision-making.(3) The effectiveness of decision-making relies on 
the efficient integration of analytical models and data. The appropriate modeling enhances decision-making 
outcomes while the velocity and accuracy with which information is collected, along with the usage of intelligent 
data, add to the quality of the decision.(4)

Recognizing the growing need for self-sufficient and accurate decisional intelligence, the present search 
introduces an innovative hybrid technique combining optimal multi-criteria decision-making methodologies with 
machine learning algorithms for discovering and earning patterns in massive datasets to assist decision-makers 
in making optimum operational decisions while taking into account real-time industrial performance data.

This paper is structured around five sections, in the first section, a literature review is presented while 
emphasizing the paper’s contribution and novelty. Section II introduces the methodology, Section III details the 
construction of the decision-support system, Section IV presents the results, and Section V covers a case study. 
Finally, the findings are summarized in Section VI, with suggestions for future research.

Related work
This section offers a concise overview of the distinctive facets of industrial decision-making within the 

framework of Industry 4.0. A comprehensive literature review is conducted, focusing on prevalent decision-making 
methods, while also emphasizing the diverse contributions of machine learning in optimizing industrial processes. 

The intersection of data analytics and Industry 4.0 is a rapidly growing subject of research, focusing on data’s 
critical role in improving operations and enabling intelligent decision-making. Intelligent production systems in 
Industry 4.0 require data-driven techniques, particularly for condition monitoring.(5,6) it is also a requirement 
for Industry 4.0 maturity considering that it enables real-time incident reaction and data-driven decision-
making, both of which are critical for organization agility.(7) Hence data analysis is increasingly becoming at the 
heart of all industrial operations, notably decision-making.

Industrial performance problems are often complicated and multidimensional, with a vast array of possible 
variables influencing output outcomes.(8) To conquer their complexity Multi-criteria decision-making (MCDM) 
methods are widely employed as they involve several optimization parameters. MCDM methods offer a 
systematic approach that considers several factors from various fields and allows the assessment of decisions 
with disproportionate and contradicting consequences, facilitating effective decision-making procedures. 
These methods serve as a key for increasing the involvement of stakeholders and instilling trust in decision-
making by allowing pair-wise comparison of alternatives.(9) In particular, the weighted sum approach remains 
fundamental in MCDM problems.(10)

Decades of accumulated data-driven statistics unveil that the Analytic Hierarchy Process (AHP) stands as 
the most widely adopted approach mainly because of the algorithm’s simplicity and effectiveness as well as its 
unique ability to capture and incorporate users’ perceptions effectively, particularly when addressing intricate 
and multifaceted problems while identifying and minimizing inconsistencies in opinions.(11,12,13) AHP offers a 
structured three-step process centered around numerical values through pair-wise comparisons.(14) The first 
step involves the construction of a hierarchical structure, where the performance goal assumes the top-level 
position, criteria are placed at the second level, and alternatives are delineated at the third level.  In Step 2, 
the relative importance of decision-making criteria is determined by quantifying their significance associated 
with achieving the goal using Saaty’s scale of relative importance and assessed via pair-wise comparison. The 
final step involves assessing the consistency of the pair-wise comparison matrix to before proceeding with 
further analysis. The consistency ratio is calculated by dividing the Consistency Index (CI) derived from the 
largest eigenvalue (λmax) by the Random index.
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Depending on the calculated Consistency Ratio (CR) value, different scenarios are distinguished. 
•	 CR < 0,1, the pair-wise comparisons are considered acceptable, with a satisfactory level of 

consistency. 
•	 CR > 0,1, the pair-wise comparisons are deemed inconsistent and require reevaluation.
•	 CR=0 perfect pair-wise comparisons.(15,16)

