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ABSTRACT

Introduction: early diagnosis of Cardiovascular Disease (CVD) is vital in reducing mortality rates. Artificial 
intelligence and machine learning algorithms have increased the CVD prediction capability of clinical 
decision support systems. However, the shallow feature learning in machine learning and incompetent 
feature selection methods still pose a greater challenge. Consequently, deep learning algorithms are needed 
to improvise the CVD prediction frameworks. 
Methods: this paper proposes an advanced CDSS for CVD detection using a hybrid DL method. Initially, the 
Improved Hierarchical Density-based Spatial Clustering of Applications with Noise (IHDBSCAN), Adaptive Class 
Median-based Missing Value Imputation (ACMMVI) and Clustering Using Representatives-Adaptive Synthetic 
Sampling (CURE-ADASYN) approaches are introduced in the pre-processing stage for enhancing the input 
quality by solving the problems of outliers, missing values and class imbalance, respectively. Then, the 
features are extracted, and optimal feature subsets are selected using the hybrid model of Information 
gain with Improved Owl Optimization algorithm (IG-IOOA), where OOA is improved by enhancing the search 
functions of the local search process. These selected features are fed to the proposed Chaotic Rat Swarm 
Optimization-based Convolutional Neural Networks (CRSO-CNN) classifier model for detecting heart disease. 
Results: four UCI datasets are used to validate the proposed framework, and the results showed that the 
OOA-DLSO-ELM-based approach provides better heart disease prediction with high accuracy of 97,57 %, 97,32 
%, 96,254 % and 97,37 % for the four datasets. 
Conclusions: therefore, this proposed CRSO-CNN model improves the heart disease classification with 
reduced time complexity for all four UCI datasets.

Keywords: Cardiovascular Diseases; Adaptive Synthetic Sampling; Improved Owl Optimization Algorithm; 
Chaotic Rat Swarm Optimization; Convolutional Neural Networks.

RESUMEN

Introducción: el diagnóstico precoz de las Enfermedades Cardiovasculares (ECV) es vital para reducir las 
tasas de mortalidad. Los algoritmos de inteligencia artificial y aprendizaje automático han aumentado la 
capacidad de predicción de ECV de los sistemas de apoyo a las decisiones clínicas. Sin embargo, el aprendizaje 
de características superficial en el aprendizaje automático y los métodos de selección de características 
incompetentes aún plantean un desafío mayor. En consecuencia, se necesitan algoritmos de aprendizaje 
profundo para improvisar los marcos de predicción de CVD. 
Métodos: este artículo propone un CDSS avanzado para la detección de ECV utilizando un método DL híbrido. 
Inicialmente, en el preprocesamiento se introducen los enfoques de agrupación espacial de aplicaciones con 
ruido basada en densidad jerárquica mejorada (IHDBSCAN), imputación de valor perdido basada en la mediana 
de clase adaptativa (ACMMVI) y agrupación mediante muestreo sintético adaptativo de representantes 
(CURE-ADASYN). etapa para mejorar la calidad de la entrada resolviendo los problemas de valores atípicos, 
valores faltantes y desequilibrio de clases, respectivamente. 

© 2024; Los autores. Este es un artículo en acceso abierto, distribuido bajo los términos de una licencia Creative Commons (https://
creativecommons.org/licenses/by/4.0) que permite el uso, distribución y reproducción en cualquier medio siempre que la obra original 
sea correctamente citada 

1Ph.D Scholar, Sri Ramakrishna College of Arts and Science, Assistant Professor KG college of Arts and Science. Coimbatore, Tamil Nadu-
641006, India.
2Associate Professor and Head, Department of Computer Science and Cognitive Systems, Sri Ramakrishna College of Arts and Science. 
Coimbatore, Tamil Nadu-641006, India.

Cite as: Sasirega D, Krishapriya V. Hybrid Feature Selection with Chaotic Rat Swarm Optimization-Based Convolutional Neural Network for 
Heart Disease Prediction from Imbalanced Datasets. Data and Metadata. 2024; 3:262. https://doi.org/10.56294/dm2024262

Submitted: 20-11-2023                          Revised: 02-03-2024                         Accepted: 16-05-2024                      Published: 17-05-2024

Editor: Adrián Alejandro Vitón Castillo 

https://crossmark.crossref.org/dialog/?doi=10.56294/dm2024262
https://doi.org/10.56294/dm2024262
mailto:sasiregabalu@gmail.com?subject=
mailto:kp@srcas.ac.in?subject=
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.56294/dm2024262
https://orcid.org/0000-0002-7811-2470


https://doi.org/10.56294/dm2024262 

Luego, se extraen las características y se seleccionan los subconjuntos de características óptimos utilizando el 
modelo híbrido de ganancia de información con el algoritmo de optimización Owl mejorado (IG-IOOA), donde 
la OOA se mejora mejorando las funciones de búsqueda del proceso de búsqueda local.Estas características 
seleccionadas se alimentan al modelo clasificador de redes neuronales convolucionales basado en la 
optimización de enjambres de ratas caóticas (CRSO-CNN) propuesto para detectar enfermedades cardíacas. 
Resultados: se utilizan cuatro conjuntos de datos UCI para validar el marco propuesto, y los resultados 
mostraron que el enfoque basado en OOA-DLSO-ELM proporciona una mejor predicción de enfermedades 
cardíacas con una alta precisión de 97,57 %, 97,32 %, 96,254 % y 97,37 % para los cuatro. conjuntos de datos. 
Conclusiones: Por lo tanto, este modelo CRSO-CNN propuesto mejora la clasificación de enfermedades car-
díacas con una complejidad temporal reducida para los cuatro conjuntos de datos de la UCI.

Palabras clave: Enfermedades Cardiovasculares; Muestreo Sintético Adaptativo; Algoritmo de Optimización 
de Búhos Mejorado; Optimización de Enjambre de Ratas Caóticas; Redes Neuronales Convolucionales.

