
Drones en acción: Un análisis exhaustivo de las tecnologías de vigilancia con 
drones

Data and Metadata. 2024; 3:.364
doi: 10.56294/dm2024.364

ORIGINAL

Drones in Action: A Comprehensive Analysis of Drone-Based Monitoring Technologies

Ayman Yafoz1
  

ABSTRACT

Unmanned aerial vehicles (UAVs), commonly referred to as drones, are extensively employed in various real-
time applications, including remote sensing, disaster management and recovery, logistics, military operations, 
search and rescue, law enforcement, and crowd monitoring and control, owing to their affordability, rapid 
processing capabilities, and high-resolution imagery. Additionally, drones mitigate risks associated with 
terrorism, disease spread, temperature fluctuations, crop pests, and criminal activities. Consequently, 
this paper thoroughly analyzes UAV-based surveillance systems, exploring the opportunities, challenges, 
techniques, and future trends of drone technology. It covers common image preprocessing methods for 
drones and highlights notable one- and two-stage deep learning algorithms used for object detection in 
drone-captured images. The paper also offers a valuable compilation of online datasets containing drone-
acquired photographs for researchers. Furthermore, it compares recent UAV-based imaging applications, 
detailing their purposes, descriptions, findings, and limitations. Lastly, the paper addresses potential future 
research directions and challenges related to drone usage.
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RESUMEN

Los vehículos aéreos no tripulados (UAV), comúnmente denominados drones, se emplean ampliamente en 
diversas aplicaciones en tiempo real, como la teledetección, la gestión y recuperación de catástrofes, la 
logística, las operaciones militares, la búsqueda y rescate, el cumplimiento de la ley y la vigilancia y control 
de multitudes, debido a su asequibilidad, su rápida capacidad de procesamiento y sus imágenes de alta 
resolución. Además, los drones mitigan los riesgos asociados al terrorismo, la propagación de enfermedades, 
las fluctuaciones de temperatura, las plagas en los cultivos y las actividades delictivas. En consecuencia, este 
documento analiza a fondo los sistemas de vigilancia basados en UAV, explorando las oportunidades, retos, 
técnicas y tendencias futuras de la tecnología de los drones. Cubre métodos comunes de preprocesamiento 
de imágenes para drones y destaca notables algoritmos de aprendizaje profundo de una y dos etapas 
utilizados para la detección de objetos en imágenes capturadas por drones. El artículo también ofrece a los 
investigadores una valiosa recopilación de conjuntos de datos en línea que contienen fotografías captadas 
por drones. Además, se comparan aplicaciones recientes de captura de imágenes basadas en UAV, detallando 
sus propósitos, descripciones, hallazgos y limitaciones. Por último, el artículo aborda posibles direcciones de 
investigación futuras y retos relacionados con el uso de drones.

Palabras clave: Vehículos Aéreos no Tripulados (UAV); Aplicaciones; Procesamiento de Imágenes; Conjuntos 
de Datos; Tendencias. 
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INTRODUCTION
Unmanned aerial vehicles (UAVs), commonly known as drones,(1) have gained significant popularity in real-

time application systems because of their affordability, enhanced detection and tracking efficiency, mobility, 
and ease of deployment. They have matured as versatile instruments, with uses ranging from remote sensing 
and disaster management to law enforcement and crowd control. Their cost, rapid processing capabilities, and 
high-quality images all contribute to their widespread use.

In recent years, UAVs have been utilized for crowd analysis, complementing static monitoring cameras.
(2) While drones are predominantly used for military purposes, their use in video capture is increasing as they 
provide a cost-effective and less complex alternative to manned aircraft, satellites, and helicopters. The 
benefits of drones include the following:(3)

1. Drones can be equipped with essential payloads and sensors to gather additional visual data and metrics.
2. They are capable of delivering real-time data to model crowd dynamics, supported by powerful 

onboard processing components for estimating crowd behavior.
3. They greatly reduce the operational and maintenance expenses linked to conventional monitoring 

systems.
4. Drones decrease the need for labor, intervention, and resources.
5. They expand the area that can be monitored.