Table 1. Saaty’s relative importance scale

Importance value Interpretation

1 Equal importance

3 Moderate importance

5 Strong importance

7 Very strong importance

9 Extreme importance

2,4,6,8 Intermediate values

The rise of Industry 4.0 has resulted in a substantial influx of real-time data from the factory floor, challenging 
thus the efficacy of conventional multi-criteria decision-making methods. Their incapacity to handle extensive 
data volumes undermines their effectiveness. Additionally, their temporal independence fails to align with the 
dynamic nature of industrial performance. These limitations create an opportunity to incorporate machine 
learning in business processes to capitalize on this data to enhance decision-making processes in Industry 4.0 
with applications covering a wide range of industrial challenges such as production planning, control, and 
defect analysis highlighting how machine-learning approaches may contribute to improvements in predictive 
modeling and decision-making and revolutionize efficiency.(17) Machine Learning is transforming decision-making 
in various industries, making them more capable of handling complicated patterns by fine-tuning computational 
abilities through experiential learning and using the power of online data and cost-effective computing.(18,19) 

Supervised machine learning is widely used in industrial research due to its superior performance over 
unsupervised learning.(20) A common and valuable supervised learning system in predictive analytics is Random 
forests (RF). RF performs in regression and classification problems and is recognized for its high predicted 
accuracy. The algorithm creates decision tree ensembles on randomly selected data subspaces to reduce 
overfitting and improve generalization producing robust models that successfully capture complicated patterns.
(21,22) Another straightforward yet powerful machine learning approach that is extensively used in various 
applications, including industrial decision-making is the K-Nearest Neighbor (KNN). The KNN is remarkable 
for its non-parametric character since it makes predictions or classifications based on the proximity of data 
points. Its simplicity, along with reasonably strong accuracy across a variety of situations, has positioned KNN 
as a preferred alternative amongst other machine learning techniques.(23,24,25,26) Furthermore, the literature 
has various industrial applications incorporating artificial neural networks (ANNs), indicating their extensive 
potential for fast and effective data analytics while presenting results in an intelligible format for users.
(27) Research also suggests that ANNs can improve process management and control systems, although their 
effectiveness varies based on the situation at hand.(28) Artificial intelligence, especially machine learning, 
according to Meddaoui et al. is is widely used in industry, particularly in the field of machine learning to predict 
future data based on inputs and KPIs. These researchers have shown that ANN (Artificial Neural Networks) is 
extensively used in industrial maintenance to predict failures.(29)

The current work extends previous research by presenting an innovative approach to decision support systems 
that leverages the capabilities of machine learning algorithms and the structured decision-making approach of 
AHP, to offer a robust and responsive framework for enhancing decision support in dynamic environments, that 
overcomes the aforementioned limits of conventional decision-making frameworks particularly in the context 
of Industry 4.0 and its demand for agile and data-driven decision-making.

METHOD
The proposed decision-support system is structured around a six-step decision-making methodology, which 

is divided into two main blocks. The first block involves the establishment of a well-defined decision-making 
framework. The process initiates with a clear definition of the company’s vision and performance objectives. 
Indicators are then assigned to these objectives, and a prioritization is conducted to better align with the 
decision-making strategy. The second block of the process commences with the identification of alternatives. 
Subsequently, a scoring mechanism is applied to these alternatives, and the final step involves evaluating the 
alternatives to select the optimal one. This comprehensive methodology ensures a systematic approach to 
decision-making, integrating both strategic vision and performance objectives (figure 1).
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Figure 1. Decision-making methodology

Defining the decision-making framework
To better assist industrial decision-making, the model has been built to be fully adaptable to the specifics that 

distinguish each organization. thereby, the implementation entails the establishment of a tailored performance 
measurement system, considering that the effectiveness of the decision-making relies upon supplying valuable 
inputs that can only be drawn from a holistic performance measurement system that  reflects an accurate 
overall view of the business’s current state from four key perspectives. This approach ensures that all critical 
aspects are simultaneously evaluated and detects sub-optimal decisions where improvements in one aspect 
might negatively impact another, rather than concentrating solely on financial metrics. This prevents the 
suboptimization often seen with traditional systems which can be detrimental to the overall performance.

Step 1: defining the vision and performance objectives 
During this stage, managers are interviewed to clarify the organization’s vision and create an initial list of 

objectives across the four performance perspectives outlined by the balanced scorecard method: financial, 
customer, internal business, and innovation and learning. This process involves addressing the following key 
questions:

•	 To succeed financially, how should the organization appear to its shareholders?
•	 To achieve this vision, how should the organization appear to its customers?
•	 To satisfy its shareholders and customers what business process must be excelled at?
•	 To achieve this vision, how will the organization sustain its ability to change and improve? 