INTRODUCTION 
Cardiovascular disease (CVDs) is a range of diseases that affect the heart and blood vessels that perform 

important activities in the human body. Globally, around 20,5 million deaths are reported due to CVDs by 
the World Health Organization (WHO) and are considered a global health problem. The symptoms of heart 
disease are irregular heartbeats, tightness in the chest, nausea, breathing disability, discomfort in arms and 
legs, fainting, weakness, and chest pain.(1) The heart and blood vessels are affected due to cholesterol blocks 
or narrowing of veins that cause the inability to pump blood to other organs. This leads to sudden heart 
dysfunction and the prevalence of the mortality risk. Some potential risk factors associated with CVDs are 
smoking, stress, alcohol consumption, high blood pressure, being inactive, unhealthy diets and obesity. These 
risk factors are considered as modifiable risk factors. Some non-modifiable risk factors causing heart disease are 
family history, age, gender and ethnicity. Thus, early prediction is essential to reduce death rates and improve 
the quality of life. Various diagnostics techniques and treatments are available to identify and minimize the 
risk of CVDs. These include blood tests, echocardiograms, stress tests, electrocardiograms, chest X-rays, and 
cardiac catheterization(2) and medications such as adenosine, atropine, beta-blockers, calcium, potassium and 
sodium channel blockers and digoxin are prescribed-based on the type and severity of the disease.(3) However, 
these methods are costly and require more time for diagnostics. Early and timely prediction with improved risk 
assessments and accurate diagnosis can minimize the death rate. Thus, Clinical decision support systems (CDSS) 
are introduced to increase the screening of CVD risk factors and help diagnose CVD-related diseases through 
preventive care services, clinical tests, and treatments.(4)

CDSS are computer-based systems that aid the process of diagnostics, disease prediction, and clinical 
management, reduce the risk of clinical errors, monitor patients’ response to the treatment and improve 
patient outcomes. The traditional statistical methods that work with the principle of identifying the correlation 
and association between the data patterns of patients were employed. Generally, CDSS uses regression analysis, 
survival analysis such as Kaplan-Meier curves and Cox proportional hazards models, and hypothesis testing like 
t-tests and chi-squared tests to determine the significance of associations in clinical data.(5) Bayesian statistical 
methods were also employed in CDSS to incorporate prior knowledge, update probabilities, and support 
diagnostic or predictive tasks. Data mining methods are employed to analyze historical data and identify 
the associations in data patterns using techniques such as clustering, association rules discovery, regression, 
sequential patterns discovery, and collaborative filtering.(6) However, data mining techniques include potential 
bias in the data and struggle with complex or unstructured data sets that require additional pre-processing 
steps.   Machine learning (ML) methods were used to overcome these challenges by automating the process 
of data analysis and pattern recognition. ML models can parse data, learn from them, and then apply the 
knowledge gained to make intelligent predictions. ML can handle complex and unstructured data sets more 
efficiently and helps identify hidden patterns and trends in data that were not identified using traditional 
statistical methods.(7) ML algorithms play a crucial role in CDSS by analyzing patient data to provide useful 
information and aid medical decision-making. However, the ML algorithm is always based on shallow learning 
of features in data that could not gather significant heart disease information. To overcome these challenges, 
deep learning (DL) techniques are utilized for heart disease classification. DL methods can provide accurate 
classification results that help medical practitioners conclude the presence and absence of heart disease. 
However, DL algorithms are considered black boxes as it is difficult to interpret and explain the reason behind 
predictions. This is because DL models have multiple layers and require more time to learn the features.(8) 
Despite these challenges, DL has gained popularity due to its ability to automatically learn and extract complex 
patterns from patient data compared to ML models. Hence, lightweight DL models are developed for CVD 
prediction to reduce the standard DL model's challenges significantly.
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Considering the advantages and challenges in heart disease prediction, an intelligent CDSS framework for 
CVD prediction using an advanced deep learning method is proposed. The proposed model comprises three 
stages: pre-processing, feature extraction and selection, and classification. In the pre-processing stage, the 
acquired datasets are pre-processed to detect and remove outliers, imputing the missing values and balancing 
the dataset to overcome class imbalance problems. The proposed model utilizes an IHDBSCAN method for 
detecting and removing outliers. The HDBSCAN method(9) is limited to handling clusters of varying densities 
and poses high computational complexity when data points are huge. Thus, the initial clusters of HDBSCAN 
are uniquely redefined in IHDBSCAN to reduce the complexity and slow processing for similar density clusters 
for outlier removal. After removing the outliers, the missing value imputation is performed using the proposed 
ACMMVI method. The ACMMVI method replaces the missing values based on the attribute type with the class 
median values. The threshold values are calculated based on the distances between the class median and the 
other observed data points. Then, the class imbalance problem in the dataset is resolved using the CURE-
ADASYN method. The standard ADASYN(10) faced the difficulty of handling datasets for generating new instances 
to balance the number of samples and increase the computational complexity of the minority class. CURE 
reduces the computational complexity of ADASYN by improving the initial clustering of balanced classes. This 
helps to represent the majority and minority class data better, leading to a more accurate classification by 
balancing the data. In the second stage, feature extraction and selection are applied.

The proposed feature selection method combines the Information gain (IG)-based filter method and the 
Improved Owl Optimization (IOOA)-based wrapper method to form a hybrid IG-IOOA algorithm, where the 
IOOA selects the optimal feature subsets based on IG. IOOA is developed by improving the search functions 
of the local search process of OOA. The method of selecting optimal feature subsets can lead to faster model 
training. Finally, the selected features are fed as input to the classifier model, CRSO-CNN, for heart disease 
classification. The RSO is improved by integrating the chaotic process to enhance its exploration capabilities 
and improve its convergence speed, and then it is used to optimally select the hyper-parameters of the CNN 
classifier to form the best configured CNN model. This best-configured CNN can efficiently reduce the training 
time and improve the training process. The CRSO-CNN model can contribute to more accurate and efficient 
heart disease diagnosis and risk assessment. The proposed CRSO-CNN model was evaluated using UCI Datasets- 
Cleveland, Hungary, Switzerland and VA Long Beach and the method provides high accuracy and low complexity 
in predicting heart disease. 

