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ABSTRACT

Cell standby, particularly picocell sleep mode (SM), is a prominent strategy for reducing energy consumption 
in 5G networks. The emergence of multi-state sleep states necessitates new optimization approaches. This 
paper proposes a novel energy optimization strategy for 5G heterogeneous networks (HetNets) that leverages 
macrocell-picocell coordination and machine learning. The proposed strategy focuses on managing the four 
available picocell sleep states. The picocell manages the first three states using the Q-learning algorithm, 
an efficient reinforcement learning technique. The associated macrocell based on picocell energy efficiency 
controls the final, deeper sleep state. This hierarchical approach leverages localized and network-wide 
control strengths for optimal energy savings. By capitalizing on macrocell-picocell coordination and machine 
learning, this work presents a promising solution for achieving significant energy reduction in 5G HetNets 
while maintaining network performance.

Keywords: 5G; Hetnets; Energy Consumption; Energy Modeling; Sleep Mode; Machine Learning.

RESUMEN

El modo de espera de la célula, en particular el modo de reposo (SM) de la picocélula, es una estrategia 
destacada para reducir el consumo de energía en las redes 5G. La aparición de estados de reposo multiestado 
requiere nuevos enfoques de optimización. Este artículo propone una nueva estrategia de optimización 
energética para redes heterogéneas 5G (HetNets) que aprovecha la coordinación macrocelda-picocelda 
y el aprendizaje automático. La estrategia propuesta se centra en la gestión de los cuatro estados de 
reposo disponibles de la picocélula. La picocélula gestiona los tres primeros estados mediante el algoritmo 
Q-learning, una eficiente técnica de aprendizaje por refuerzo. La macrocélula asociada, basada en la 
eficiencia energética de la picocélula, controla el último estado de sueño, más profundo. Este enfoque 
jerárquico aprovecha las ventajas del control localizado y de la red para conseguir un ahorro energético 
óptimo. Aprovechando la coordinación macrocélula-picocélula y el aprendizaje automático, este trabajo 
presenta una solución prometedora para lograr una reducción significativa de la energía en redes 5G HetNets, 
manteniendo al mismo tiempo el rendimiento de la red.

Palabras clave: 5G; Hetnets; Consumo Energético; Modelado Energético; Modo Reposo; Aprendizaje 
Automático.
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INTRODUCTION
The combination of 5G and different types of networks has helped meet the increasing need for mobile data 

and fast data speeds. However, this improvement makes networks more complicated and uses much energy. In 
the future, mobile networks will become even more diverse because more devices will be used, more data will 
be transferred, and high-frequency networks with limited reach will be deployed more often.

While HetNets can handle more data, they also make it harder to manage energy. Some methods, like 
making small cells sleep when they're not needed (sleep mode), have shown promise in saving energy. But it's 
tricky to ensure these methods don't affect service quality. Moving from simple sleep modes to more advanced 
ones with different states of sleep needs a better way to determine how much energy each state uses. This is 
important for deciding when it's worth putting cells to sleep and when it's not. We also want to use machine 
learning to control sleep modes as best as possible.

Current methods for sleep mode have trouble managing energy well when there are different sleep states in 
HetNets. It's hard to save energy while keeping service quality high. Also, focusing only on small cells might not 
use energy as efficiently as possible in networks where different types of cells work together.

This study introduces a new way to save energy in 5G HetNets. It looks at how big and small cells can work 
together to decide when small cells should sleep. It also uses energy efficiency rules to pick the best sleep 
states. Machine learning techniques adjust sleep modes based on what's happening in the network.

This work contributes to the field of energy-efficient HetNet design by proposing a novel approach that 
leverages macrocell-picocell coordination and ML for optimal picocell sleep state control. This strategy has the 
potential to significantly reduce energy consumption while maintaining acceptable QoS levels in 5G networks.