Step 2: determining the key performance objectives

 
Figure 2. Balanced scorecard with KPIs
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Figure 2 shows the global operators of the company’s vision. Performance indicators are developed with 
executives and objectives are shortlisted to less than 20 measurable objectives focusing only on necessary 
and sufficient metrics. Each objective is assigned a key performance indicator (KPI) with a current and target 
performance value to help the decision-maker get a clear understanding of how the company has been 
performing and its future direction, ensuring that both the strategic and operational levels are operating 
simultaneously and their efforts are driving towards the same goal.(30,31) Before moving forward, a review 
session is conducted with managers and executives to verify that the BSC translates accurately to the overall 
strategy they are striving for.

Step 3: Prioritizing key performance objectives
To ensure that the most important aspects of the organization’s strategy are given the appropriate attention 

and resources drawing on the data acquired through the balanced scorecard analysis, decision-makers are tasked 
to conduct a Hierarchical Process Analysis (AHP) to ascertain the relative importance of the key performance 
objectives retained from the prior stage and weights them accordingly (figure 3).

Figure 3. Decision-making hierarchy

To perform AHP, we follow these steps:
•	 Define the problem and its components: the hierarchical structure is mapped out with the company 

vision at the highest level followed by key performance objectives at the second level.
•	 Create a pairwise comparison matrix: managers are required with the support of executives to 

determine the relative importance of different performance criteria with respect to the overall goal 
using the help of Saaty’s scale of relative importance, with 1 indicating equal importance and 9 indicating 
that one performance objective is much more important than the other. 

•	 Calculate the priority vector: the pair-wise comparison matrix is subsequently normalized to derive 
a priority vector that incorporates the respective weights assigned to performance objectives.

•	 Perform consistency checks: consistency ratio is calculated and if it falls outside the designated 
threshold pair-wise comparisons are revisited for reassessment.

The outcomes of these two stages can be utilized to formulate the objective function, representing the 
overall performance of the company expressed as the weighted sum of sub-performances, each associated with 
its respective performance objective.

 
Where:

•	 pi: The company’s performance against the objective i.
•	 wi: Contribution of the objective i to the overall performance.
•	 n: Number of objectives defined.

Selecting the optimal alternative
Step 4: determination alternatives

This step is performed anytime a problem emerges. The decision-making panel should include interdisciplinary 
decision-makers to ensure a comprehensive understanding of the problem at hand from multiple perspectives. 
Their role is to brainstorm and generate a list of all possible solutions, even unconventional ones. To promote 
creativity and innovation, varied brainstorming approaches such as reverse brainstorming, mind mapping, word 
association, role-playing, and group brainstorming might be employed. The alternatives are compiled into a list 
after removing duplicates for reference in the following phases of the decision-making process.
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Step 5: scoring alternatives
The ultimate objective in optimizing a company’s overall performance is to identify the alternative that 

maximizes the overall performance. Although alternatives are not expressly included in the objective function, 
their influence directly affects the overall performance. To overcome this challenge, the approach employs 
a scoring principle derived from the AHP method to quantify the impact of each alternative. Executives are 
required to score each alternative’s potential contribution to each specific performance objective with the 
help of the rating system illustrated in table 2. 

Table 2. Relative importance scale

Importance value Interpretation

1 Negative to no contribution to the specific 
performance objective

3 Little to no positive contribution to the 
specific performance objective

5 Moderate positive contribution to the specific 
performance objective

7 Very strong positive contribution to the 
specific performance objective

9 Extreme positive contribution to the specific 
performance objective

2,4,6,8 Intermediate values

Step 6: alternatives evaluation
Alternative evaluation in industrial decision-making differs from other multi-criteria decision-making 

situations is that the impact of an alternative is not a static attribute; rather, it varies in real-time based 
variations in performance levels. However, Traditional Multiple Criteria Decision-Making (MCDM) approaches 
presume a static process, focusing primarily on the possible impact of alternatives on performance objectives, 
and fail to account for the ever-changing dynamics of industrial performance. Recognizing this limitation, 
the suggested alternative scoring approach provides a dynamic framework based on the potential impact 
of alternatives on performance goals, based on the judgment of the decision-maker adjusted according to 
the current performance using the equation below. This approach makes the model responsive and dynamic, 
enabling more accurate and contextually relevant decision-making, resulting in a more flexible and context-
aware decision-making approach better suited for industrial decision-making.

