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ABSTRACT

In recent days, traffic prediction has been essential for modern transportation networks. Smart cities rely on 
traffic management and prediction systems. This study utilizes state-of-the-art deep learning and machine 
learning techniques to adjust to changing traffic conditions. Modern DL models, such as LSTM and GRU, 
are examined here to see whether they may enhance prediction accuracy and provide valuable insights. 
Repairing problems and errors connected to weather requires hybrid models that integrate deep learning 
with machine learning. These models need top-notch training data to be precise, flexible, and able to 
generalize. Researchers are continuously exploring new approaches, such as hybrid models, deep learning, 
and machine learning, to discover traffic flow data patterns that span several places and time periods. Our 
current traffic flow estimates need improvement. Some expected benefits are fewer pollutants, higher-
quality air, and more straightforward urban transportation. With machine learning and deep learning, this 
study aims to improve traffic management in urban areas. Long Short-Term Memory (LSTM) models may 
reliably forecast traffic patterns.

Keywords: Smart Cities; Intelligent Transportation Systems; Machine Learning (ML); Deep Learning (DL); 
Long Short-Term Memory (LSTM).

RESUMEN

En los últimos tiempos, la predicción del tráfico ha sido esencial para las redes de transporte modernas. Las 
ciudades inteligentes se basan en sistemas de gestión y predicción del tráfico. Este estudio utiliza técnicas 
de aprendizaje profundo y aprendizaje automático de última generación para ajustarse a las condiciones 
cambiantes del tráfico. Los modelos modernos de DL, como LSTM y GRU, se examinan aquí para ver si pueden 
mejorar la precisión de la predicción y proporcionar información valiosa. La reparación de problemas y 
errores relacionados con la meteorología requiere modelos híbridos que integren el aprendizaje profundo 
con el aprendizaje automático. Estos modelos necesitan datos de entrenamiento de primera categoría para 
ser precisos, flexibles y capaces de generalizar. Los investigadores están explorando continuamente nuevos 
enfoques, como modelos híbridos, aprendizaje profundo y aprendizaje automático, para descubrir patrones 
de datos de flujo de tráfico que abarcan varios lugares y períodos de tiempo. Nuestras estimaciones actuales 
del flujo de tráfico necesitan mejoras. Algunos de los beneficios esperados son menos contaminantes, aire 
de mayor calidad y un transporte urbano más sencillo. Con el aprendizaje automático y el aprendizaje 
profundo, este estudio pretende mejorar la gestión del tráfico en las zonas urbanas. Los modelos de memoria 
larga a corto plazo (LSTM) pueden predecir de forma fiable los patrones de tráfico.

Palabras clave: Ciudades Inteligentes; Sistemas de Transporte Inteligentes; Aprendizaje Automático (ML); 
Aprendizaje Profundo (DL); Memoria a Largo-Corto Plazo (LSTM).
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INTRODUCTION
Implementing intelligent transportation systems relies on up-to-date and accurate data on traffic flows.(1) It 

is officially entered the age of big data in transportation, thanks to the explosion of traffic data in recent years. 
Current approaches to predicting traffic flows rely heavily on simplistic traffic prediction models,(2) which fail 
to deliver in several practical contexts. Due to this circumstance, it is motivated to reconsider the traffic flow 
prediction issue using deep architectural models and massive traffic data.(3)

In sequence prediction tasks, LSTM captures long-term dependencies and excels. Time series, machine 
translation, and voice recognition(4) are some of the applications that benefit from the order dependency. This 
article gives a comprehensive overview of long short-term memory (LSTM), discussing its concept, architecture, 
and foundational principles as well as its essential function in a range of application domains. Because of its one 
hidden state that is transmitted down over time,(5) a typical RNN may struggle to learn long-term dependencies. 
One solution proposed by LSTMs model is the memory cell, a container with the capacity to store information 
for a long time.(6,7,8) 

Translation, voice recognition, and time series forecasting are just a few of the many applications that 
benefit from LSTM architectures’ ability to learn long-term links in sequential data.

In order to achieve these goals, we need novel and innovative approaches for precisely forecasting and 
managing traffic,(5,9) which might enhance traffic management and raise living standards in smart cities. 
Moreover, one additional objective of smart cities is to create the circumstances for future sustainability and 
better living conditions by lowering the emissions generated by different companies. We want to explore the 
remaining challenges in this area as well as the progress made in the previous few years in machine learning 
and deep learning to forecast traffic flow and congestion.(5,6,9,10)

Recognizing the flaws and limitations in the present research in the topic is essential even with the 
developments. In this work, these issues—which vary from model-specific restrictions to more general challenges 
in using ML and DL techniques in real-world traffic situations—are thoroughly investigated. Furthermore 
emphasized throughout the paper is the significance of data for these models’ training and validation. 
Researchers employ several datasets to enhance model performance, including information on traffic, pollution, 
and weather. Furthermore, as the researchers ought to have realized, feature engineering is essential for traffic 
flow prediction. In forecasting a known variable, it is essential. Our models have better prediction potential 
since we have carefully designed and chosen pertinent elements. These characteristics help us to develop 
precise forecasts by capturing important data. The aim is to create models that show adaptability to the unique 
characteristics of different urban settings and prediction accuracy.

Recent scientific research attempting to anticipate traffic flow using ML and DL models are reviewed in this 
paper. The primary objective is to fully explore strategies, techniques, and datasets in order to understand 
their effectiveness, difficulties, and shortcomings in already used techniques. Traffic prediction systems have 
advanced noticeably by the use of state-of-the-art ML and DL techniques. Higher forecast accuracy has been 
shown by a large number of studies on the effectiveness of these techniques in assessing traffic flow dynamics. 
Remarkable approaches that work well in many situations include ensemble methods, autoencoders, and Long 
Short-Term Memory (LSTM) Gated Recurrent Unit (GRU).(11)

The most current advances in deep learning (DL) and machine learning (ML) models for traffic flow prediction 
are included in this study. For their traffic infrastructure development, it also provides academics, policymakers, 
and practitioners with useful information and insights. Moreover, it gives a comprehensive summary of the 
subject by examining methodologies, evaluation criteria, and datasets. In the end, this study facilitates and 
adds to the literature resource for upcoming scholars and researchers.

The paper is organized as follows: first, we introduce traffic flow, traffic flow prediction, and the significance 
of ML and DL algorithms in the predictions. In the second chapter, we explain our literature review and the 
methodology used for this research review. Chapter 3 also provides a detailed review of previous studies using 
ML for traffic flow predictions. Similarly, Chapter 4 discusses studies using DL for traffic flow prediction. Chapter 
5 discusses the comprehensive comparison between ML and DL performance.

Furthermore, Chapter 6 briefly overviews all the datasets used in the studies reviewed. Moreover, Chapter 7 
discusses previous studies’ gaps and limitations. Chapter 8 briefly overviews the ML and DL models researchers 
employ in traffic flow prediction and shows excellent results. In addition, evaluation metrics are discussed in 
Chapter 9. Ultimately, we conclude the paper with a conclusion and prospects.

METHOD
The systematic review approach used in this study is considered rigorous and objective for analyzing existing 

research. The methodology involved the following tasks:
Comprehensive search: a thorough search was conducted methodically on reliable scholarly databases such 

as Google Scholar, IEEE Xplore, Elsevier, ResearchGate, and Springer. Targeting the title, abstract, or keyword 
list, specific search phrases like “traffic flow prediction”, “machine learning”, “deep learning”, “LSTM”, “RNN”, 
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“CNN” and “Congestion Prediction” were carefully used. A comprehensive search technique was implemented 
to ensure the retrieval of relevant journal articles and conference papers published between 2013 and 2023.