Previously, Asadi et al.(11) proposed a method of multi-objective particle swarm optimization (MOPSO) and 
a Random Forest (RF) for predicting heart disease. Evaluations are performed using Statlog, Cleveland, SPECT, 
SPECTF, and VA Long Beach datasets and obtained 88,26 %, 87,65 %, 86,70 %, 87,50 %, and 80,95 % respectively. 
However, because of the high number of iterations, these model approaches consume excess time to generate 
training sets for training decision trees.  Mehmood et al.(12) presented a deep learning method of Convolutional 
Neural Networks (CNN)-based Cardio Help model for predicting cardiovascular disease. Evaluations are 
performed using Cleveland datasets and obtained 97 % prediction accuracy. However, this method has high 
computational complexity. Mienye et al.(13) proposed a method of PSO technique and stacked sparse autoencoder 
(SSAE) for predicting heart disease. Evaluations are performed using Framingham and Cleveland datasets and 
obtained the classification accuracy of 0,973 and 0,961, respectively. However, PSO's performance is sensitive 
to the values of its parameters, such as the acceleration coefficients and population size.    Sekar et al.(14) 
proposed a Tuned Adaptive Neuro-Fuzzy Interference System (TANFIS) for heart disease prediction. Evaluations 
are performed using Kaggle datasets and obtained a classification accuracy of 99,86 %. However, this method 
consumes more time. Budholiya et al.(15) proposed a method of optimized Extreme Gradient Boost (XGBoost) 
classifier to predict heart disease. Evaluations are performed using the Cleveland dataset, and the model 
achieves accuracy, sensitivity, specificity, F1-score, and AUC of 91,8 %, 96,9 %, 85,7 %, 90,5 %, and 92,8 %, 
respectively. Although this model reduces the complexity, the feature learning capability is limited. 

Al Bataineh et al.(16) proposed a multilayer perceptron particle swarm optimization algorithm (MLP-PSO) 
method to diagnose heart disease. Evaluations are performed using the Cleveland dataset, and the model 
achieves an accuracy of 84,61 %. PSO is robust in controlling parameters, easy to implement, and computationally 
efficient. However, the PSO takes more time (22,6) for convergence to find a solution. El-Shafiey et al.(17) 
combined genetic algorithm (GA), particle swarm optimization (PSO) and Random Forests (GAPSO-RF) for heart 
disease detection. It achieved high accuracies of 87,8 % (10-fold) and 95,6 % (holdout) for the Cleveland and 
87,78 % (10-fold) and 91,4 % (holdout) for the Statlog datasets. However, computational cost and temporal 
complexity are high due to wrapper-based selection in GAPSO. Paul et al.(18) introduced a scaled conjugate 
gradient back propagation method of artificial neural networks using K-fold cross-validation for predicting heart 
disease. Evaluations are performed using the Cleveland processed dataset and the Cleveland Hungarian Statlog 
heart dataset and obtained an accuracy of 63,38 % and 88,47 %, respectively. However, in this method, the 
Cleveland processed dataset takes more time (54,2264 seconds) and provides less accuracy. Shrivastava et al.(19) 

combined CNN and Bidirectional Long Short-Term Memory (Bi-LSTM) to predict heart disease. Evaluations are 
performed using the Cleveland dataset, and the model achieves accuracy, precision, recall, and f1-score values 
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of 96,66 %, 96,84 %, 96,66 %, and 96,63 %, respectively. However, this method faced computational latency 
and model complexity. Yaqoob et al.(20) proposed a modified artificial bee colony optimization method with a 
support vector machine (MABC-SVM) to diagnose heart disease. Evaluations are performed using the Kaggle 
dataset, and the model achieves an accuracy of 93,8 % and reduces classification error by 1,6 %. However, it 
can be challenging to interpret this model's predictions and understand the importance of individual features, 
especially with complex kernels. 

Elsedimy et al.(21) introduced a method by combining a quantum-behaved particle swarm optimization 
(QPSO) algorithm and a support vector machine (SVM) for predicting cardiovascular disease. Evaluations were 
performed using the Cleveland dataset and obtained 96,31 % prediction accuracy. However, SVMs have model 
complexity due to increased support vectors for learning the features. Almazroi et al.(22) proposed a Clinical 
Decision Support System (CDSS) using a Keras-based-dense neural network (DNN) to diagnose heart disease. 
Evaluations are performed using Cleveland, Hungarian, Long Beach, and Switzerland datasets and obtained 
accuracies of 82,49 %, 81,02 %, 60,06 %, and 64 %, respectively. However, this model was poorly performed for 
the Switzerland and Long Beach datasets, with only 60 % accuracy achieved because it failed to handle the 
NaN values in the datasets. The existing methods showed that many ML and DL algorithms have been used for 
predicting heart diseases. Common challenges include computational latency, high computational costs, time 
consumption, and complexity. To overcome these limitations, the proposed method uses a lightweight CDSS 
using effective pre-processing methods, IG-IOOA for feature selection and CRSO-CNN classifier for predicting 
heart disease from imbalanced datasets.

METHODS

Table 1. List of variables used in this study

〖dist〗_core Core distance

minPts Nearest neighbour among a minimum neighbours

〖 d(x〗_p,〖 x〗_q) Normal Euclidean distances

ES (C_i) Stability of the cluster

D_(_complete) Complete data

D_(_incomplete), Instances with missing values

cent(D_i ) Euclidean distances between the class centre

Distance between the instance and

dist(y_i,x_2) A minority and majority class samples

〖 l〗_mi and〖 l〗_ma Total number of synthetic data

G Parameter  that specifies the desired balance level

β The distance between  the two clusters

dist (S,T) The distance between the two data items (p, q)

dist(p,q) The centre point of the clusters

S_r and〖 S〗_c An instance ratio (number of majority neighbours/
number of minority neighbours).

r_i The number of synthetic data samples

g_i Probability distribution of the samples

Re and ▁Re The probability distribution

p Binary function represents the logarithmic value, for 
the events X and Y

H(Y) and H(Y|X) The clustering process and nest renewal

〖PP〗_(num,)   〖SP〗_(num,)   and〖 
Dep〗_(nest,)

Random values

R_(1,) and〖 R〗_(2,) The number of primary branches

〖PP〗_(num,) The number of Owls

〖OW〗_(n,) The number of secondary perches

〖SP〗_num New positions

〖 OW〗_new The population of rats is initialized in this CRSO

P ⃗_i The position of the rat in the i-th iteration
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P ⃗_best The position of the optimal rat

B and r Random numbers

P ⃗_(i+1) The position of the next rat

The proposed method for heart disease prediction involves three stages: Data pre-processing, Feature 
extraction and selection and classification. The pre-processing stage is improved by imputing the missing data 
and removing the outliers and class imbalance problems. To enhance these problems, suitable methods like 
IHDBSCAN, ACMMVI and CURE-ADASYN methods are introduced. The features are extracted and selected in 
the next stage. The feature selection is performed using a hybrid model of the IG-IOOA algorithm. The final 
classification stage is performed using the proposed CRSO-CNN model. The total work method of this suggested 
approach is shown in figure 1.