Related work 
SM is a technique used in mobile networks to reduce base station energy consumption significantly. By 

temporarily turning off non-essential functions during low-traffic periods, SM allows energy usage to adapt to 
real-time cell load, minimizing the amount of wasted power.(1) This approach is particularly relevant in today's 
context, driven by both environmental concerns and economic factors. Studies show that base stations account 
for a substantial portion (60-80 %) of a mobile network's energy consumption.(2)

However, a key challenge lies in the inherent energy draw of base stations, even during low-load periods. 
Estimates suggest that a base station can still consume 50-60 % of its maximum power under no-load or low-
load conditions.(3) This highlights the need for a consumption model that dynamically adapts to cell load 
variations. Among various proposed solutions, SM stands out for its effectiveness. It offers a simple and readily 
implementable method for reducing energy consumption without requiring extensive modifications to the 
existing network architecture.(4) The concept of cell sleep mode was first introduced by Micallef et al.(1), who 
combined it with "cell size breathing" - a mechanism for dynamically adjusting cell coverage area. Advancements 
followed the(5) and(6), where researchers proposed putting specific resources on standby based on traffic load, 
ensuring minimal impact on quality of service (QoS). The emergence of heterogeneous networks (HetNets) 
opened new possibilities for SM. With macrocells providing full coverage, cellular monitoring could be applied 
at the picocell level, as explored in some studies. For instance, Frenger et al.(7) introduced Cell Discontinuous 
Transmission (DTX), where the radio transmitter is switched off when there's no data or reference signal to 
transmit.

Beyond the initial binary (on/off) sleep mode, research has focused on more granular control. The concept 
of Advanced Sleep Mode (ASM) with multiple sleep states emerged, facilitated by the more extended (160ms) 
discontinuous transmission duration introduced in 5G compared to 4G's 1ms limit.(7) Building on this concept, 
Debaillie et al.(8) proposed a system with four distinct sleep states, each characterized by unique activation, 
deactivation times, and minimum sleep durations. While multi-state sleep mode (MSSM) strategies, as proposed 
Saker et al.(9), offer significant energy savings at low traffic loads, they often come at the cost-of-service quality. 
Finding the optimal balance between energy consumption and QoS becomes crucial. As MSSM systems become 
more complex, choosing the ideal sleep level presents a growing challenge. Machine learning emerges as a 
promising solution for optimizing sleep state selection. Several studies have explored this approach. Pervaiz 

et al.(10) proposed an MDP-based (Markov Decision Process) control mechanism for heterogeneous networks, 
considering both cell load and user equipment (UE) location. Similarly, Salem et al.(11) and Masoudi et al.(12) 
leverage Q-learning algorithms to determine optimal sleep durations for minimizing energy consumption while 
respecting latency and QoS constraints. Notably, Amine et al.(13) incorporates co-channel interference into their 
HetNet Q-learning solution.

However, current MSSM algorithms primarily focus on optimizing sleep modes at the individual small-
cell level, neglecting the overlapping coverage areas within HetNets. This is where the concept of "energy 
profitability" introduced by Fall et al.(14) becomes relevant. It defines a threshold below which offloading traffic 
to the macrocell becomes more energy-efficient for the network, considering resource availability. Ultimately, 
effective energy optimization strategies require maintaining QoS.  As highlighted throughout these studies, 
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robust coordination between macrocells and picocells remains essential for achieving this goal.

METHODOLOGY
Good coordination between macrocells and picocells is essential for an effective SM system. Thus, we 

introduced a coordinated multi-state SM mechanism, where the picocell manages the first 3 states of a pico-
cell, and the associated macrocell manages the 4th state.

Macrocell - Picocell coordination principle
A base station must wake up periodically to send signaling bursts to communicate with the mobile terminals.
The article(8) introduced 4 states of sleep: SM1, SM2, SM3 and SM4 (Table 1):

 • SM1: represents the shortest SM, with a transition time of 71 µ s corresponding to an OFDM symbol. 
In this mode, only the power amplifier and some processing components are disabled.

 • SM2: corresponds to an intermediate sleep with a transition time of 1 ms equivalent to a subframe. 
We have more disabled processing components here.

 • SM3 corresponds to a sleep state with a transition time of 10 ms (one frame) in which all essential 
or processing components and the power amplifier are disabled.

 • SM4: corresponds to BSM where only the wake-up functions are retained. This is the deepest sleep 
and requires a transition duration of 1s.

Table 1. Characteristics relating to sleep states

Sleep state Activation time Deactivation time Minimal sleep time

SM1 35,5 µs 35,5 µs 71 µs 

SM2 0,5ms 0,5ms 1ms

SM3 5ms 5ms 10ms

SM4 0,5s 0,5s 1 sec

Salem et al.(15) present a detailed table of the different components disabled at each state (Table 2).