Inclusion and exclusion criteria: precise inclusion and exclusion criteria guarantee the reliability and 
validity of the results. The criterion centered on finding essential features in the articles that could affect how 
accurately traffic flow forecasts work. These included improved performance results, dataset accessibility, 
increased accuracy, and relevant dataset properties.

Qualitative content analysis: a qualitative content analysis technique was utilized to examine the data 
systematically. This technique involved gathering relevant text from the articles, summarizing the main 
findings, and consolidating the results. This approach made conducting a thorough and objective analysis of the 
literature on using deep learning and machine learning algorithms for traffic flow prediction easier.

Following a thorough literature search, we discovered an abundance of research being conducted in this 
field. However, after doing a comprehensive examination to identify studies conducted in the previous five 
years, we found that the numbers had decreased, and we selected 70 academic publications that were relevant 
to our investigation. The selection of literature was based on content, specifically on research involving ML 
algorithms like Support Vector Machines (SVM), Deep Belief Networks (DBN), and Autoencoders in the field of 
traffic flow predictions, as well as Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), 
Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU). Figure 1 presents the literature review 
procedure as a flowchart for better comprehension.

Figure 1. Research Methodology flowchart

Table 1 shows the total number of studies carried out in the timeframe and how we found the studies 
relevant to our research.

Table 1. Performance Comparison Results

Searched 
Literature

Google 
Scholar IEEE Springer Elsevier Research 

Gate

2000 - 2023 21,400 206 18,890 5,244 75

2013 – 2023 17,900 198 17,147 4,748 65

Relevant Work 100 32 10 14 5

To improve traffic management, reduce congestion, and make travel more efficient, intelligent transportation 
systems (ITS) mainly depend on traffic prediction.(9) Statistical models and time-series analysis, two common 
techniques to traffic prediction,(12,13) are the most effective methods for capturing the complex and ever-
changing nature of traffic flow. The use of deep learning (DL) and machine learning (ML) has resulted in a 
significant improvement in both the effectiveness and precision of traffic prediction.(9,14) 
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Through the use of prior data on traffic flow, long short-term memory (LSTM) has the potential to enhance 
the accuracy of its short-term prediction.(15) While more conventional approaches, such as ARIMA, cannot 
extract any novel insights from the data, this one can do so. 

A further design option for recurrent neural networks is the combination of Autoencoders with Long Short-
Term Memory (AE-LSTM) and the Gated Recurrent Unit (GRU).(16) This is an alternative implementation of 
the concept. Convolutional Neural Networks (CNNs), Mixture Density Networks (MDNs), Random Forest, and 
Support Vector Machines (SVMs) are some of the other machine learning and deep learning approaches that are 
discussed in this article.(18,19)

In the following introduction part, we will discuss the relevance of LSTM and its variations to this very 
important discipline. It indicates how effectively they perform and adapt to cope with challenging traffic 
forecast issues, particularly in urban regions, where unexpected changes to traffic patterns are widespread. 
This is especially true in metropolitan areas.(9,15)

Over the period of the last five years, many machine learning models, including ensemble methods, Long 
Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Autoencoders (A.E.), have been the primary focus 
of study in the field of traffic flow prediction. This is seen in figure 2 there has been a consistent and statistically 
significant rise in the amount of research that belongs into this classification. Notably, the amount of research 
conducted on LSTM increased by around 200 percent between the years 2018 and 2022. By comparison, 
throughout the same period of time, GRU and A.E. research both grew at 100 %. Furthermore, throughout the 
assigned time frame, research on Ensemble techniques has increased significantly, by 60 %. These findings show 
how popular and focused machine learning (ML) models are becoming for traffic flow prediction.(20)

Figure 2. Statistics of LSTM vs GRU, A.E., and Ensemble(20)

LSTM, CNN, and other algorithms
As powerful and useful tools for traffic flow prediction, machine learning algorithms provide experts and 

researchers more accuracy and efficiency when examining and predicting traffic trends. The basic citations 
that have helped to integrate machine learning into traffic flow prediction are examined in this extensive study 
of the literature, with special attention to the key publications that have fundamentally influenced this field. 
Figure 3 shows how much more these models are being used, and LSTM has shown to be the most accurate 
model.(20)

Figure 3. ML and DL models used in Traffic flow prediction over the years(20)
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In conclusion, long-term spatial traffic flow modelling widely employs LSTM and its variations as well as 
combinations with other deep learning techniques because of its capacity to precisely predict short-term 
trends and capture temporal correlations. Because of its recurrent structure and memory capacity, LSTM 
is a good choice for simulating traffic patterns, particularly in cities where traffic conditions might change 
suddenly. Moreover, research on traffic prediction has found that LSTM-based models perform better than more 
conventional machine learning techniques like ARIMA. For these reasons, they are a preferred option.

Traffic Flow
Traffic flow studies center on the interactions between various traffic participants and infrastructure in 

order to identify the relationship between certain traffic participants and the resulting traffic flow phenomena. 
Studies of traffic flow are empirical in nature and depend on precise measurements to draw their conclusions. The 
importance of trajectory data, particularly the Next Generation Simulation (NGSIM) trajectory dataset,(22,23,24) 
has been emphasized in the analysis of traffic flow in recent years.(21) Researchers may use trajectory data 
to look at traffic phenomena and models from many angles, and it gives them a cohesive picture of these 
accomplishments at the microscopic,(25) mesoscopic,(26) and macroscopic(27) levels. The research classifies 
traffic flow studies into three types: basic diagram and traffic wave models, studies at the mesoscopic level 
(such as headway/spacing distributions), and studies at the microscopic level (such as car-following and lane-
changing models).(28) Asymmetric driving behavior,(29) lane-changing behavior,(28) traffic oscillations, and traffic 
hysteresis(21,30) are some of the novel traffic phenomena discussed by Li et al.(21) that have been confirmed or 
explained by trajectory data.

Intelligent Transport System
The deployment of several components, including bus schedules, traffic flow collecting, geographic 

information, signal control, alarm, and video monitoring systems, is the outcome of the introduction of 
Intelligent Transportation Systems (ITS) in 1990. Even if these systems have improved urban circumstances, 
problems still exist because of poor top-level design and general planning, which causes issues with numerous 
transit systems.(31) One of these significant problems nowadays Experienced by the ITS is efficient and accurate 
traffic flow prediction. To alleviate this problem, researchers are carrying out a lot of work, and they are 
using artificial intelligence (A.I.), machine learning (ML), and deep learning (DL), which are showing promising 
results. 

Artificial intelligence (A.I.) has expanded significantly in machine learning and deep learning, as shown in 
figure 4. It has demonstrated itself to be proficient at correctly predicting traffic patterns. For instance, an A.I. 
model may be trained using data from the day before to forecast the traffic volume on a particular highway 
section at a given time. To minimize congestion, this information can be utilized to change the direction of 
traffic, open or close lanes, and alter traffic lights.

Here are some particular instances of how traffic flow prediction is being enhanced through the use of A.I., 
ML, and DL: mobile surveillance cameras can track vehicle movements and identify areas of congestion.(32) 
Intelligent I.P. cameras make vehicle classification and speed identification possible.(33,34,35) License plate data 
collected by LPR cameras may be utilized to follow the movements of specific cars and spot trends in traffic 
flow.(36,37)

Figure 4. Structure of ITS(31)
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A.I., ML, and DL models may be trained to forecast traffic flow in various circumstances using this data. 
For instance, a model might be developed to predict traffic patterns during construction, rush hour, or special 
occasions.

Machine Learning in Traffic Flow Predictions
Prediction of traffic flow is one of the many disciplines where machine learning (ML) has completely changed 

research. Intelligent transport systems (ITS) depend on traffic flow prediction. It attempts, using past and 
current data, to predict traffic situations in the future.