Where:
•	 si: Score of the alternative against the objective i.
•	 wi: Contribution of the objective i to the overall performance.
•	 gj: Performance gap between current and target performance against objective i.
•	 n: Number of objectives defined.

DEVELOPMENT
To alleviate the cognitive burden associated with the industrial decision-making process, the proposed 

decision-making approach is further enhanced by leveraging machine learning algorithms. The artificial 
intelligence module will serve as the decision-making brain as shown in figure 4. It will receive as input the 
target performance values per objective, and the scores assigned to the alternatives by the decision-makers 
against each of the objectives, as well as the real performance values to return the alternatives classified 
according to their overall score. The incorporation of these advanced techniques will not only streamline the 
decision-making process but also improve its efficacy, making it more responsive to complex and dynamic 
scenarios.

To determine the optimal architecture of our decision-support system, we followed a two-step process. 
First, we identified the most suitable machine learning algorithm by comparing the performance of three 
different algorithms, ultimately selecting the one that performed best for our specific case. The second step 
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involved optimizing the model’s structure through a trial-and-error approach, refining the architecture to 
enhance overall system performance.

Figure 4. Decision-support system modeling

Selecting the machine learning framework
In the context of industrial performance, supervised machine learning is commonly employed.(32) Based 

on the decision-making framework previously outlined, the decision-making problem aligns with a prediction 
problem. As such, K-Nearest Neighbors (KNN), Artificial Neural Networks (ANN), and Random Forest (RF) were 
explored using Orange a powerful data mining software to determine the most relevant one for solving the 
specific problem on hand. Orange is a robust, open-source machine learning and data visualization suite that 
provides a comprehensive visualization-driven environment for data science.

To construct the evaluation database, we focused on the scenario of a small enterprise with 12 performance 
indicators distributed across four perspectives: financial, customer, internal business, and innovation. Experts 
across different performance contexts carefully defined and subsequently evaluated the alternatives. The 
resulting dataset comprises 500 entries, where each entry represents a unique combination of performance 
indicators and expert evaluations. The dataset was systematically partitioned into an 80 % training set and 
20 % test set and used to train all 4 machine learning methods in parallel. The efficiency of the methods in 
capturing and learning features was evaluated using:  Mean Square Error (MSE), Mean Absolute Error (MAE), and 
Mean Absolute Percentage Error (MAPE), as well as the Coefficient of Determination (R²). The results of these 
evaluations are presented in table 3.

Table 3. Training results and accuracy of the compared algorithms

ML-algorithm MSE RMSE MAE MAPE R²

K-nearest neighbor 0,304 0,551 0,446 0,078 0,732

Artificial neural network 0,023 0,153 0,120 0,022 0,979

Random Forest 0,303 0,551 0,440 0,077 0,733

The K-Nearest Neighbors (KNN) approach has modest performance across metrics and a decent R² value, 
suggesting an acceptable capacity to learn data patterns. The Random Forest approach is competitive, providing 
results similar to KNN across all metrics. The Artificial Neural Network (ANN) on the other hand performed well, 
with low errors across all metrics and a high R² value, indicating an excellent ability to identify and predict 
data patterns making it an ideal option for predictive modeling in the case at hand.

Optimizing the model’s architecture
The input and output layers of our ANN are already defined as the system takes as input the scores of the 

alternative per performance objective (at a number of 12 in our case) and the average of performance per 
objective (at the number of 12 in our case) and return a single value which is the alternative overall score Thus 
the input Layer shall contain 24 neurons and output layers has 1 single neuron, next, we will be looking at the 
number of hidden layers and neurons per each layer (figure 5).