Table 2. Components disabled in each mode(15)

Components Subcomponents SM1 SM2 SM3 SM4

Power amplifier X X X X

Baseband unit Prewarp X X

Filtering X X X X

FFT/IFFT X X X X

MIMO precoding X X X X

Synchronization X X X X

Channel estimation X X X X

Calculation of the Equalizer X X X X

Equalization X X X X

OFDM Mod/ Demod X X X X

Mapping/ Demapping X X X X

Channel coding X X X X

Control unit Control

Backhaul

Network

Analog receiver LNA X X X X

LNA2 X X X X

Frequency synthesis X X X

Blender X X X X

VGA X X X X

Clock X

ADC X X
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Analog transmitter Modulator X X X X

Buffer X X X X

Frequency synthesis X X X

VCO Feedback X X X

Blender X X X X

Clock X

DAC X X X

DAC feedback X X

Energy source AC DC

DC/DC

Air conditioner

In 5G, the CRS reference signal is no longer necessary, and synchronization signals can be transmitted with 
a periodicity of 5, 10, 20, 40, 80, or 160ms.(16) Based on these values, Amine et al.(17) declared that SM4 could 
not be used and limited their work to the first 3 states.

SM4, for its part, can be compared to the sleep state in binary mode. In the scheme proposed, this state is 
controlled by the macrocell, which can put the picocells to sleep (SM4) or wake them up. Amine et al.(17) would 
thus perfectly complement the previous work presented by Fall et al.(14) to have a complete mechanism for 
handling a 4-state SM: "coordinated multi-state SM." The picocells control the first 3 states (SM1, SM2, and SM3) 
and can transit between them autonomously. The SM4 state, on the other hand, is controlled by the macrocell, 
which decides which picocells to activate or deactivate. Therefore, this state is assimilated into the base 
station's inactive state. From the macrocell perspective, there are only two states at the picocell level, either 
active or in SM4 (inactive).

The defined management mechanism is based on coordination between the macrocell and the picocells. The 
macrocell is based on the energy profitability threshold Sre(14) to activate and put a small cell into SM4. When a 
small one is active, it can manage internal transitions between the active state and the SMs SM1, SM2, and SM3 
through a learning algorithm that decides at each cycle (Table 3).

Table 3. State management of a small cell

Managed States
Transition

Active SM1 SM2 SM3 SM4

Macrocell X X Safe

Small cell X X X X Reinforced learning

Macrocell management based on energy profitability
The macrocell integrates algorithms for optimizing energy consumption based on energy profitability for 

deactivating unprofitable picocells or activating picocells in sleep mode (Figure 1). 
At each SM4 cycle, corresponding to the minimum sleep duration for the state considered and equal to 1s, 

the deactivation algorithm is executed for all the picocells. It is based on the profitability threshold of picocells 
to decide whether to put them on standby (SM4). This evaluation frequency (1s) can be increased if traffic 
fluctuates slightly. Regarding picocells in SM4, their activation will depend on the charge or saturation level of 
the macrocell. These different parameters are grouped around the concept of load index Ic presented Fall et 
al.(14).

Integrating the multi-state SM at the SB of picocells can save significant energy savings. Lähdekorpi et al.(18)  

highlighted these savings as up to 92 % at low load or 15 % at 40 %. The following figure illustrates this new 
consumption curve:
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Figure 1. Picocell management algorithms

Figure 2. Picocell energy consumption curve

The new consumption curve looks like a logarithmic function, which we have modeled as follows:

Where Cp represents the power consumed by the base station; Ap represents the coefficient of the logarithm 
function; bp is a horizontal translation value of the energy curve; Cp0 represents the fixed component of the 
power; And x represents the percentage of chargeBased on our curvature estimates, we have used the base 2 
logarithm:

We, therefore, need to re-evaluate the break-even point, materialized by the equality between the 
consumption of the macrocell Cxm (induced by the UEs) and that of the pico-cell Cxp induced by the same 
number of UEs.