Complex pattern learning and prediction capabilities of ML approaches have shown tremendous promise 
in this area.(9,38) They also manage the nonlinear and dynamic character of traffic flow, which is a problem for 
conventional statistical techniques.(9) 

We reviewed a number of papers that used ML models, which perform really well. An important element 
of intelligent transport systems, accurate and quick traffic flow prediction is achieved by a hybrid model 
developed by Zhang et al.(39) that blends Deep Belief Networks (DBN) with Genetic Algorithms (G.A.). Remarkably, 
the FR-CG algorithm outperformed G.D. and LBFGS and routinely produced lower MRE values. It was found, 
specifically, that the MRE of FR-CG was 0,5 % lower than LBFGS and 3,4 % lower than G.D. As the amount of 
components increased, this performance pattern was evident throughout a variety of time frames. For models 
with additional weights and biases, FR-CG fared better than LBFGS.

When predicting the flow of traffic in the near future, Hou and colleagues have offered a thorough method 
that accounts for the influence of weather.(40) Combining sequence-to-sequence organization with multivariate 
data analysis methods is the suggested paradigm. More than 4500 loop detectors provided traffic data, while 
the National Oceanic and Atmospheric Administration provided meteorological data (https://gis.ncdc.noaa.
gov/maps/ncei/lcd).(40) Prior to analysis, the data was subjected to preprocessing and a plethora of procedures, 
such as one-hot coding and time-flow correlation expression. The goal of these methods was to improve the 
data’s usefulness and quality so that models could be trained and evaluated more effectively. Here are the 
findings for the suggested model: error rate (ERR) = 10,378414 %, symmetric mean absolute percentage error 
(SMAPE) = 10,059485 %, mean absolute error (MAE) = 9,494741, mean squared error (MSE) = 151,153208, and 
root mean squared error (RMSE) = 12,294438.(40) As an added bonus, Xu et al.(41) suggested a fresh approach to 
anticipating the flow of traffic on motorways by integrating machine learning techniques with toll data. The 
approach uses multilayer perceptron and Random Forest models to improve traffic flow and forecast accuracy. 
The study report compares the combined model’s performance to that of the separate models in great detail. 
When compared to the separate models, the combined one performed better. Results demonstrated that the 
combined model’s Mean Absolute Percentage Error (MAPE) was much lower than that of the random forest 
(2,594) and multilayer perceptron (6,490) models. 

Jiang and colleagues investigated and reported a factor analysis and weighted Random Forest-based traffic 
incident recognition method.(42) With this method, traffic occurrences are accurately and immediately detected, 
therefore reducing property damage and fatalities. The work also shows how unbalanced traffic event data 
impacts detection performance and makes recommendations for reducing this impact.(42) The proposed model 
handles unbalanced data classification quite easily and exhibits superior classification performance to that of 
the Support Vector Machine (SVM) by combining factor analysis with weighted random forest. In this work, the 
detection rate (DR%) of the suggested method is 95,65 %. The figures for Factor Analysis Support Vector Machine 
(FA-SVM), Weighted Random Forest Automatic Incident Detection (WRF-AID), and Random Forest Automatic 
Incident Detection (RF-AID) are, nevertheless, 84,7 %, 90,43 %, and 89,04 %, respectively. As an additional point 
of interest, according to Jiang et al.(42), the accuracy rates (AR%) of RF-AID, WRF-AID, and FA-SVM are 97,5 %, 
98,18 %, and 98,4 %, respectively. This technique has an AR% of 98,9 %, which is rather impressive. 

On the other hand, Bratsas et al.(43) examined the ability of four different machine learning models to 
forecast the amount of traffic that flows through metropolitan regions. Researchers were able to collect data 
from probes in Thessaloniki, which they then used in combination with the road networks of Greece. Based on 
this study’s findings, it is impossible to design or run traffic management systems or apps that use traffic signals 
if accurate traffic predictions are not available.

Deep Learning in Traffic Flow Predictions
Deep learning (DL) has shown to be an extremely effective method for predicting traffic flow since its 

implementation.(1,44,45) Deep learning (DL) is a subfield of machine learning that enables users to model complex 
nonlinear connections and recognize spatial and temporal patterns in traffic data. This is made possible by 
Deep Learning. Additionally, deep learning is quite effective at identifying patterns in the data collected from 
traffic. Since they made use of DL models and achieved good findings, the following papers were selected for 
inclusion in this study: 

They constructed and tested an LSTM-based model to anticipate traffic patterns as part of their published 
work. Ramchandra et al.(46) were responsible for this. The suggested paradigm incorporates four separate 
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machine learning ideas: Random Forest (R.F.), Deep Belief Network (DBN), Deep Autoencoder (DAN), and Long-
Short-Term Memory (LSTM). The proposed paradigm is the result of a synthesis of many ideas. Recall, accuracy, 
precision, and error value were only a few of the metrics used to assess the model’s efficacy. Responsible 
decision-making would have been on their part had they concentrated mostly on traffic pattern projections in 
heavily populated areas. With an accuracy rating of 95,2 %,(46) the LSTM model outperformed the other three 
methods that were considered. Other approaches fared far worse than the ones utilized, according to the 
statistics. 

Autoencoder (A.E.) and Long Short-Term Memory (LSTM) are combined in a novel approach proposed by Wei 
et al.(47) for short-term traffic flow prediction. Main objectives of their research were to enhance urban living 
standards generally and lessen traffic congestion in urban transportation. Among the techniques looked at in 
the research was A.E. using LSTM, Gaussian processes, Hidden Markov model, Deep belief network, Seasonal 
ARIMA (SARIMA), Random Region Transmission Framework, Bayesian MARS. With historical traffic flow data 
and autoencoders for feature extraction, the authors investigated the characteristics of both upstream and 
downstream traffic flow. Performance of the algorithms was evaluated using Mean Absolute Error (MAE) and 
Mean Relative Error (MRE). According to the findings of the inquiry, the AE-LSTM approach consistently obtained 
the best likelihood of decreasing the MAE (90 %) across all 25 stations. This was the case regardless of the 
method that was under examination. In comparison to the other options, this strategy was superior. Given 
that the data presented here demonstrates that the AE-LSTM approach is capable of accurately predicting 
future traffic flows,(47) this indicates that it has the potential to greatly improve city traffic. In light of this, 
it is clear that its projections about traffic flow are correct. Autoencoder Gated Recurrent Unit (AE-GRU) is 
an ingenious device that Chen and his colleagues developed while they were seeking for methods to estimate 
future traffic levels.(11) Denoising the data was a technique that Chen and his colleagues used in order to reduce 
the possibility of abnormalities occurring in the traffic flow data. The results of the experiments demonstrated 
that the LSTM+EEMD (Ensemble Empirical Mode Decomposition) technique improved the performance of the 
prediction.(48) 

Nevertheless, Chen et al.(49) provided a technique for estimating traffic flow in urban road networks. This 
approach focused on the estimate of traffic flow. Not only does the system make use of methods from the LSTM 
and SAE forecasting models, but it also makes use of adaptive spectral clustering. 

Wang et al.(50) developed the VSTGC model by analyzing historical data on traffic flow in order to forecast 
future changes in transportation safety. This was done in order to predict future changes. In this instance, we 
make use of a method known as deep learning. 