Figure 1. Workflow of Proposed Methodology

Data pre-processing
The CVD datasets contain outlier removal, missing value impute, and class imbalance problems. These problems 

can degrade the input information's effectiveness and decrease the evaluation's effectiveness. Therefore, using 
suitable methods, the datasets are pre-processed to enhance the data quality and representation. In this pre-
processing step, removing the outliers, imputing missing values, and balancing class are vital tasks to improve 
the data quality. As stated earlier, the three methods of IHDBSCAN, ACMMVI, and CURE-ADASYN are utilized for 
these purposes in the pre-processing section.

Outlier Removal using Improved Hierarchical DBSCAN
In this proposed approach, an Improved Hierarchical DBSCAN technique is implemented to remove outliers. 

This technique is developed from the HDBSCAN method because it handles datasets with irregularly shaped 
clusters, varying cluster densities, and noisy data.  Declining as an outlier method is done to remove small 
clusters using the HDBSCAN cluster selection process. In this process, cluster selection does not depend upon 
the global epsilon threshold, but it creates an effective hierarchy for all the epsilon values for minPts a 
minimum cluster size. The first step is to find mutual reachability distance, represented as the core distance (〖 
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dist〗_core) between an object and its nearest neighbor among a minimum of minPts neighbors. The two objects 
are represented as,〖 x〗_p and〖 x〗_q are calculated as follows:

Where, 〖 d(x〗_p,〖 x〗_q) refers to normal Euclidean distances. This method distinguishes sparse data points 
from the rest by ensuring they are separated by a minimum distance equal to their core distance. Therefore, 
the dataset can be visualized as a graph, which is used for creating a spanning tree. Next, creating a condensed 
cluster hierarchy method and stability-based cluster selection typically involves selecting a subset of the most 
significant clusters from the original hierarchy tree and the context of clustering analysis. 

Finally, the Framework for Optimal Selection of Clusters (FOSC) is an approach that aims to guide the process 
of determining the optimal number of clusters in a clustering analysis. This measure needs to have two specific 
properties: local and additive. In local, the calculation for one cluster should not interfere with the calculation 
for another cluster. The measure should be meaningful in additive property to add up the computed cluster 
values. FOSC formulates the cluster selection as an optimization problem. To solve the optimization problem, 
FOSC uses a bottom-up approach. It's essential to ensure that exactly one cluster is selected on each branch 
of the hierarchical clustering tree. This requirement adds structure to the clustering solution, ensuring that 
clusters are well-defined and non-overlapping. FOSC is described as providing an efficient way of finding the 
globally optimal solution for cluster extraction based on the chosen stability measure. By efficiently traversing 
the hierarchy tree and making decisions at each level, FOSC aims to find the best cluster set that maximizes 
the sum of cluster stabilities.

However, HDBSCAN has some limitations, like taking more processing time due to its model complexity and 
slow processing for similar-density clusters. The IHDBSCAN technique was introduced in this proposed method 
with reduced computational complexity to overcome these limitations. This improved method introduces a 
threshold for better performance of cluster splits. Here, a threshold distance ( ε) ̂ is used for selecting a cluster 
from HDBSCAN. 

Here, an HDBSCAN hierarchy is used as a selection method according to FOSC. The proposed method of 
Improved HDBSCAN using cluster selection uses epsilon stable and epsilon stability conception. A cluster is 
represented as C_i with the i value of {2,…,k} is called epsilon stable if  ε_max (C_i )>( ε) ̂   for a given(  ε) ̂>0. 
Whenever C_i  appears, the density level is λ_min (C_i )=1/(ε_max (C_i ) ) . This is equal to its parent cluster 
split off. If the parent clusters split off at a distance above our threshold ( ε) ̂, then the cluster is called epsilon 
stable. Next, the epsilon stability is defined as:

Where ES is the stability of the cluster, the λ value is 0,2. For ( ε) ̂ and minPts,  selected clusters reach the 
highest epsilon stability in each path of the hierarchy tree and will not further split up. The parent clusters 
are split up at the distance〖 ε〗_min>( ε) ̂, which is equal to the  ε_max value on the level where their children 
appear. The child clusters are not allowed to split themselves because they are leaf clusters, or they are split 
when the threshold level is〖 λ〗_max=1/ε_min .  

From this stability definition, problems are solved using maximizing the sum of epsilon stabilities. Also, the 
definition explains when exploring the hierarchy of clusters from the bottom to the top, the biggest and most 
cohesive clusters at each step are found, as the smaller or less significant clusters are removed. This approach 
helps to focus on the most substantial clusters as they move up the hierarchy, which can be useful in various 
data analysis and clustering tasks. The outlier removal is explained in algorithm 1:

Algorithm 1: Improved Hierarchical DBSCAN
1.	 Initializing δ (.) = 1 for all leaf nodes.
2.	 Perform a bottom-up traversal starting from all leaves, excluding the root node:

	 If ES(C_i) is greater than 0; if S(C_i)  is 0, proceed to the next leaf node.
	 Else, if ES (C_i )equals 0, and the ES (C_(PARENT (i))) is greater than 0, do the following:
         -Set δ_(PARENT(i)) is equal to 1, 
         -Set δ (.) is equal to 0 for all nodes within the sub-tree of C_(PARENT (i)). 

From the above algorithm 1, start marking all the leaves in the HDBSCAN cluster hierarchy as selected. If 
a leaf was previously marked as not being a cluster or if it's already epsilon stable (λ_min<=1/( ε) ̂  for input 
parameter( ε) ̂), move on to the next leaf without any further action. Otherwise, it moves upwards in the 
hierarchy until it finds an ascendant that splits off from its parent at a certain density level (λ_min<=1/( ε) ̂ ). 
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It is stopped if such an ascendant finds before encountering any of its descendants. This process guarantees 
that the largest epsilon stable cluster is selected along each path in the hierarchy. To move up the tree, ES 
(C_i) generally decreases (except for cases with 0 values). This approach guarantees the selection of the largest 
epsilon-stable cluster along each path. Essentially, the initial clusters choose the path that originated at a 
distance greater than ( ε) ̂  and, therefore, is not permitted to split.