The benefits of employing surveillance drones are evident in scenarios requiring aerial and mobile monitoring 
to enhance location access and visibility. These scenarios include pandemic management, mining operations, 
maritime environments, tsunami response, agricultural areas for tasks like detecting plant diseases,(4) disaster 
situations, and rescue operations in remote or abandoned locations.(3) Moreover, figure 1 shows the taxonomy 
of UAV applications. There are four UAV types: High Altitude Platform (HAP), Low Altitude Platform (LAP), 
fixed winding, and rotary winding as shown in figure 1. On the other hand, figure 2 shows the taxonomy of UAV 
applications.(5)

This paper thoroughly examines unmanned aerial vehicle (UAV) surveillance systems. The paper investigates 
UAV applications in remote sensing, logistics, military operations, search and rescue, law enforcement, and crowd 
management. The paper discusses publicly available drone datasets and evaluates image preprocessing and 
processing techniques for UAV-based images. The paper evaluates current contributions to identify knowledge 
gaps and suggest promising future research directions in the field of UAV surveillance.

The primary goals of this paper are as follows:
•	 To examine the use of UAVs across different monitoring domains.
•	 To analyze various deep learning models for processing images captured by UAV cameras.
•	 To evaluate several studies in this field.
•	 To highlight future advancements in UAV-based monitoring systems. 

Figure 1. Different Types of UAVs
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The rest of this paper is organized as follows: Section 2 reviews UAVs and their applications in various fields. 
Section 3 examines UAV datasets and the methods used to analyze and process images captured by UAVs. 
Section 4 provides a critical review of related studies in this domain. Section 5 explores future trends in UAV 
monitoring systems. Finally, Section 6 concludes the paper by summarizing its findings and offering examples 
of future work in the field.

Applications Of Unmanned Aerial Vehicles (UAVs)
UAV imaging has been widely used in a variety of real-time application systems, including the following:

1. Detection of cracks.
2. Forest fire surveillance. 
3. Detection of crowds.
4. Agriculture surveillance.
5. Video monitoring.
6. Wireless communications.

For monitoring and controlling traffic, the environment, spotting crowds, remote sensing, and disaster 
recovery, UAVs are particularly beneficial. Due to their advantages of being less expensive, having extensive 
coverage areas, receiving regular updates, and being quicker at taking pictures, UAVs are crucial in applications 
for monitoring forest fires.(6) Typically, the multi-UAV-based system for tracking forest fires aids in locating 
latent explosions and trigger events.

A. Remote Sensing
In general, remote sensing systems(7) are divided into two categories: active and passive. In an active 

remote sensing system, sensors generate the energy needed to detect the target objects. This type of sensing 
system, which includes elements of radar, sounder, LiDAR, laser altimeter, and ranging instruments, has been 
used more often in remote application systems. The passive remote sensing system sensors, on the other 
hand, pick up the radiation pattern that the target object emits. The radiometer, hyperspectral radiometer, 
spectrometer, and accelerometer are all included in their parts. UAVs can be primarily employed in remote 
sensing applications to collect data from sensors(8) and send the collected data to base stations. The UAVs 
usually include certain built-in sensors for monitoring the environment.

Figure 3 illustrates the classification of UAVs used in remote sensing applications. Due to the wide variety 
of spectral signatures, assessing the physical characteristics of metropolitan areas for mapping is typically 
one of the most difficult tasks. The main causes of erroneous analysis and mapping are also the fluctuating 
atmospheric conditions and temporal gaps. As a result, UAVs are found to be a promising choice for remote 
sensing applications since they provide valuable data for urban studies. UAV’s monitoring systems can give the 
following data: spatial location and extent, census statistics, land cover data, and transportation data. Cost-
effectiveness and a fast rate of revisit are the main benefits of using UAV imageries instead of other satellite 
imageries. 