An improved Support Vector Machine (SVM) model for traffic flow forecasting was the focus of an in-depth 
investigation that was carried out by Li et al.(51) with reference number 51. During the course of this study, the 
settings of the Support Vector Machine (SVM) were modified with the intention of improving the accuracy of 
forecasts about traffic flows. The authors conducted an in-depth analysis of the inadequacies of the machine-
learning algorithms that are now in use and also discussed the implications of future developments in pedestrian 
counting frameworks. Following their research, the scientists came to the conclusion that SVR had the highest 
incidence of inaccurate classifications and had the ability to improve the accuracy of traffic flow projections. 
This work makes a contribution to the ongoing effort to improve models and techniques for estimating traffic 
flows, which is a permanent aim. 

Khan et al.(52) examined data on air pollution and traffic intensity in intelligent cities using an ensemble 
method known as bagging with the K-nearest neighbours (KNN) model. Performance for the bagging ensemble 
approach was found to be 30 % higher than that of the stacked ensemble method and other options. The 
evaluation metrics indicated that the KNN bagging model had promising results with the lowest Root Mean 
Square Error (RMSE) value of 1,12 among all the models. Besides, the Mean Absolute Error (MAE) of the best 
ensemble model was a respectable 0,55. Reduced Root Absolute Error (RAE) values were also obtained; the 
model that performed the best had the lowest value of all the models, 0,4. 

Furthermore, Wang et al.(53) introduced the Selective Ensemble Method (SEL), a special ensemble method 
for traffic flow stage identification. For increased prediction accuracy, the proposed model combined ensemble 
methods with supervised and unsupervised learning techniques. They specifically developed a method called 
Binary Particle Swarm Optimization-Random Subspace-Selective Ensemble Learning-Support Vector Machine 
(BPSO-RS-SVM-SEL). The discrete traffic flow states were created from traffic flow data using fuzzy C-means 
clustering. The testing results demonstrated that the proposed approach reached a higher maximum accuracy 
of 98,68 % than other existing techniques. This work is important to improve traffic control and management 
systems. It progresses the area of accurate status of traffic flow detection.

A new method called the Recurrent Mixture Density Network (RMDN) was presented by Chen et al.(54) in 
their study it combines a recurrent neural network (RNN) with a mixture density network. Positive outcomes 
were seen when actual traffic flow data was used. The study highlights the difficulties of making short-term 
traffic flow projections while also discussing the possibilities of data-driven solutions to this problem. An LSTM 
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network and an MDN that parameterizes mixture distributions using the neural network’s outputs make up 
the Recurrent MDN, which may capture contextual relationships and historical data in time series. Since the 
expected traffic flow indices are not given deterministic values but rather produced by the prediction model, 
the latter uses probability distributions to arrive at the forecasts. The accuracy (Mean Relative Error, MRE) 
of the recurring MDN in predicting the Travel Time Index (TTI) and Average Speed (AS) was higher than 0,92 
total expected timestamps.(6) The efficacy of the fuzzy prediction approach was shown by the recurrent MDN’s 
significant performance improvement over the LSTM network. With a 1,28 % improvement in TTI forecast 
accuracy and a 0,8 % improvement in AS prediction accuracy for the 10-minute prediction test, the recurrent 
MDN outperformed the ARIMA model in short-term traffic flow prediction.(54) 

Bao et al.(55) suggested a better Deep Belief Network (DBN) that could provide reliable traffic predictions 
in all weather. Due to the nonlinear nature of traffic flow and the impact of external factors like weather and 
traffic incidents, support vector regression (SVR) was used to improve the standard DBN. The strategy relied 
on SVR to forecast traffic patterns during extreme weather. Another tool used for the training of layer-by-layer 
DBNs was a contrastive divergence (CD-k) approach.(25) In terms of computation time, prediction accuracy, and 
introduced error, the enhanced DBN’s performance was compared to that of the ARIMA and standard neural 
network methodologies. Our goal was to improve the DBN’s resilience during various time periods to reduce the 
traffic estimate error to less than 9 %. 

But the ARIMA model isn’t a viable substitute for traffic forecasting since it differs substantially, by 30 %, 
from the actual traffic flow when the weather is unfavorable. When compared to the improved DBN, the ARIMA 
model required less time to process.(55) 

For proactive traffic management and traveller information services in Intelligent Transportation Systems 
(ITS), Chen et al.(56) underlined the need of precise and timely traffic forecast. The authors put up a traffic-
condition-awareness ensemble method that uses graph convolution to detect spatial patterns in traffic flow 
in order to overcome this problem. With an eye towards their performance under certain circumstances, they 
created a weight matrix to efficiently integrate the predictions from basic models. The suggested approach was 
fully assessed using an actual traffic dataset that was collected from the Caltrans Performance Measurement 
System (https://dot.ca.gov/programs/traffic-operations/mpr/pems-source).(57) We carried out comparative 
studies against single-model and ensemble techniques of competitive models. The writers also described 
possible future studies to maximize the parameter settings and network architecture. These facts imply that 
the study had an experimental research design.(56) 

Moreover, Mohanty et al.(58) suggested a model to predict a congestion score depending on the ratio of 
vehicle accumulation to trip completion rate based on a Long Short-Term Memory neural network architecture. 
The model is trained and tested in the work using input signals like demand, trip times, and congestion ratings. 
Its performance is compared with those of reference models like the Random Forest, Holt-Winters, and 1-NN 
models. When using an LSTM model is less suitable, the study additionally investigates parameter selection to 
enhance the model’s predictions. The alternative plan’s performance is just little better than that of the LSTM 
model.

Ranjan et al.(59) investigated how Seoul, South Korea, may use the deep learning network PredNet to forecast 
traffic congestion. Convolutional neural networks (CNN), Long Short-Term Memory (LSTM), and transpose 
convolutional neural networks (TCNN) are included into the proposed model’s Feature Extraction Network 
(FEN) and Recurrent Network to gather temporal and spatial information from input images. Using a training 
dataset for Autoencoder and ConvLSTM models, accuracy, recall, and precision were evaluated across a number 
of different prediction horizons, including ten, thirty, and sixty minutes. The strategy that was recommended 
produced better results than the models that were applicable and reduced the MAPE from 3 % to 17.(60) 

Zheng et al.(7) detailed a method for predicting traffic flows across city limits that integrates deep learning 
and embedding learning. Built within the model’s architecture are all of the embedding components, CNNs, 
and LSTMs that contribute to the proposed model. In order to reduce and manage traffic congestion, the article 
also brings up the need of creating traffic flow projections for cities. The approach that has been strongly 
supported is called Deep and Embedding Learning. In addition to this, the embedding component is responsible 
for recording structured data such as the layout of the route and the weather conditions. While the CNN 
component is learning more about the two-dimensional traffic flow data, the LSTM component operates in the 
background to preserve earlier data. Combining the three models improves the accuracy of the traffic flow 
forecasts. 2-D traffic flow data is the model’s input; it is generated by segmenting the data based on links rather 
than routes. Predicting accuracy of the model has been shown to be higher than that of existing methods.(61)

Furthermore, a Path Based Deep Learning framework for accurate traffic speed prediction in urban 
environments was provided in the work of Wang et al.(62) part of the approach included modelling each of the 
main routes in the road network using a bidirectional long short-term memory neural network (Bi-LSTM NN). 
The efficient collection of temporal information was achieved by layering many Bi-LSTM layers, and the spatial-
temporal properties obtained were fed into a fully connected layer for traffic prediction. Performance of the 
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model was assessed in several prediction scenarios against many benchmark methodologies, and interpretability 
of the model was investigated by analyzing the hidden layer output properties. Adam optimized the model’s 
parameters to reduce the training phase’s mean squared error (MSE) between the anticipated and real traffic 
speeds. In comparison to other methods like KNN, ANN, CNN, and LSTM NN, the results showed a significant 
decrease in average MSE for different prediction scenarios. The long-term performance of the recommended 
architecture showed improved prediction accuracy for about 70 % of the segments, which strongly supported 
the suggested model’s applicability to urban speed prediction tasks.