Conceive an example cluster tree using a small sample dataset with these algorithm concepts. On the left 
side, the tree is marked with λ_min values, while on the right, the same tree is annotated with epsilon stability 
values for a parameter value of ( ε) ̂ = 5 meters, equivalent to λ=1/( ε) ̂ =0,2. Any cluster at a level that doesn't 
meet the epsilon stability criterion is assigned a value of 0. Conversely, clusters meeting the criterion receive 
λ_min as their epsilon stability value. Checking the λ_min observe that levels with values of 0,6, 0,3, and 1,4 
surpass the 0,2 threshold. This implies that clusters at these levels are separated from their parent clusters at 
distances less than 5 meters. To obtain the final set of clusters, follow a process starting from the leaf nodes 
and selecting the ascendant with the highest epsilon stability value along each path. This process successfully 
removes outliers in this proposed approach.

Adaptive Class Median-based Missing Value Imputation
The missing value imputation is done using the ACMMVI method in this proposed method. Imputing missing 

values helps maintain the integrity and completeness of the data. In this ACMMVI method, missing values are 
replaced by the mean/mode of the data samples, which depends on the attribute type in a particular class. 
Threshold identification is calculated, and missing values are imputed in this method. Missing rate defined 
below:

The threshold identification process is based on the distances between the class centres and their 
correspondences to the complete data. This process begins with an incomplete dataset, denoted as D, which 
comprises N different classes. Divide this dataset into two subsets: D_(_complete), which contain complete 
data, and D_(_incomplete), which contain instances with missing values. Next, focus on each class individually 
within the (D_(_complete) ),  subset. For a given class i D_(_incomplete) calculated the following statistics: 
Computed the class center for each attribute within class I, using the mean value as the class center if an 
attribute is numerical. For categorical attributes, designate the mode as the class center. Then, Calculated 
the Euclidean distances between the class center (cent(D_i ))  and every data sample within Class i. This step 
involves measuring the difference between each instance and the class center for the specific class.

The threshold value (T1) for class i was determined based on the computed distances. Using the mean or 
mode for calculating distances depends on the data type. For numerical datasets, use the mean of distances. 
For categorical datasets, use the mode of distances. Calculate distances using the mean and mode for mixed 
datasets containing both numerical and categorical attributes. Then, use the mean or mode of these distances 
as the threshold (T1) for Class i. Repeat the above steps for each class in the dataset. This ensures a distinct 
threshold value for each class, considering the nature of the data within that class.

After finding threshold values, the focus is on imputed missing values, which is done in two ways based on 
the standard deviation (STD) of the data. If STD is less than or equal to 1, outlier detection involves calculating 
the distance between the imputed value and the class center. If this distance exceeds a predefined threshold, 
the imputed value is considered an outlier and is replaced with the median value of the attribute in that class. 
If STD exceeds 1, the missing value is considered an outlier. To replace it, the average weighted distance 
is computed according to equation (2),-based on the distances between the missing value and its nearest 
neighbors in the complete data.

Where W_i represents the weight distance of the ith outlier data point, y_i represents the ith instance 
of outlier data, and x1 represents the first instance of complete data. The function dist(y_i,x_2) is used to 
calculate the distance between the instance y_( i)and〖 x〗_j. This step is repeated until each instance's average 
weight distance is obtained. The resulting average weighted distance is then used to replace the missing value.

Class imbalance problem using CURE-ADASYN: This proposed work uses CURE-ADASYN to solve the class 
imbalance problem. ADASYN is one of the methods that are used for solving class imbalance problems 
efficiently. This algorithm adaptively generates synthetic samples for minority class instances that are difficult 
to classify, emphasizing those closer to the decision boundary. However, using the ADASYN method to solve the 
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class imbalance problem faced the difficulty of handling datasets for generating new instances to balance the 
number of samples. Therefore, this proposed work combines the CURE algorithm and the ADASYN method for 
solving class imbalance problems. CURE helps to generate artificial samples randomly between representative 
points and the center point and cluster the sample of the minor class.

In this process, identifying the minority and majority classes is important for recognizing the impact of class 
imbalance. The training dataset of this process is represented as 〖TR〗_d  those containing l samples {x_i,y_i 
}. The value of i=1,…,l , x_i  is an instance, and 〖 y〗_i is the class identity label, and〖 y〗_i∈Y={1,-1} that is 
associated with an 〖 x〗_i instance in the n-dimensional feature space X. A minority and majority class samples 
are represented as 〖 l〗_mi and〖 l〗_ma. So, the value of 〖 l〗_mi  ≤〖 l〗_ma and〖 l〗_mi  +〖 l〗_ma=l.  First, a class 
imbalance degree is calculated as:

Where d belongs to [0,1] based on the class imbalance degree, the number of synthetic data samples 
needed for the minority class. The class imbalance degree notifies decisions related to data pre-processing. For 
example, if the d value is less than or equal to the present threshold 〖 d〗_th for the maximum tolerated degree, 
several synthetic data samples must be calculated to generate the minority class.

Where G is the total number of synthetic data, β is a parameter (β∈ [0,1]) that specifies the desired balance 
level after generating the synthetic data. If the β value is 1, before the generalization process, a fully balanced 
dataset is created. Next, the Euclidean distance of the minor class samples is found using the CURE method. 
Initially, the minor class sample distance was dist calculated. Assume, samples〖 (X〗_1=X_11+X_12+⋯,X_1M) and 
〖(X〗_2=X_21+X_22+⋯,X_2M):

The distance between the two data items (p, q) and the two clusters (S, T) are calculated:

The next step is to set the clustering number c and update and merge the representative points and center 
based on the smallest distance between the two clusters. Setting the clustering number is used to determine 
the number of final clusters in the dataset, which helps with clustering; updating the center and representative 
points helps maintain an accurate representation of the newly merged cluster.  

Where the representative set and the center point of the clusters are denoted as S_r and〖 S〗_c ,α=0,5, |S| 
is the number of data items for the Class S. The class exhibiting the least growth rate is considered to have 
abnormal points and is scheduled for removal. In cases where the number of representative points exceeds 
the required amount, the algorithm selects the data point farthest from the cluster's center as the initial 
representative point. Then, the next representative point chosen is the one that is farthest from the previously 
selected representative. The algorithm concludes when the number of cluster centres reaches a predetermined 
threshold, and clusters with minimal samples are eliminated. After determining groups, distributions( r_i ) are 
calculated in the underlying data to identify regions of high and low density in the feature space. By analyzing 
the distribution of minority class instances in their local neighbourhoods, ADASYN can target areas with the 
highest class imbalance.