However, UAVs with sensors may face a number of restrictions, including:(9)

1. Expensive sensor acquisition and maintenance.
2. The restricted range (LiDAR sensors, for example, generally have an ultimate range of roughly 100 

m).
3. Sensitivity to the UAV’s motions and vibrations.
4. It has a limited field of vision than other remote sensing systems (for instance, visual cameras).
5. The difficulties of thermal imaging sensors in determining the origin of heat emission.
6. The inability to identify features or objects that are out of the visible spectrum.
7. The variations in illumination, which might produce variances in the visual appearance of the 

photos.
8. The sensitivity to glare and reflections, which might impact photo accuracy.
9. The sensitivity to signal interference, which could end up in decreased reliability and accuracy of 

navigation and positioning data.
10. There may be restrictions on the usage of UAVs equipped with sensors in rural or distant locations 

due to variables such as the communication link’s quality with the base station or the reference station’s 
availability, which may further raise the cost or delay the processing of the pictures.

B. Incorporating Drone Technology into Logistics
The rapid improvements to the UAVs’ technologies have made UAVs a preferred solution for many logistic 

operations. A report issued by Markets and Markets stated that in 2018, the market for small UAVs was valued 
at USD 13,40, and in 2025 is expected to grow to USD 40,31 billion, with a compound annual growth rate of 
17,04 percent. One of the most important reasons expected to boost the small UAVs’ market is the growing 
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procurement of small military-purpose UAVs by armies around the world. Small UAVs are increasingly being 
used in many logistic operations, for instance, product delivery, precision agriculture, monitoring, mapping, 
surveying, transportation, aerial remote sensing, and crowd movement organization, which is fueling the 
market expansion and usage of UAVs in logistic operations.(10)

Moreover, large companies such as DHL, Google, Amazon, Facebook, and Federal Express are researching 
the capabilities of UAVs in logistics. UAVs offer a revolutionary approach to enhancing logistic responsiveness. 
Due to their autonomous operations, flying capabilities, small size, and speed, using UAVs in monitoring 
and delivery in logistic tasks results in organizing the operations, providing better mobility, reducing the 
supply chain costs, reducing time, reducing efforts, reducing labor and human intervention, reaching remote 
and congested areas, and optimizing and accelerating logistic tasks (such as route planning, inventory 
management, warehousing, transportation, and so forth).(11) On the other hand, because UAVs are electric 
vehicles, they also contribute to environmental sustainability.(12) However, the benefits of applying UAVs in 
logistic operations are limited by the number of UAVs deployed, their endurance, weight, loading, and battery 
capacities. Furthermore, regulatory and legal frameworks, public acceptance and awareness, and the required 
skilled employees to maintain and operate UAVs are among the challenges that could hurdle the implantation 
of UAVs in logistic operations. These challenges need more investigations by researchers in future studies.(11) 

C. Military UAVs
The defense industry has the largest market share for UAVs. According to the 2022 Military Gliders and 

Drones Global Market Report, the military UAVs and gliders market is expected to grow from $29,98 billion 
in 2021 to $35,02 billion in 2022, at a compound annual growth rate of 16,8 percent. The market is expected 
to reach $61,80 billion in 2026 at a compound annual growth rate of 15,3 percent. A military UAV is used for 
reconnaissance, surveillance, intelligence, and target acquisition and can carry aircraft ordnance such as 
anti-tank guided missiles, bombs, or missiles for drone strikes. Asia-Pacific dominated the market for UAVs and 
military gliders in 2021. Western Europe is expected to grow the fastest during the forecast period.(13) 

Leading companies in the industry are focusing on developing and manufacturing UAVs that use artificial 
intelligence technologies. For example, the enterprises providing military UAVs with AI technologies include 
Neurala (which provides Neurala Brain, the artificial intelligence system that allows military UAVs to perform 
reconnaissance and patrol tasks), Lockheed Martin (provides Desert Hawk III, a UAV having operators training 
functionalities), AeroVironment (provides Raven series, the most widely used military UAVs), and Sheild.AI 
(provides Nova, the autonomous indoor navigation UAV).(13)

Nowadays, the primary tasks of UAVs in the military are reconnaissance, information gathering, target 
acquisition, and surveillance. These tasks necessitate connecting several sensors with vary4ng functionalities 
in order to generate a spherical view of the battlefield that field commanders can use in real time. UAVs play a 
significant role in improving the effectiveness of these tasks because they are thought of as extremely flexible 
platforms capable of carrying numerous advanced sensors. UAVs are increasingly ruling modern armed battles, 
particularly those requiring strikes against irregular armies or guerilla forces.(14)