Comparison of ML and DL Models
In this part, we will discuss what we found in the studies we analyzed in our literature review. Table 2 shows 

us how DL models are better at picking up the spatial and temporal patterns and nonlinear dependencies of 
traffic flow. In some cases, ML models in Hybrid or Ensemble configurations also showed outstanding results. 
The ones that stood out are Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Autoencoders. 
Among these, LSTM was the most popular, and according to the results, it performed the best when dealing with 
traffic data like sequences and Spatiotemporal data.

In table 2, we have consolidated the performance of algorithms in different literature. Based on the 
evaluation metrics provided, the highest-performing models in different categories are as follows:

1. Accuracy:
•	 LSTM + SAE: 97,7 %.(49)

•	 Selective Ensemble + DL: 98,68 %.(53)

•	 Factor Analysis + R.F.: accuracy Rate (A.R.): 98,9 %.(42)

•	 LSTM: 95,2 %.(46)

•	 R.F.: 92,7 %.(46)

•	 DBN: 90,8 %.(46)

•	 DAN: 89,4 %.(46)

2. Mean Relative Error (MRE):
•	 AE-LSTM: 0,065 MRE.(47)

•	 DBN + G.A. FR-CG: FR-CG outperforms G.D. LBFGS.(39)

•	 RMDN: MRE > 0,92.(54)

3. Mean Absolute Error:
•	 LSTM + EEMD: 0,19 MAE.(48)

•	 Sequence-to-Sequence Model: 9,494741 MAE.(40)

•	 The VSTGC Model outperforms other methods.(50)

•	 Bagging Ensemble + KNN: outperforms other models.(52)

4. Root Mean Square Error (RMSE):
•	 LSTM + EEMD: 0,25 RMSE.(48)

•	 Sequence-to-Sequence Model: 12,294438 RMSE.(40)

•	 The VSTGC Model outperforms other methods.(50)

•	 Bagging Ensemble + KNN: outperforms other models.(52)

5. Mean Absolute Percentage Error (MAPE):
•	 LSTM + EEMD: 3,77 MAPE.(48)

•	 LSTM + Pre-processing: improved prediction.(60)

•	 The VSTGC Model outperforms other methods.(50)

6. Detection Rate:
•	 Factor Analysis + R.F.: detection Rate (D.R.): 95,65 %.(42)

7. Other Evaluation metrics:
•	 Random Forest + MLP: the combined model outperforms individual models.(41)

•	 Improved SVM: reduces prediction error.(51)

•	 Improved DBN + SVR: within 9 % traffic prediction error.(55)

•	 PredNet: outperforms ConvLSTM and Autoencoder.(59)

•	 DELA: shows improved prediction accuracy.(61)

•	 Path Based DL: outperforms KNN, ANN, CNN.(62)
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Highest-performing models by metric:
•	 Accuracy: selective Ensemble + DL (98,68 %)
•	 MRE: AE-LSTM (0,065)
•	 MAE: LSTM + EEMD (0,19)
•	 RMSE: LSTM + EEMD (0,25)
•	 MAPE: LSTM + EEMD (3,77)
•	 Detection Rate: factor Analysis + R.F. (95,65 %)

As illustrated in the consolidated results, the models incorporating LSTM achieve each metric’s highest 
results.

Table 2. Performance metrics and Algorithms used in previous studies

Reference Algorithms Evaluation Metrics Results

(46) LSTM, DBN, DAN, 
R.F.

Precision, Recall, 
Accuracy, Error

Accuracy LSTM: 95,2 %, R.F.: 92,7 %, 
DBN: 90,8 %, DAN: 89,4 %

(47) A.E. + LSTM, Various 
Algorithms

MRE, MAE AE-LSTM: 0,065 MRE

(11) AE-GRU, AE-LSTM Accuracy, Training Time AE-GRU has similar accuracy, shorter 
training time

(39) DBN + G.A., FR-CG MRE FR-CG outperforms G.D., LBFGS

(48) LSTM + EEMD RMSE, MAE, MAPE LSTM+EEMD: RMSE 0,25,
MAE 0,19,
MAPE 3,77

(40) Sequence-to-
Sequence Model

MAE, RMSE MAE 9,494741, RMSE 12,294438

(49) LSTM + SAE Accuracy Accuracy: LSTM + SAE: 97,7 %

(41) Random Forest + 
MLP

Various Metrics The combined model outperforms 
individual models

(42) Factor Analysis + 
R.F.

Detection Rate (D.R.),
Accuracy Rate (A.R.)

Proposed Methodology Results: D.R.: 
95,65 %, AR: 98,9 %

(43) Various ML Models Varies N.N., SVM effective in different 
scenarios

(50) VSTGC Model MAE, RMSE, MAPE VSTGC outperforms other methods

(51) Improved SVM Classification Error 
Rate

Improved SVM reduces prediction error

(52) Bagging Ensemble 
+ KNN

RMSE, MAE, RAE Bagging + KNN outperforms other 
models

(53) Selective Ensemble 
+ DL

Accuracy The proposed model achieves 98,68 % 
accuracy

(54) RMDN MRE RMDN achieves MRE > 0,92

(55) Improved DBN + SVR Traffic Prediction Error Improved DBN within 9 % traffic 
prediction error

(59) PredNet Precision, Recall, 
Accuracy

PredNet outperforms ConvLSTM and 
Autoencoder

(60) LSTM + Pre-
processing

MAPE Improved prediction using LSTM and 
preprocessing

(61) DELA Accuracy DELA shows improved prediction 
accuracy

(62) Path Based DL MSE Path Based DL outperforms KNN, ANN, 
CNN

Table 3 displays the different machine learning and deep learning algorithms used in the studies. The 
frequency of the algorithms used in more than one study shows which are better for traffic flow prediction. 
According to the table, the model most frequently used is LSTM, which has been used ten times. After that, 
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SVM, an ML model, was used five times, followed by RF, which was utilized four times. LSTM is one of the best 
algorithms for traffic flow predictions.

Table 3. LSTM, B: RF, C: DBN, D: DAN, E: FR-CG, G: SVM, H: Ensemble Method, I: GRU, J: VSTGC, K: CNN

Reference A B C D E F G H I J K

(46) X X X X

(47) X X

(11) X X

(39) X X

(48) X

(40)

(49) X X

(41) X

(42) X X

(43) X X

(50) X

(51) X

(52) X

(53) X X

(54) X

(55) X X

(58) X

(59) X X

(60) X

(61) X X

(62) X X

The long Short-Term Memory (LSTM) recurrent neural network is resistant to the vanishing gradient issue and 
can learn and retain information over lengthy sequences. Because of this, it serves sequential data, such traffic 
flow, well.(9) With the passage of time, the interdependencies of traffic flow data may be accurately captured.
(63) An improved and less parameter-intensive variant of Long Short-Term Memory (LSTM) is the Gated Recurrent 
Unit (GRU). A new “update gate” replaced the old “input gate” and “forget gate.” Along with making changes 
to them, it also merges the cell and hidden states.(64) 

During training, RF builds a large number of decision trees, which is an ensemble learning technique. As a 
consequence, it produces a class—which can be seen as the mean of the regression predictions or the median 
of the classification results—from the individual trees. When compared to LSTM or GRU, RF may not be able to 
capture the temporal relationships in traffic flow as effectively, despite its ability to handle large dimensional 
spaces and without requiring feature scaling.(9) 

Due to their unique characteristics, these models outperform others under specific conditions. For instance, 
LSTM and GRU perform well with sequential data, while SVM and RF are more suited for high-dimensional data. 
Hybrid methods like LSTM-GRU can leverage the strengths of both LSTM and GRU.