Here, r_i represented as an instance ratio (number of majority neighbors/number of minority neighbors). 
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These ratios can determine how many synthetic samples to generate for each instance to address class 
imbalance in ADASYN adaptively. Instances with higher values r_i  are associated with a greater number of 
synthetic samples to mitigate the imbalance. Next, calculate the number of synthetic data samples that need 
to be generated for the entire minority class:

Where, g_i  represents the number of synthetic data samples that need to be generated for each instance 
in the minority class. After generating these synthetic data samples, incorporating them into the dataset to 
address class imbalance.

The synthetic samples are added to the original dataset, augmenting the minority class. This process 
increases the size of the minority class and helps balance the class distribution in the dataset. Calculate 
imbalance ratio and incorporate synthetic samples steps are repeated for each sample in the minority class, 
ensuring that synthetic samples are generated adaptively based on the local neighborhood characteristics of 
each instance. This adaptive process continues until it achieves the desired level of balance. The model learns 
from original and synthetic data and helps address the class imbalance and improve model performance. This 
process ensures that the synthetic data generation process is controlled and doesn't introduce biases or over-
fitting into the model.

Feature selection using IG-IOOA: the IG-IOOA method was developed by combining the IG-based filter and 
IOOA-based wrapper-based methods. The IG filter selects the important features first, and then the IOOA 
algorithm reduces the number of selected features. Information Gain (IG) is a widely used filtering technique for 
effectively selecting highly relevant features in reducing high-dimensional datasets across various applications. 
IG leverages the concept of entropy to assess the significance of features, quantifying their information gain 
concerning class labels.

The calculation of gene importance within a specific category can be carried out by analyzing the differences 
between entropy and conditional entropy, often denoted as IG (Information Gain). Let y denote a discrete 
random variable attribute containing two possible outputs: relevant and irrelevant for the ideal feature. 

Here, the H binary function represents the logarithmic value, p denotes the probability distribution of the 
samples Re and ▁Re, is y∈Re and y∈▁Re  . On the other hand, there are two events X,Y, X has the value feature 
x and the definitions of H(Y) and H(Y|X) are provided as follows:

After the filter-based method selects the important features, the wrapper method of the IOOA algorithm is 
used to reduce the number of selected features. IOOA is a nature-inspired algorithm based on the decoy behavior 
of burrowing owls in the presence of predators or other fears near their nests. This algorithm incorporates 
five key parameters: 〖PP〗_(num,)   〖SP〗_(num,)   〖Dep〗_(nest,)   R_(1,) and〖 R〗_(2,). The first three parameters, 
〖PP〗_(num,)   〖SP〗_(num,)   and〖 Dep〗_(nest,), are associated with the clustering process and nest renewal, 
while the remaining two, R_(1,) and〖 R〗_(2,) are random values generated from a uniform distribution within 
the range [0, 1].  

Stage 1: Initialization: the existing problem, such as the optimization problem and decision parameters, is 
defined. Further, the IOOA parameters are adjustable, such as 〖OW〗_(n,) representing the number of Owls, 
〖PP〗_(num,)denoting the number of primary branches, 〖SP〗_num   the number of secondary perches, 〖iter〗_
max  is the highest iteration number and 〖 Dep〗_nest the deprecated nests’ percentile. It is crucial to observe 
that the number of primary branches and subordinate branches should match the number of owls, as stated 
〖OW〗_(n,)=〖PP〗_(num,)+〖SP〗_(num,) 〖PP〗_num.

Stage 2: Initializing Owl’s Position: Regarding the boundary conditions of a D-dimensional space, the owls 
are positioned randomly and represented as a matrix;

Where the individual in the 〖OW〗_n position with dimensions D is represented as O_(〖OW〗_(n,D,).
Stage 3: Sorting: the vector is generated by obtaining the fitness value for the problem for each owl. The 

classification error or accuracy is considered the fitness metric for each individual. Subsequently, a sorting 
algorithm is employed to arrange and form clusters according to the attained fitness values, referred to as Ford 
sort. Each cluster is assigned specific primary and secondary perches. Furthermore, random numbers R_1 and〖 
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R〗_2  are generated for this stage.
Stage 4: Position Update:-based on the behavior observed in owls, a process where new positions, denoted 

as〖 OW〗_new are explored within the search space. Initially, an owl explores two positions within a cluster: 
the next improved perch and the position within that cluster. The owl's objective is to find an improved perch 
within the remaining unexplored area of the cluster. However, suppose the new position does not offer an 
advantage over its previous perch or fails to locate a superior one. In that case, the owl chooses to return and 
remain in its current position. The position update equation is updated by multiplying the function using a 
parameter 0,1≤ε<1,0, which is adaptively determined based on the number of iterations. This is the improved 
position update equations.

Then, the fitness is evaluated for each new individual.

According to the deprecated nests' percentile, the primary branches are also updated as a new perch, 
〖OW〗_new^sort  obtained from the better perch in position search. If i>round (〖PP〗_new 〖DP〗_new):

After the above calculation, the fitness is evaluated for each new nest. 

If the new position is not preferable to the prior one, the perch is allocated at its existing location.
Stage 5: Termination: the process proceeds when the highest number of iterations is attained by repeating 

the location search from the 3rd and 4th stages.
CVD Classification using CRSO-CNN framework: the CRSO algorithm is employed by incorporating the 

chaotic map functions in the RSO algorithm. This chaotic version is used to initialize the position of the rats 
in replacement of the random initialization to improve the convergence speed and searching ability. Chaos 
demonstrates remarkable dynamics and statistical properties with a randomized nature, which means the map 
function potentially covers the entire region, leading to an effective solution. It also reduces the computational 
complexity. There are several chaotic map functions, and one of these functions is the iterative chaotic map 
function. It is mathematically expressed as:

Here, c=0.7, which is a parameter that controls the behavior of the map, x_(n+1) is the next position and 
x_n is the current position. Using this chaotic map, the population of rats is initialized in this CRSO as: 

Therefore, the initialization of the population positions is mathematically defined as:

CRSO conceptualizes the fighting and chasing behavior of the rats with their prey. Rats use their social 
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agnostic behavior to chase their prey in groups. The chasing of the prey is mathematically expressed as:

Where, P ⃗_i is the position of the rat in the i-th iteration, and P ⃗_best is the position of the optimal 
rat. A and B are the control parameters as they control the exploration and exploitation phases. The control 
parameters are mathematically defined as:

Here, B and r are termed as random numbers generated in the range of [0,2] and [1,5], respectively and 
i=0,1,2,…,〖Max〗_iter.