However, because the payloads of nano or micro UAVs are limited, they can only carry light sensors for 
particular tasks. Additionally, the energy capacity and operational range of UAVs are constrained, and it is 
uncertain how long they will last mechanically. Moreover, skyscrapers in semi-urban or urban regions are one 
example of a physical barrier that can further restrict the area that can be exploited. On the other hand, in 
addition to offering expanded capabilities with high complexity that a single UAV cannot achieve, UAV swarms 
can tackle some of these problems.(14)

However, the absence of appropriate communication protocols that enable dependable and secure 
coordination and communications between UAVs and other air entities or mobile ground entities is the primary 
impediment to the use of UAV swarms in civil or military missions.(14)

D. Search and Rescue (SAR) Systems
Because they provide warnings and alerts during emergencies like floods, terrorist attacks, transportation, 

earthquakes, hurricanes, etc., UAVs are given major attention in both the public and civil sectors. In general, 
SAR missions involving traditional aerial equipment, such as helicopters and aircrafts, are more expensive. 
Additionally, they need the proper education and training to conduct SAR missions effectively. However, UAV-
based SAR systems reduce the risks to people, as well as the time, money, and resource utilization. Moreover, 
image/video transmission and target object detection are the two main uses of single and multi-UAV systems. 
In order to obtain high-resolution images/videos for disaster management and recovery, these UAVs include 
built-in onboard sensors. The operational flow of the multi-UAV systems utilized in SAR operations to find 
missing people is depicted in figure 4.(15)
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Figure 2. Taxonomy of UAV Applications
 
E. Law Enforcement Authorities

To reduce risk to the public and the subject while maximizing officer safety, intelligence on the location and 
the suspect’s movements must be gathered. When the crime scene needs to be surveyed remotely for safety 
or tactical purposes, aerial imaging from UAVs can help locate the suspect and then assess the risk level. UAVs’ 
data and imagery can be used to put together a variety of crucial bits of information during an operation. For 
instance, detecting the number of civilians in a specific region, pinpointing the suspect’s location, ascertaining 
whether the person is armed, or even spotting a nearby car or escape route. These insights improve the 
efficiency of tactical planning and deployment.(16)

The Drone Wars Company sent requests to 48 police units in the UK in 2020. 40 UK police units confirmed 
they were utilizing UAVs out of the 42 who answered. In the UK, police services were using at least 288 UAVs 
as of 2020. Over 5,500 UAV uses by UK police occurred in 2020. The Guardian reported in 2021 that police 
in England employed UAVs to keep an eye on protests. UAVs were reportedly utilized to monitor Black Lives 
Matter protests, according to police authorities in Staffordshire, Surrey, Gloucestershire, Cleveland, and the 
West Midlands. According to the Mayor of London in 2021, the Metropolitan Police Service has used unmanned 
aerial vehicles (UAVs) to provide aerial assistance for pre-planned tasks, provide live footage of operational 
deployments, survey properties, cover crime scenes to aid command decision-making, and thus promote a 
broader policing strategy.(17)

However, altitudes exceeding 30 meters are where the present artificial intelligence algorithms are pushed 
to their breaking points. Modern algorithms’ accuracy suffers at high elevations, necessitating the development 
of new approaches. Furthermore, the majority of the photos in a number of well-known open-access labeled 
datasets, such as the Shanghai dataset, were captured from the perspective of a CCTV camera or from the 
ground, with the photos being captured at lower heights than a typical UAV image. In order to adequately train 
machine learning algorithms, photos used for UAV studies should be captured from an altitude similar to that 
used by police UAVs, with a zenithal viewing angle.(18)

Furthermore, detecting small objects smaller than 50 × 50 pixels is still difficult. Some of the issues identified 
include a lack of context information, insufficient data gathered by feature detection layers, a lack of sufficient 
positive training instances, and an uneven background to small sparsely distributed objects with a ratio between 
100:1 and 1000:1. Detecting objects in heavily dense photos gets far more challenging. When a detection 
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method is applied to these photos, the bounding box of humans overlaps with the boundary box of the neighbor, 
making calculating the loss function more difficult.(18) Therefore, in order to increase the effectiveness of 
deploying UAVs in law enforcement operations, future research should address these challenges.