Traffic flow factors (Datasets and Features)
In the research, we cited advanced traffic flow prediction using various datasets. Ramchandra et al.(46) may 

collect data by deliberately installing sensors in highly populated areas, recording traffic flow in real time, 
and combining variables like weather and road capacity. Similarly, Wei et al.(47) used autoencoders to extract 
relevant characteristics for prediction from historical traffic flow data collected from monitoring systems. 
Chen et al.(54) used a detailed strategy, most likely installing sensors on different road connections to collect 
information for forecasts made shortly, taking network structure and upstream/downstream linkages into 
account. Zhang et al.(65) used historical traffic data and genetic algorithms for their hybrid model to optimize 
deep belief networks.
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To investigate the effects of weather on traffic, Hou et al.(40) used meteorological data from NOAA and 
traffic data from loop detectors, applying preprocessing techniques to improve the data’s relevance. In 
parallel, studies like Chen et al.(11) involved the Caltrans Performance Measurement System (PeMS) to develop 
frameworks considering multiple factors in urban traffic prediction, other works, such as Bratsas et al.(43), 
utilized probe data from road networks. Ranjan et al.(59) harnessed accurate traffic data from specific urban 
areas for congestion predictions. The diversity of data sources—from sensors and loop detectors to publicly 
available datasets, underpinned these studies analytical prowess, fostering the advancement of predictive 
models and insights that contribute to more effective traffic management and urban planning.

Table 4. Dataset Description and Features

References Data Type Data Source Balance Features

(46) Traffic flow 
parameters

Online website Balanced Zone type, weather condition, 
day, road capacity, vehicle types

(47) Traffic flow and 
model config

Not specified Balanced Upstream and downstream traffic 
flow data

(11) Traffic flow 
correlation

Not specified Balanced Traffic flow data

(48) Traffic flow Caltrans Performance 
Measurement System

Balanced Traffic flow direction, Traffic flow 
data

(40) Traffic and weather Various sources Balanced Time, traffic data, and weather 
data

(49) Traffic flow University of Minnesota Balanced Time, sensor data, road sections

(41) Toll and weather data Not specified Balanced Time, lane, car model, car type, 
weather, holiday, weekend

(50) Video clips Dashboard cameras on 
vehicles

Balanced Driving scenarios (safe, 
comparative dangerous, 

dangerous), weather conditions, 
types of roads, light conditions

(51) Traffic flow data California Department of 
Transportation Caltrans 

Performance Measurement 
System (PeMS)

Balanced Traffic flow data from sensors

(53) Traffic flow California Department of 
Transportation

Balanced Traffic flow, speed, occupancy 
rate, timestamps

(54) Traffic flow Sensors on road networks Balanced Traffic flow information

(59) Traffic congestion Traffic Optimization & 
Planning Information 

System (TOPIS) Website

Balanced Traffic congestion levels, 
timestamps

(60) Traffic speed Gangnam-gu, Seoul 33 % 
missing

Traffic speed data

(61) Traffic flow KDD CUP 2017 dataset Balanced Travel time data

(62) Traffic speed Automatic vehicle 
identification (AVI) 

detectors in Xuancheng, 
China

Balanced Speed data, time interval

(65) Pavement condition 
survey

Caltrans Pavement 
Program

Balanced Traffic flow data

(52) Pollution and traffic 
intensity

City pulse Aarhus, 
Denmark

Balanced Air pollutants (CO, SO2, O3, PM), 
vehicle count, timestamps

Challenges in Traffic Flow Prediction (Gaps and Limitations)
Despite the significant progress in traffic flow prediction using machine learning techniques, several limitations 

and gaps still need to be addressed in existing research. These limitations hinder the widespread adoption and 
practical implementation of machine learning models for real-world traffic management applications. This 
section provides an illustration of the fundamental deficiencies and gaps that were present in prior research. It 
serves as an example of where the field may move from below. Table 5 illustrates the limitations and gaps that 
were present in the studies that met the criteria for inclusion in our research.
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Table 5. Gaps and Limitations of previous studies

Reference Main Findings Limitations and Gaps

(46) LSTM model achieved 95,2 % 
accuracy in traffic flow prediction, 
outperforming other techniques.                                                                                                               

The system is designed mainly for densely populated areas, 
limiting the study to not considering other scenarios, such as 
special occasions. Preprocessing is used in the process, but 
feature engineering and a vital feature selection process were 
neglected.

AE-LSTM approach consistently 
outperformed other methods, 
emphasizing the potential for 
improving urban traffic conditions.

The study introduces an AE-LSTM prediction model for traffic 
flow that combines temporal and simple spatial patterns. 
However, it acknowledges a limitation in only considering basic 
spatial correlations, raising concerns about the model’s ability 
to handle more complex spatial relationships and their impact 
on prediction accuracy.

AE-GRU achieved comparable 
accuracy to AE-LSTM with shorter 
training time.

Because it concentrated on high-relevance connections and 
simplified spatial interactions, the study may have overlooked 
complicated spatial linkages in the road network. This is 
because the analysis focused on high-relevance links. Because 
of this, it could be more difficult for the model to successfully 
depict intricate and variable patterns of traffic flow dynamics.

The hybrid DBN-GA model 
performed better using the FR-
CG algorithm, suitable for models 
with more parameters.

A limitation of the research is that it does not take into account 
the geographical connection between stations and instead 
concentrates only on the prediction of highway traffic. The 
inability to take into consideration urban traffic scenarios 
takes into account the fact that there is a potential of varying 
degrees of accuracy in projections as well as the inherent 
complexity of urban traffic systems.

(48) LSTM+EEMD achieved higher 
prediction performance for traffic 
flow, particularly with Caltrans 
PeMS data.

The study needs to delve into potential challenges or limitations 
related to the real-world implementation of the proposed hybrid 
approach, such as issues related to the availability and quality 
of the data required for denoising and the practical feasibility 
of deploying the model in dynamic traffic environments.

The proposed framework 
incorporated weather conditions 
for traffic flow prediction and 
achieved specific performance 
metrics.

This study proposes a combined SAE and RBF framework for 
short-term traffic flow prediction. It highlights data processing 
processes such as time periodicity representation and weather 
parameter fusion. Additionally, the research gives a framework 
for predicting short-term traffic flow. It is necessary, however, 
to do further research on the challenges that are linked with 
these treatments. There should be a comprehensive discussion 
of the model’s ability to scale and adapt to the swings in traffic 
and weather that occur in the actual world.

A framework combining LSTM 
and SAE achieved 97,7 % average 
prediction accuracy in urban road 
networks.

There is a possibility that the study might have benefitted 
from a more comprehensive analysis of complex road network 
scenarios; nevertheless, the research’s limited focus on urban 
road networks makes it difficult to generalize that research. 
There is a deficiency in the amount of debate focused on the 
challenges that may be brought about by the use of novel 
approaches, such as reinforcement learning.

The ensemble method combining 
Random Forest and KNN improved 
traffic flow prediction accuracy.

It is possible that noise in the weather records might have 
an effect on the conclusions that the models generate, and 
the fact that the research only used toll data from a single 
site restricts its application. All of these are only some of 
the problems that were found in the study. It is possible that 
the accuracy of traffic flow forecasts might be improved by 
removing these limits and investigating a wider variety of other 
data sources.

Recurrent Mixture Density 
Network (RMDN) outperformed 
LSTM and ARIMA models for traffic 
prediction.

The study introduces a novel approach that combines LSTM with 
mixture density networks. This method is called the recurrent 
mixture density network, and it is implemented in order to 
estimate traffic flows in the near future using this method.
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VSTGC model with spatiotemporal 
graph-based convolution 
outperformed existing methods 
for traffic safety prediction.