Where Np represents the total number of UEs supported by the picocell, so we have the following equation 
to find Sre:

https://doi.org/10.56294/dm2024333 
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Picocell management based on reinforced learning
Each picocell SB autonomously manages 3 other sleep states through a reinforced learning policy, adapted to 

decision problems. We have chosen the Q-learning algorithm, based on the evaluation of a state-value function 
Q, which links a state S to an action A, and which is updated at each iteration.(19)

Our work is thus associated with that presented by Amine et al.(17) who proposed a Q- learning algorithm 
which is presented as follows:

Figure 3. Description of the Q- learning algorithm(17)

However, a buffer must be set up in each picocell to keep incoming connection requests that find the picocell 
in SM.(15,4) We propose the establishment of a buffer that would store the service requests and, depending on 
the depth of the sleep state and the phase in which the base station is, would decide between waiting for the 
base station to wake up and offloading requests to the macrocell. This offloading only concerns demand and 
not the UE as a whole.

RESULTS AND DISCUSSION
Simulation scenarios

For our simulations, we use the environment that we defined in our article Fall et al.(14) and which is inspired 
by the "Urban Dense" architecture of(20), namely:

A surface of dimension 500m x 500m with a Macro BS in the center (0,0) and 25 Pico BS distributed according 
to a Poisson law. The BS transmits at a frequency of 2GHz. There are 100 UEs for a low load, 500 for a medium 
load, or 1000 for a high load: 80 % indoors at a speed of 0,3m/s and 20 % outdoors at a speed of 10m/s.

We have the following parameters (Table 4):

Table 4. Simulation parameters

Setting Value

Simulation surface 500m x 500m

Number of MBS 01

Transmission power 43 dBm
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Number of PBS 25

Transmission power 23dBm

Bias (CRE) 6dB

MBS frequency 2GHz

Frequency of PBS 3,6GHz

Bandwidth 20 MHz

Loss Model UMa3D and UMi3D

In(14) we presented the table below, which describes the standard energy consumption model of 5G base 
stations (Table 5):

Table 5. Energy consumption of 5G macro and pico BS

Base station 
type

Max number 
of UEs

Energy cost (W) Load factor 
(W)Zero load Sleep state

Macro 800 780 450 564

Pico 32 40,8 25,8 3

Evaluation of the break-even point
The break-even point Sre is defined by the following equation:

Evaluation of Ap, ap, bp and Cp0

With 3 remarkable points:

Where Cp represents the consumption function of a picocell without multi-state SM. We have the following 
system of equations:

We consider Cp0 it is to be the fixed component at zero load. So, we have:

https://doi.org/10.56294/dm2024333 
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The equation becomes:

Figure 4. Evaluation of the energy profitability threshold

With BSM, the break-even point Sre was 25 UEs, while with ASM, it is 69. This is because ASM is more efficient, 
so most of the energy consumed by the picocell is associated with the UEs. In contrast, with BSM, the picocell 
consumed almost all of its maximum energy, even at zero load or in SM. The energy consumption per UE is very 
low: 0,705W for a microcell UE and 1,369W for a picocell UE.

Therefore, the main reasons for deploying picocells are not energy-related but are instead focused on 
improving throughput and capacity. For picocells to be energy-efficient, the energy consumption per UE (Cup) 
must be lower than that for the macro-cell (Cum).

We note this factor k:

Table 6. Break-even threshold values as a function of k

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Sre 69 27,87 16,35 11,04 8,06 6,178 4,898 3,979 3,293 2,763 2,345 2,008 1,732 1,502 1,308 1,143 1,001 0,879 0,772 0,678

The main motivation for deploying picocells could be reducing energy consumption if we lower the factor 
k to 18, making Sre equal to 1. This would make picocells profitable regardless of their load. Even below this 
factor of 18, reducing energy consumption can still be a goal, considering the average load of picocells relative 
to the break-even threshold. If the average load of picocells is below this threshold, deploying picocells can be 
seen as aiming to reduce energy consumption.
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Simulation results
Fall et al.(14) presented our energy consumption optimization algorithm (AOCE), compared to Max-SINR,(21) 

CRE (Cell Range Expansion)(22) and the energy optimum, which represents the theoretical minimum consumption. 
With this new coordination, integrating multi-state SM, we have AOCE2 which represents its version 2.

Introducing ASM, along with macrocell-picocell coordination, maximizes energy optimization. At low load, 
as shown in figure 5, the ECOA (ASM) aligns with the optimal (ASM) because all UEs are connected to the 
macrocell. This happens because the break-even threshold exceeds the maximum number of UEs a picocell 
can handle, making the UE-macrocell association more efficient than the UE-picocell association. For the same 
reason, the MaxSINR association mode is more economical than the CRE mode.