The number of hidden neurons is an essential parameter that influences the performance of the ANN. It is 
important to avoid using too few hidden neurons, resulting in underfitting, or too many, causing an overfitting. 
Although there is no uniform approach for determining the ideal ANN design, various guidelines are used to 
identify the appropriate number of neurons in hidden layers. In general, the number of hidden layers depends 
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on the function the ANN will be serving, when the ANN is designed to be capable of representing linear separable 
functions or decisions no hidden layer is needed, when it’s intended to approximate any function that contains 
a continuous mapping from one finite space to another we should be looking at a single hidden layer when it’s 
expected to represent a random decision boundary to a random accuracy with rational activation functions and 
approximate any smooth mapping to any accuracy two hidden layers are needed. 

Since our system needs to estimate a global score of an alternative based on an elementary score per 
performance objective and current performance that can be best assimilated to a function that contains a 
continuous mapping from one finite space to another, we will need a single hidden layer. The number of hidden 
neurons should ideally lie within the size of the layer that inputs data and the size of the output layer, and it 
must also be beneath two times the dimensions of the input layer. Therefore, the optimal structure of the ANN 
in our context comprises a single hidden layer containing between 2 and 14 neurons. The optimal configuration 
is determined via a trial-and-error process.

Table 4. Mean square error results for different hidden layer configurations

Number of hidden neurons Mean Square Error (MSE)

2 hidden neurons 7,40E-04

3 hidden neurons 2,12E-07

4 hidden neurons 4,77E-04

5 hidden neurons 5,82E-04

6 hidden neurons 5,76E-04

7 hidden neurons 2,30E-03

8 hidden neurons 1,30E-03

10 hidden neurons 1,7 E-03

12 hidden neurons 2,20E-03

14 hidden neurons 1,90E-03

 
Figure 5. Training results for different hidden layer configurations

As shown in table 4 and figure 6, the optimal structure was determined to include 24 input neurons, 3 hidden 
neurons, and 1 output neuron as experimentation revealed that the lowest MSE level, at 2,12E-07, was attained 
with a hidden layer comprising 3 neurons.
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Figure 6. The optimized neural network structure

RESULTS
In order to evaluate the performance of our predictive model, we conducted a comprehensive comparison 

between the predicted values generated by the model and the actual observed values. This comparison is 
visualized on a scatter plot in the figure 7, which specifically highlights the first 30 data points where the actual 
values are depicted in red, and the predicted values in blue.

Figure 7. Comparison of predicted and true values

As illustrated, the red and blue points frequently converge, with many instances where the points are so 
closely aligned that they overlap entirely. This overlapping of points serves as a clear visual indication of the 
model’s high level of accuracy. The proximity of the predicted values (in blue) to the actual values (in red) 
suggests that the model consistently produces predictions that are nearly indistinguishable from the true data. 
This strong alignment between the two sets of values highlights the model’s robustness and its ability to reliably 
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capture and reflect the underlying patterns within the dataset. Such performance is crucial in ensuring that 
the decision-support system can provide trustworthy and precise outputs, which are essential for informed 
decision-making in real-world applications

Case study: model validation
To validate the model and assess its capability to leverage real performance data we implement it in an 

industrial setting and conduct a comparative analysis of the outputs. We compare the results generated by the 
model with those obtained from the Analytic Hierarchy Process (AHP) in two distinct scenarios characterized by 
different performance values. This comparison serves as a rigorous test, evaluating the model’s performance 
across varying performance conditions and providing insights into its effectiveness in practical, real-world 
situations.

Defining the decision-making problem
The model is used to help the company decide on the optimal course of action to take to face the problem 

of the increase in customer complaints a small-sized company operating in the automotive sector has been 
experiencing recently due to product defects and quality issues to improve quality and reduce defects to 
maintain customer satisfaction and competitiveness and improve company’s overall industrial performance. 