Due to the fact that the study relied on historical data and 
assumed that trends would remain consistent, it is possible 
that it failed to take into account rapid changes in the external 
environment. The model’s capability to deal with complicated 
traffic circumstances in the actual world might be improved, 
even with the performance increases that have been included. 
Additionally, the study does not consider the difficulties 
encountered in the real world while attempting to apply the 
VSTGC model in highway networks.

Improved SVM model for traffic 
flow prediction emphasized 
better accuracy and potential 
enhancements.

The study introduces diverse pattern classifiers to improve 
vehicle detection and proposes an optimized SVM-based traffic 
flow prediction model. However, the limitations include the 
need for a more comprehensive evaluation of real-world 
challenges, the absence of an in-depth rationale for classifier 
selection, and the omission of potential implications when 
implementing an enhanced pedestrian counting method.

Bagging ensemble method with 
KNN improved air pollution 
prediction based on traffic 
intensity data.

The purpose of this research is to offer an ensemble strategy 
that may enhance the forecast of traffic flow. Collecting 
information on pollution and traffic from a variety of sources 
allows for the implementation of this strategy. It is important 
for you to be aware, however, that this technique does not come 
without some shortcomings. Not only does it not perform well 
in different locations or seasons of the year, but there is also a 
possibility of overfitting and a deterioration in interpretability 
due to the large number of base classifiers. It is necessary to do 
more study that makes use of satellite data to investigate the 
validity of the model for understanding the impacts of various 
seasons and other sorts of cities.

Selective Ensemble Learning 
(SEL) model with BPSO-RS-SVM 
for traffic flow state identification 
achieved high accuracy.

The study presents an improved SEL model for highway 
traffic flow state identification using clustering and ensemble 
techniques. However, the limitations include the reliance on 
specific datasets and the assumption that the proposed model 
will perform well across different conditions and regions. 
Additionally, while the model’s accuracy is highlighted, 
potential challenges related to real-world implementation and 
considering various external factors still need to be thoroughly 
addressed.

The predNet model combined CNN, 
LSTM, and TCNN outperformed 
ConvLSTM and Autoencoder 
models for congestion prediction.

The study uses image data to present a hybrid deep-learning 
model for predicting city-wide traffic congestion. The model 
achieves promising accuracy and outperforms other algorithms. 
However, the study acknowledges the model’s computational 
inefficiency. It suggests improving efficiency and incorporating 
external factors like weather information for enhanced 
predictions.

LSTM-based approach with 
preprocessing enhanced 
congestion prediction accuracy 
under various conditions.

The study proposes an LSTM-based traffic congestion prediction 
method. Still, it acknowledges limitations related to outliers 
and missing data, which can impact prediction accuracy. While 
the model performs better in suburban areas with less external 
interference, it aims to improve accuracy in low-speed regions 
and urban areas in the future.

DELA model integrating 
embedding, CNN, and LSTM 
improved urban traffic flow 
prediction.

The study proposes a Deep and Embedding Learning Approach 
(DELA) for accurate traffic flow prediction by combining 
an embedding component, CNN, and LSTM. Although DELA 
demonstrates superior prediction accuracy compared to 
existing methods, the study acknowledges the limitation of 
needing more explanatory power in deep learning models. It 
outlines plans for future enhancements without addressing 
specific challenges or constraints.

Path-based Deep Learning 
framework with Bi-LSTM NN 
demonstrated improved speed 
prediction accuracy.

The study presents an interpretable deep learning model for 
traffic speed forecasting, with contributions including defining 
critical paths and utilizing Bi-LSTM NN for spatial-temporal 
modeling. However, the study does not explicitly discuss the 
limitations of the proposed model. While it suggests future 
research directions related to model interpretability and 
critical path selection, it must address potential challenges or 
constraints in these areas.
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In addition to the shortcomings and exceptions listed in table 5, a major shortcoming was that the majority 
of these studies failed to take into account the impact of feature engineering on the accuracy of traffic 
flow predictions, the features’ effects on traffic flow, or the models’ accuracy in making such predictions. 
The prediction process in supervised learning relies heavily on feature significance. By understanding which 
information directly impacts the result, we can build a more accurate and reliable model. 

New developments in traffic flow prediction have shown how crucial it is to correctly detect spatiotemporal 
patterns and to use data-driven feature extraction and selection approaches to find complicated correlations.
(66,67) One study found that LSTM, a heuristic optimization algorithm, achieved Mean Absolute Errors (MAEs) of 
4,25 and 4,38 minutes, respectively, for ATFM delay regression prediction using feature extraction modules 
(such as CNN, TCN, and attention modules).(66) In addition, present approaches for predicting traffic flows have 
an accuracy gap of 5 %-16 % when using a Community-Based Dandelion Algorithm for feature selection.(66) Data 
decomposition approaches, such as wavelet decomposition and empirical mode decomposition (EMD), improve 
the predictive performance of time series prediction models compared to standalone models.(68,69,70)

Standard Traffic Flow ML and DL Prediction Algorithms Implemented
To gain a comprehensive understanding of traffic flow, the researchers responsible for those studies used 

a wide variety of deep learning and machine learning approaches. These algorithms aim to improve urban 
mobility and traffic management by developing prediction models that use historical data on traffic and other 
relevant elements. The following are examples of well-known algorithms and techniques for machine learning 
and deep learning:

Long Short-Term Memory LSTM
Recurrent neural networks (RNNs) take into account past contexts to make decisions based on the present 

input via feedback loops that allow activations to travel from one layer to another. One issue with RNNs is the 
vanishing gradient problem, which refers to the diminishing effect of activations from previous time steps on 
the network’s ability to store information over time. This is further worse by the fact that activation functions 
like the sigmoid and hyperbolic tangent limit the range of possible input values. So, during training, error 
signals don’t propagate very well. The inability of RNNs to capture long-term relationships is a result of this 
constraint. So, to fix these issues, we need more complicated solutions, such LSTM blocks.(71)

LSTM (Long Short-Term Memory) blocks were developed in Hochreiter et al.(72) to address the problem of 
information loss over extended periods in RNNs. LSTM blocks, in figure 14, in contrast to conventional hidden 
units, include memory cells (c) and three gates (i, f, and o) to control the information flow. The cell state (ct) 
and output (ht) store and carry pertinent memories at each time step and layer. Using LSTM blocks, which 
incorporate gated linear relationships between memory cell states and peephole connections (U), allows for 
preserving significant information across long periods.(71)

The equations defining LSTM are shown in figure 5:

Figure 5. LSTM formulation(71)

The LSTM Model has proven very promising in Traffic flow predictions. Its accuracies are much higher than 
those of standard neural networks. Moreover, it has also shown increased performance improvements when 
used in a hybrid model with other ML and DL models.