 

Figure 5. Energy consumption at low load

At high load, as shown in figure 6, the difference in energy consumption between BSM and ASM naturally 
decreases, and the likelihood of using SM is lower. There is a noticeable difference between the ECOA and 
the optimal scenario in ASM. The picocells become loaded with the number of UEs exceeding the macrocell's 
maximum capacity. In this situation, achieving an optimal configuration is nearly impossible due to the saturation 
of active picocells. However, the ECOA remains close to optimal, with only a 7,45 % increase in consumption.

Figure 6. Energy consumption at high load

Coordination assessment
The new ECOA2 algorithm combines the benefits of ASM, limited to state 3 of SM, with the advantages of 

coordinated cellular association from our previous article, which extends to state 4. This allows for optimal use 
of picocell SM (see Table 7).

Table 7. Energy savings compared to MaxSINR BSM

100 UEs 500 UEs 1000 UEs

ECOA 1 11,24 % 15,28 % 11,26 %

MaxSINR ASM 33,37 % 17,88 % 11,02 %

ECOA 2 44,68 % 41,15 % 21,61 %

https://doi.org/10.56294/dm2024333 
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The algorithm can save up to 45 % energy compared to traditional cellular selection with BSM. Most of the 
savings come from ASM; a picocell can reduce energy consumption by 92 % at zero load. However, the impact 
of coordination is less significant due to the low number of UEs. As the load increases, the energy savings from 
ASM decrease because of the logarithmic nature of the consumption curve. At 40 % load, ASM savings drop from 
92 % to 15 %. Conversely, as the load increases, the coordination between the macrocell and picocells becomes 
more crucial, leading to greater energy savings. The reduction mechanisms near their limits at high load levels, 
and potential savings become increasingly minimal. 

Figure 7 illustrates the energy consumption at low, medium, and high loads. The ECOA ASM effectively 
optimizes energy consumption across these different loads. However, it's essential also to consider other metrics 
such as QoS and throughput.

Figure 7. Energy consumption at 100, 500, and 1000 UEs

Figure 8 shows the average throughput per UE at low, medium, and high loads. ECOA ASM has a smaller 
average throughput at low load compared to ECOA BSM. Its throughput is notably lower at medium load because 
the UEs are associated with the macrocell, preventing the picocells from reaching their break-even point. ECOA 
ASM also has a lower average flow rate at high load, as the macrocell is fully utilized before the picocells are 
engaged. The high profitability threshold, which exceeds the picocell's maximum capacity, negatively impacts 
throughput and overall quality of service. Since picocells perform better than macrocells, the break-even point 
must be reduced to optimize energy and improve QoS. However, ECOA ensures QoS by allowing uplink transfers 
only when certain metric limits defined by the load index in the article, subject to compliance with certain 
metric limits defined through the load index present by Salem et al.(15), are met.

Figure 8. Average throughput per UE at various loads

CONCLUSION
This paper presented a novel approach to tackle the growing energy consumption challenge in 5G networks. 

Focusing on heterogeneous networks with macrocells and picocells, we proposed a coordinated multi-state 
sleep mode (SM) strategy that combines two established techniques: Advanced Sleep Mode (ASM) and macrocell-
picocell coordination for cell selection.

We developed a new logarithmic energy consumption model for picocells to achieve this. This model and 
implementation of Q-learning, a machine learning algorithm, allowed for dynamic and efficient management 
of ASM states within picocells. Additionally, a new energy profitability threshold was calculated for picocells 
to guide macrocell coordination decisions. This comprehensive approach, named "coordinated multi-state SM," 
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leverages the full potential of sleep states and macrocell-picocell collaboration, resulting in significant energy 
savings of up to 45 %.

While this work demonstrates the effectiveness of coordinated multi-state SM, further research holds 
promise for even more significant energy efficiency gains. One key area of focus lies in optimizing the hardware 
components within picocells. By exploring more energy-efficient hardware designs, we can further minimize 
the energy consumption associated with user equipment (UE)-base station links. This optimization would 
maximize the overall benefits achieved through macrocell-picocell coordination. Additionally, investigating 
more advanced coordination algorithms between macrocells and picocells has the potential to unlock even 
more significant energy savings.
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