The fighting process of the rats with their prey is mathematically represented as:

Here, P ⃗_(i+1) is defined as the position of the next rat, which is updated concerning the position of the 
optimal rat P ⃗_best.

The CNN architecture is optimized using this CRSO algorithm. CNN comprises four main operators: 
Convolution, pooling layer, fully connected layer, and non-linear activation function. 

Convolution layer (CL): it forms the major core of CNN that analyses and extracts the desired features. 
This convolution task conserves the spatial connection amongst the input data by acquiring the aspects by 
the kernel function. The outcome of the CL will be the convolved aspect plot. The kernel points are updated 
automatically based on the optimal structure configuration. The magnitude of the aspect plot is reliant on the 
depth of the layers.

Non-linear activation (NLA): after the convolution operation, the additional non-linear function is used 
before creating feature maps. The NLA can be tanh, sigmoid or Rectified Linear Unit (ReLU). This NLA acts as 
the element-wise task to compromise the negative points of the aspects. In most cases, the sigmoid or ReLU 
provided better performance.

Pooling layer (PL): spatial pooling is the sub-sampling or down-sampling process in CNN, performed to 
reduce the dimensionality of the feature maps. It is similar to the feature reduction process that removes the 
less important data while retaining vital information. Kinds of pooling are average, max, stochastic and sum 
pooling, denoted by the pooling numbers 1-4. In most cases, max-pooling provides the most important features.

Fully-connected Layer (FCL): it is a conventional multi-level neural layer employing a softmax initiation 
utility in the outcome layer. The FCL has the preceding layer nodes interlinked with the succeeding layer nodes. 
The complex aspects yielded from CL and PL are used by this FCL for labeling the data into classes using past 
learning knowledge. The process of CRSO to be used for CNN is presented in the following algorithm.

Algorithm 2: CRSO algorithm for tuning CNN parameters
Population Initialization of rats (P_i)
Set Iteration = 0
Initialize the CRSO parameters
Map the CNN parameters to the CRSO solution search
Calculate the fitness and select the best search agent
For each i=0 to n do
Choosing two solutions (x_1,x_2) as parents from the population
Compare the solutions
Update the position of search agents
Update the CRSO parameters
Adjust the out-of-boundary rats
Compute the fitness of each search agent
Update the best solution
Increment Iteration by 1
Until maximum iteration
End for
Return the best solution (CNN configuration) from the population
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The top configuration obtained for CNN using CRSO is shown in table 2. The error rate obtained for this 
configuration is 9,87. For optimal structure, the CRSO-CNN required 3 FCL layers and one EL and CL layer each. 
This configuration enables CNN to learn deep spatial and temporal features for large-scale datasets. The input 
dimension is (1, 256, 24) where 1 denotes the input data channel, 256 denotes the number of data, and 24 
denotes the time steps to process them.

Table 2. Optimal configuration obtained for CRSO-CNN

Layer Name Parameters Dimensions

0 Input - (1, 256, 24)

1 EL
Activation (ReLU)

(16, 3, 3)
-

(16, 256, 24)
-

2 Convolution
Pooling

Activation (ReLU)

(64, 3, 3)
(2, 2)

-

(64, 64, 6)
(64, 32, 3)

-

3 Flatten - (1536, )

4 Fully connected 278 (278, )

5 Fully connected 278 (278, )

The networks are formed using this configuration. In the next stage, the trained features are used to classify 
the test data on the similarity, the instance pairs are formed, and the majority voting-based approach is used 
for classifying the instances.

RESULTS 
The proposed method is implemented on the CVD dataset from the UCI repository consisting of the data from 

Cleveland, Hungary, Switzerland and VA Long Beach (https://archive.ics.uci.edu/ml/datasets/heart+disease). 
This dataset comprises 303 instances featuring 75 attributes and a single class label. But, out of these 75 
attributes, a subset of 14 is commonly employed in most published research. None of these four datasets 
include the patient names or contact information for privacy considerations. Although the datasets share similar 
instances, the Cleveland dataset is the most frequently used because it contains fewer missing values than the 
other three datasets. The Cleveland dataset consists of 5 distinct class values, with 0 absence of heart disease, 
while 1 to 4 denotes the presence of heart diseases. The other three databases primarily focus on binary 
classification to distinguish between the presence and absence of heart diseases. The proposed method will 
use all four databases to validate the pre-processing and classification methods. The performance is evaluated 
in accuracy, precision, recall, f-measure, error rate, MCC and processing time. Table 3 shows the performance 
comparison of the proposed method with other existing classification methods.

Table 3. Comparison of performance evaluation of the proposed method with the existing 
classifiers

Methods/metrics Cnn Rso-cnn Crso-cnn Proposed IG-IOOA & CRSO-CNN

Cleveland dataset

Accuracy (%) 97,5653 98,0202 98,1433 99,0099

Precision (%) 96,2386 97,4478 98,1023 99,3939

Recall (%) 96,5005 97,6812 97,3068 98,9589

F-Measure (%) 96,3694 97,5644 97,7029 99,1759

Error (%) 2,4347 1,9798 1,8567 0,9901

MCC 0,9710 0,9725 0,9865 0,9934

Time (s) 7,0120 6,4423 5,6674 3,9030

Hungarian dataset

Accuracy (%) 97,3223 98,8253 98,6519 99,6599

Precision (%) 96,7445 98,1250 98,3250 99,5927

Recall (%) 95,5646 96,3549 97,5612 99,7340

F-Measure (%) 96,1509 97,2319 97,9416 99,6333

Error (%) 2,6777 1,1747 1,3481 0,3401
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MCC 0,9531 0,9628 0,9752 0,9946

Time (s) 6,2363 6,2561 4,8596 3,4560

Switzerland dataset

Accuracy (%) 96,2536 97,1269 97,2293 99,0187

Precision (%) 96,3945 96,8796 97,1356 99,7778

Recall (%) 96,1030 96,3589 97,8536 99,5833

F-Measure (%) 96,2485 96,6185 97,4933 99,6805

Error (%) 3,7464 2,8731 2,7707 0,8130

MCC 0,9631 0,9699 0,9726 0,9987

Time (s) 5,5800 4,2548 3,1999 2,9800

Va long beach dataset

Accuracy (%) 97,3695 97,2584 98,1225 99,5000

Precision (%) 96,8692 97,1256 98,1333 99,6164

Recall (%) 96,3961 97,3205 97,9987 99,5122

F-Measure (%) 96,6289 97,2230 98,0660 99,5638

Error (%) 2,6305 2,7416 1,8775 0,5000

MCC 0,9675 0,9722 0,9793 0,9907

Time (s) 7,5982 6,2586 5,9120 3,1020

Table 3 shows that the proposed IG-IOOA & CRSO-CNN method has better results. Table 4 presents the 
evaluation of the proposed IG-IOOA & CRSO-CNN method in comparison to established procedures using the 
Cleveland dataset. The results affirm the exceptional performance of the IG-IOOA & CRSO-based model when 
contrasted with existing methods applied to the Cleveland dataset.