Gated Recurrent Unit GRU
It is imperative to capture hidden representations of sequences when there are long-term relationships 

between the input signal x and the output signal y when using gated units like LSTM and GRU. These units are 
made to learn and store knowledge effectively over time to recognize and represent complicated sequential 
patternsClick or tap here to enter text.(66) Figure 6 illustrates a unit formulation of the GRE model.
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Figure 6. GRU Unit Formulation(73)

The GRU (Gated Recurrent Unit) is a condensed form of the LSTM (Long Short-Term Memory) with no output 
gate. The GRU lacks the output gate, which increases its computational efficiency and structural simplicity in 
contrast to LSTM, which contains input and output gates to regulate the flow of information. GRU, unlike LSTM, 
cannot selectively disclose the hidden state at each time step because of the absence of an output gate. For 
sequential modeling jobs, the GRU can still record and save pertinent information in the hidden state.(73)

Figure 7. GRU Unit(73)

Convolutional Neural Networks CNN
Convolutional neural networks (CNNs) are explicitly used for image classification tasks where the need 

for complex preprocessing is minimized, and the focus is on directly classifying raw images.(9) CNN was first 
developed in 1988 by Fukushima.(74)

In figure 8, it shows the structure of CNN. It shows a layer structure with multi-filters to allow the system 
for parallel processing. When dealing with enormous amounts of data, it is crucial to use deeper neural 
network topologies with more hidden units. The large-scale inputs may be gradually reduced by creating such a 
framework, which enables the underlying traits to emerge more clearly throughout the learning process. Three 
parts comprise a CNN architecture: the input, hidden, and output layers. The phrase “hidden layers” refers to 
the intermediate levels of any feedforward network, and the number of hidden layers varies depending on the 
kind of network design. Convolutions are carried out in hidden layers, comprising dot products between the 
input matrix and the convolution kernel. The feature maps produced by each convolutional layer are utilized 
as input by the successive layers.(75)

Figure 8. CNN Structure(76)

In figure 9 the two essential parts of CNN are illustrated: feature extractor and Classifier. The network is 
structured with convolutional and max-pooling layers for feature extraction. There are convolutional layers 
(even-numbered) and max-pooling layers (odd-numbered) at the bottom and middle levels of the network. 
Max-pooling minimizes the dimensionality of the features, whereas convolutions extract features from the 
input nodes. These layers’ outputs are arranged into a 2D plane called a feature map, commonly made by 
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fusing different planes from the preceding levels. Every node in the convolutional layer collects features from 
the prior layer’s linked sections.(9)

Figure 9. CNN Feature collection model(77)

Support Vector Machine
The Support Vector Machine program allows users to perform pattern recognition and regression estimation 

on some given data. SVM is a new machine learning method based on statistical learning theory.(78) Figure 10 
shows the optimal separation place of the SVM model.

Figure 10. SVM Optimal separating surface(78)

The fundamental idea behind SVM is margin calculation, which aims to maximize the margin-to-class distance 
to produce a hyperplane that divides two classes. SVM can manage scenarios with misclassifications using a 
soft margin and handle linearly separable data and issues with numerous features because its complexity is 
independent of the number of features.(9)

Random Forest
Random forest is a machine learning model commonly used by researchers like Ramchandra et al.(46) to 

combine the outputs of multiple decision trees to reach a single result. Xu et al.(41), Jiang et al.(42) and Bratsas 
et al.(43), have used R.F. in their studies in different settings, and it is notable that in the research findings of 
Ramchandra et al.(46), R.F. was the second-best performing algorithm. R.F. is often very accurate in its predictions, 
and it doesn’t require feature scaling or categorical feature encoding and requires minimal feature tuning.

R.F. has been effectively used in traffic flow predictions. The model is trained based on historical and 
real-time data, which can be collected from various sources such as cameras, sensors, GPS, social media, 
etc. Random Forest can predict traffic using previous data and store the expected values. One of the main 
advantages of R.F. is that it’s highly accurate and takes less time.(80)

Ensemble Method
Several studies utilized ensemble methods that combine multiple prediction models to achieve higher 

accuracy. Ensemble approaches, such as stacking and bagging, use the combined capabilities of many algorithms 
to improve overall prediction performance.
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Machine learning is becoming a prominent area of artificial intelligence with many applications because of 
the abundance of data sources. Many algorithms are used in machine learning, each tested for scalability and 
performance. Among the noteworthy approaches in this field are deep learning and ensemble learning. Deep 
learning can tackle complex problems and extract features from unstructured data. Still, it requires a lot of 
work and expert adjustment during training, which raises the possibility of overfitting issues. 

The effectiveness of ensemble learning in improving the performance of predictive models, as seen in figure 
11, has attracted a great deal of attention and given rise to a growing body of research in various fields. This 
part uses the extensive ‘Scopus’ database to examine this tendency. This analysis focuses on the period from 
2014 to 2021. It includes papers on “Ensemble Learning” and “Ensemble Deep Learning,” considering abstracts, 
keywords, and titles. The findings demonstrate a notable increase in papers published in the “Ensemble 
Learning” field, with 25 262 publications throughout the designated period.

Moreover, with an approximate total of 16 782 records, the field of computer sciences is the leader in article 
volume. Simultaneously, there is a clear interest in “Ensemble Deep Learning,” as seen by the 6 173 articles. 
The number of articles in the computer sciences sector continues to be high, indicating the growing interest in 
and importance of ensemble learning approaches in modern research.(81)

Figure 11. Ensemble learning used in different fields from 2014 – 2021(81)

Moreover, within the context of traffic flow prediction, it has been observed that the application of Ensemble 
methods yields exceptional outcomes when dealing with traffic-related datasets. Notably, these investigations 
have demonstrated that using the Ensemble method has led to a remarkable accuracy level of up to 98,68 % in 
predicting traffic flow patterns.

All of the ML and DL algorithms have their advantages when we are utilizing them for traffic flow predictions. 
ARIMA effectively captures linear temporal dependencies in traffic flow data, such as daily or weekly patterns. 
Random Forest can capture nonlinear relationships and interactions between features, making it suitable for 
complex traffic flow patterns. LSTM and GRU are particularly suited for longer-term dependencies in time 
series data. They are well-suited for capturing patterns that extend over hours or even days. CNNs help capture 
spatial patterns along a single dimension, such as road segments, where specific patterns may repeat across 
different segments. Ensemble Method Combining multiple models or techniques allows leveraging the strengths 
of each approach. For example, combining time series models with neural networks can capture linear and 
nonlinear dependencies.

Evaluation Metrics
The performance of the machine learning and deep learning models are analyzed using different evaluation 

metrics. These evaluation metrics are Accuracy, Precision, Mean Square Error (MSE), Root Mean Square Error 
(RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). The equations for these 
metrics are as follows:
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The equations given above show the evaluation metrics formula. In MSE, RMSE, MAE, and MAPE, the Yi is the 
actual value and Y ̅i is the predicted value with n being the total number of data points. Accuracy is calculated 
based on the number of correct predictions divided by the total number of predictions. Precision depends on 
the confusion matrix, which shows the total number of true positives, false positives, and false negatives. Apart 
from these, Mean Relative Error (MRE) was also used in many studies. MRE is the same as MAPE, except MRE is 
usually expressed as a fraction. In contrast, MAPE is expressed as a percentage. Overall, all these evaluation 
metrics are used to analyze the performance of models and compare the results when utilized for traffic flow 
predictions.

CONCLUSIONS
In conclusion, in this review, we examined how sophisticated AI methods like ML and DL may help better 

traffic flow management through accurate predictions. A total of 70 articles were selected and reviewed in 
this process. We discovered that various techniques, including LSTM and other models, effectively forecast 
the traffic flow. This is significant because it contributes to developing more innovative and livable cities. The 
study also showed how effective these advanced intelligent models are in identifying traffic patterns compared 
to previous, more straightforward techniques such as ARIMA. Some exciting methods that relied on long short-
term memory (LSTM) were even more accurate than the conventional models. We were also drawn to hybrid 
models, a blend of many approaches, because they have the potential to be highly successful in handling 
complex traffic scenarios.

However, it’s essential to know that these intelligent methods have some limits, and we need to be aware 
of them, which also brought our attention to the studies lacking the consideration of feature engineering and 
importance. The study suggests that future research should focus on datasets and integrate feature engineering 
methods to make the prediction process even better and more reliable. Also, having different information, like 
traffic, weather, and pollution data, can help these models work even more intelligently. Ultimately, we hope 
this study helps researchers, people who make decisions about cities, and those who work on traffic issues. We 
wish to contribute to literature and future studies by serving as a resource for other academics and researchers.
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