The company has four alternatives to choose from: 
•	 Alternative 1 (A1):  Invest in Advanced Quality Control Systems: this involves implementing state-

of-the-art quality control technologies and equipment to detect defects early in the production process.
•	 Alternative 2 (A2): Implement Robust Training Programs: Focus on enhancing employee skills and 

training to ensure proper assembly and testing procedures, leading to fewer defects.
•	 Alternative 3 (A3) Enhance Supplier Quality Management: Strengthen collaboration with suppliers, 

set stringent quality standards, and conduct regular audits to ensure the supply of high-quality components.
•	 Alternative 4 (A4) Redesign Critical Production Processes: Identify and redesign problematic 

production steps to eliminate root causes of defects.

Phase I: Defining the decision-making framework
As mentioned in table 5, company managers and experts were asked to work together to lay out the 

vision of a small-sized firm that operates within the automobile manufacturing industry, which we consider 
to be an application case for our decision-making approach, Interviews and multiple barnstorming sessions 
conducted with the management team allowed us to define their vision and strategy and break it down into 
performance objectives, which were assessed with the help of the executives and reduced to 12 measurable 
objectives distributed over four perspectives: financial, customer, internal business, and innovation and learning 
reflecting the company’s vision taking into account the company’s potential (means and resources) as well as 
market trends and challenges. 

The next stage involves capturing the “As is situation” and setting performance targets to achieve the “To 
be situation”. The goal is to continuously challenge the company’s processes using the kaizen principle to 
achieve the outlined vision.

Table 5. Balanced scorecard of the studied company operating in the automotive field

Strategic objective
Performance measure

Key performance indicator As-is situation To-be situation

Financial Obj1. Increase profit Net profit margin 10 % 25 %

Obj2. Make profitable investments ROI (Return on Investment) 15 % 50 %

Obj3. Increase sales Revenue growth rate 5 % 20 %

customer Obj4. Satisfy customers Complaint’s rate 30 % 5 %

Obj5. Increase market share Market share index 5 % 20 %

Obj6. Retain customers Customer retention rate 70 % 90 %

internal process Obj7. Increase availability Operational availability rate 79 % 98 %

Obj8. Have efficient processes Performance rate 85 % 95 %

Obj9. Produce high-quality products Quality rate 80 % 98 %

learning and 
growth

Obj10. Have a well-trained staff Job role competency rate 75 %

Obj11. Retain employees Employee turnover 9 %

Obj12. Engage employees Employee participation rate 6 %
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To complete the decisional framework, a pairwise comparison of Key performance objectives was done in 
multiple iterations with the participation of managers to prioritize KPOs and determine their respective weights 
until the evaluation of the consistency ratio was validated with a CR = 0,1 falling inside the threshold (figure 8).

 
Figure 8. The Decision-making hierarchy of a company operating in the automotive sector

Phase II: Selecting the optimal alternative
Decision-makers are required to detail each of the alternatives according to the effect it could have on 

each of the performance objectives in order to assign a score using a structured and uniform assessment scale 
ranging from 1 to 9 providing a comprehensive range of scores 1,3,5,7 but also introduces intermediate values 
to accommodate nuanced assessments offering a systematic and transparent means of gauging the potential 
impact of alternatives on our specified performance objectives.

For example, investing in advanced quality control systems has an initially neutral to negative impact on net 
profit margin due to upfront costs which will be positive over time when the solution turns out to be efficient 
as cost savings are realized. 

1.	 The impact on the net profit is neutral initially, potentially turning positive as benefits accrue. 
2.	 The impact on the return on investment is neutral initially, potentially turning positive as cost 

savings are realized.
3.	 The impact on revenue is positive with increased customer satisfaction and loyalty by enhancing 

goods quality
4.	 The impact on complaints rate is positive as the system identifies and addresses quality issues
5.	 The impact on the market share is positive depending on the improvement in complaints rate and 

product quality
6.	 The impact on customer retention is positive as high-quality products contribute to improved 

customer satisfaction
7.	 The impact on operational availability is neutral to positive by reducing the quality issues requiring 

production suspension decreasing the operational availability 
8.	 Impact on performance rate is neutral to positive particularly if the system targets specific areas 

affecting performance
9.	 Impact on the quality rate is positive, as the system detects and rectifies defects or deviations
10.	The impact on job Role Competency Rate is positive, as employees adapt to and gain proficiency 

in using the new system.
11.	The impact on employee turnover is neutral to positive, depending on the system’s effect on job 

satisfaction and stress reduction.
12.	The impact on Employee Participation Rate is neutral to positive

Similarly, the other alternatives undergo an evaluation to ascertain their elementary scores, which are then 
summarized in table 5.