Table 4. Performance Comparison of IG-IOOA & CRSO-CNN with existing techniques

Methods/
Metrics

Accuracy 
(%)

Precision 
(%)

Recall 
(%)

F-Measure 
(%)

Error 
(%) MCC Time (s)

MOPSO-RF(11) 95,21 83,5 84,26 83,88 4,79 0,8263 12,57

DL-CNN(12) 97 85,60 87,72 86,65 3 0,8151 25,74

SSAE-PSO(13) 96,1 92,3 82,69 87,23 3,9 0,8512 10,6

TANFIS(14) 97,76 94,6 92,74 93,66 2,24 0,9123 11,4

XGBOOST(15) 91,8 88,3 95,32 91,68 8,2 0,8926 14,8

MLP-PSO(16) 94,6 95,1 86,7 90,7 5,4 0,8695 12,76

GAPSO-RF(17) 95,6 91,68 95,2 93,41 4,4 0,9232 6,3

SCGPB(18) 92,47 83,74 80 86,33 7,53 0,9547 25,9

BI-LSTM-CNN (19) 96,66 90 94,6 92,2 3,34 0,9258 26,3

MABC-SVM(20) 93,8 96,3 93,1 94,7 6,2 0,8351 27,59

QPSO-SVM(21) 96,31 98,3 89,9 93,9 3,69 0,9736 28,7

Keras-DNN(22) 90,49 97,25 95 96,11 9,51 0,9545 16,3

Proposed IG-IOOA & 
CRSO-CNN

99 99,39 98,95 99,17 0,9901 0,9934 3,903

The results of the comparative analysis in table 3 and 4 demonstrate that the disease classification model 
based on the proposed IG-IOOA & CRSO-CNN outperforms the models found in the existing literature. These 
findings emphasize the superiority of the IG-IOOA & CRSO-CNN approach in attaining greater accuracy and 
superior overall performance when compared to the assessed methods.

DISCUSSION
For the Cleveland dataset, the proposed model increased accuracy by 1,4446 %, 0,9897 %, and 0,866 % 

compared to CNN, RSO-CNN, and CRSO-CNN methods. For the Hungarian dataset, the achieved accuracy was 
increased by 2,7651 %, 1,8918 % and 1,008 %, respectively. For the Switzerland dataset, the accuracy was 
increased by 2,8281 %, 1,8918 % and 1,7957 % and for VA Long Beach Dataset by 2,1306 %, 2,2416 % and 
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1,3775 % compared to other methods. Similarly, the proposed IG-IOOA & CRSO-CNN-based CVD prediction model 
achieved good results for precision, recall, f-measure, MCC and error rates. Also, the proposed method reduced 
the processing time for all four datasets. Consequently, the IG-IOOA & CRSO-CNN method performs better than 
the CNN, RSO-CNN and CRSO-CNN methods by substantially reducing processing time. These findings show the 
proposed approach's efficacy and supremacy in handling classification tasks, signifying its promising utility 
across diverse real-world applications.

 The comprehensive comparison of various machine learning models in terms of their performance metrics, 
including accuracy, precision, recall, F-measure, error rate, Matthews correlation coefficient (MCC), and 
computational time. Each model has been evaluated on a specific task, presumably a classification problem, 
and the results showcase their effectiveness in handling the given task. The proposed model, IG-IOOA & CRSO-
CNN, outperforms all other models across nearly all metrics. Notably, it achieved a significant increase in 
accuracy by 3,79 %, 2,01 %, 2,24 %, 7,20 %, 4,40 %, 3,40 %, 6,53 %, 2,34 %, 5,20 %, 2,69 % and 8,51 % compared to 
MOPSO-RF, DL-CNN, SSAE-PSO, TANFIS, XGBOOST, MLP-PSO, GAPSO-RF, SCGPB, BI-LSTM-CNN, MABC-SVM, QPSO-
SVM and Keras-DNN. The proposed model remarkably reduced the computational time required for analysis 
compared to several counterparts. It demonstrates a considerable decrease in computational time relative to 
8,667s, 21,837s, 6,697s, 7,497s, 10,897s, 8,857s, 2,397s, 21,997s, 22,397s, 23,687s, 24,797s and 12,397s. This 
reduction in computational overhead can be crucial for real-time applications or large-scale datasets. Overall, 
the proposed IG-IOOA and CRSO-CNN model showcased competitive performance across various metrics while 
offering significant computational advantages compared to existing models. Its robust performance makes it a 
promising for a wide array of classification tasks. 

The proposed model exhibited enhanced input quality and addressed issues like class imbalance outliers and 
missing values. The hybrid model also selected optimal features and reduced redundancy with improved model 
performance. The proposed model achieves high accuracy in CVD prediction while maintaining low complexity, 
making it suitable for practical deployment in clinical settings. By combining efficient feature selection, robust 
classification, and streamlined pre-processing, the model offers a promising solution for early diagnosis of 
cardiovascular disease.

CONCLUSIONS 
This paper introduces an effective disease classification model that combines efficient pre-processing 

techniques with advanced machine learning classifiers. The proposed framework employs an IG-based filter 
method and IOOA wrapper-based method for feature selection on pre-processed data to reduce dimensionality 
and highlight the most relevant attributes for classification. Subsequently, the CRSO-CNN machine learning 
classifier is utilized to classify individual patient data. When evaluated against benchmark datasets, the IG-
IOOA and CRSO-CNN-based model demonstrates enhanced disease classification accuracy and reduced model 
complexity. Comparative analyses with existing methods further validate the effectiveness of the proposed 
model. Future research will explore the potential for detecting heart diseases in multiple source datasets and 
consider applying this model to other disease datasets.
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