Table 6. Alternatives scoring

  KPO1 KPO2 KPO3 KPO4 KPO5 KPO6 KPO7 KPO8 KPO9 KPO10 KPO11 KPO12

A1 2,00 2,00 4,00 7,00 5,00 7,00 2,00 7,00 9,00 5,00 2,00 2,00

A2 2,00 2,00 4,00 5,00 4,00 3,00 2,00 5,00 7,00 9,00 9,00 9,00

A3 2,00 2,00 4,00 4,00 5,00 3,00 3,00 4,00 5,00 2,00 2,00 2,00

A4 1,00 1,00 5,00 7,00 5,00 5,00 7,00 7,00 7,00 2,00 2,00 7,00

Results for industrial performance scenario #1
We use the developed intelligent decision-support system and the conventional AHP method to determine 

the best strategy to follow at a given point in time characterized by the industrial performance figure 9.
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Figure 9. Real-time industrial performance for scenario #1

Table 7. Alternatives ranking for the first performance case

Alternatives ANN model AHP

A4. Redesign Critical Production Processes 14,10 5,11

A1. Invest in Advanced Quality Control Systems 13,68 5,20

A2. Implement Robust Training Programs 13,24 4,16

A3. Enhance Supplier Quality Management 10,34 3,70

As mentioned in table 5 related to case 1, the ANN model yields a different ranking compared to the AHP. 
ANN model suggests prioritizing “A4-Redesign Critical Production Processes” (bold line) first, followed by “A1-
Invest in Advanced Quality Control Systems,” then A2 and A3. This disparity in rankings between the two models 
indicates variations in their assessments based on the specific performance values in the given scenario.

Results for industrial performance scenario #2
We replicate the same exercise at a different point in time characterized by the industrial performance 

illustrated in figure 10 and compare the results of conventional AHP and the developed model.

 
Figure 10. Real-time industrial performance for scenario #1
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Table 8. Alternatives ranking for the second performance case

Alternative ANN model AHP

A1. Invest in Advanced Quality Control Systems 13,08 5,20

A4. Redesign Critical Production Processes 12,86 5,11

A2. Implement Robust Training Programs 11,99 4,16

A3. Enhance Supplier Quality Management 9,19 3,70

In this second case, both the ANN model and AHP approach provide identical classifications of the alternatives, 
prioritizing them as follows: “A1-Invest in Advanced Quality Control Systems,” followed by “A4-Redesign Critical 
Production Processes,” then A2 and A3.

The divergent rankings between the two cases reflect distinct strategic priorities. In the second ranking, the 
emphasis is placed on immediate investment to address quality issues and improve customer satisfaction, aiming 
to reduce complaints and enhance overall product quality. This reflects a proactive approach prioritizing direct 
investment for quality improvement. In contrast, the first ranking employs redesign of problematic production 
processes to address indicating a strategic consideration of cost-effectiveness and resource allocation, focusing 
on resolving quality issues with limited financial resources.

CONCLUSION
In conclusion, the developed model represents a significant advancement in decision-making methodologies 

within industrial contexts. Delivering pertinent recommendations based on real-time performance indicators, 
it demonstrates a level of dynamic responsiveness that distinguishes it from conventional Multiple Criteria 
Decision-Making methods. The integration of Machine Learning into the industrial decision-making process 
not only enhances the efficiency of decision-making but also opens up new horizons for the development of 
hybrid methodologies. However, the robustness of the model must be rigorously tested, particularly regarding 
its dependency on real-time data. This critical evaluation will help mitigate the risk of biases creeping into 
recommendations over time, thereby ensuring the model’s reliability and effectiveness. The need for such 
testing introduces a novel perspective for future research endeavors, focusing on refining and expanding the 
applicability of hybrid decision-making methodologies in industrial settings.
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