F. Crowd Monitoring and Controlling
Surveillance systems, which incorporate sensing, alerting, and action components, are used in crowd 

management and monitoring systems to track and regulate the behavior of crowds. Crowd monitoring includes 
the processes of crowd density estimation, crowd detection, crowd behavior analysis, and tracking. Crowd 
monitoring and controlling are important because they help with issues such as saving lives, reducing casualties, 
improving event organization, enhancing crowd movement, assisting people in need, reducing stampede 
damages, improving detection of suspicious activities, lowering the rates of missing people, and improving 
reaching people. Since it helps to prevent the tragedies brought on by an abnormal crowd, crowd monitoring 
is typically seen as a crucial topic in the field of public safety. Regression algorithms, machine learning-based 
detection algorithms, and other estimation models are used to develop traditional crowd density estimation 
models. Many video surveillance, real-time tracking, and security systems rely on crowd-tracking models.
(3) The widely used technique for determining the motion of crowds is optical flow, which computes partial 
pixel motion throughout the entire photo.(19) Drones might also be used for illness detection, broadcasting 
announcements, sprinkling sanitizations, and transporting medical supplies in the event of a pandemic virus.(20)

However, conventional crowd analysis approaches rely on visual inputs from fixed-location or static 
surveillance cameras recording videos or photos, resulting in limited coverage and static angle visibility. Unless 
a network of many monitoring devices is set up, static visual inputs cannot track moving crowds in a constant 
and continuous manner.(3) On the other side, UAVs might be employed to fill the gap left by static surveillance 
cameras. UAVs’ mobility allows them to overcome issues with static surveillance systems’ extended coverage, 
increased costs, and varying imaging angles.(21) UAVs provide real-time data for crowd dynamics modeling by 
utilizing onboard technologies, such as LiDAR sensors, real-time processing units, and moving cameras.(22) UAVs 
are being utilized more frequently in crowd monitoring and surveillance applications, where machine learning 
and deep learning techniques are implemented to improve object detection and image processing.

Nonetheless, the growing use of drone wireless systems reveals new cyber challenges, such as data 
reconciliation concerns, eavesdropping, forgery, and privacy, making crowd control more difficult. When some 
malicious adversary gains access to surveillance-transmitted data, it could interrupt the whole surveillance 
operation. Therefore, any authorized user should be able to access data gathered by a particular hovering UAV 
through the shared authentication procedure using an agreed-upon session key. Hence, it is crucial to create a 
lightweight and secure agreement on the authentication key for the Internet of UAVs’ architecture.(23)

Furthermore, research on light variations in high-density images, crowd occlusion, and dense crowd 
management is still needed.(24) Several object tracking concerns, such as not having enough annotated training 
datasets, various views, and non-stationary cameras, might restrict monitoring the crowd.(25) However, the 
aforementioned limitations could be mitigated by using modern advanced drones with high-quality cameras 
(such as 4k cameras), a millimeter-wave radar,(26) and real-time crowd detection algorithms that rely on well-
trained deep learning algorithms for detecting objects (such as faster CNN and YOLO).(27) Furthermore, advanced 
techniques such as density estimation algorithms such as Gaussian Mixture Models.(28) kernel density estimation 
(29) applied to point clouds captured by airborne LiDAR sensors, motion tracking using Kalman filters.(30) and 
optical flow calculations.(31) could resolve some of the limitations in photos and videos taken by UAVs used to 
monitor and control the crowd.

Datasets, Image Preprocessing and Processing
To train the models and acquire reliable test results when the models are deployed, specialized datasets 

including collections of videos and/or photographs that have been properly tagged and curated with the aid of 
specialists in the discipline are necessary.(32) Moreover, digital images are altered during the image processing 
phase to extract information or improve the photos. This can involve modifying an image’s brightness, contrast, 
or color as well as resizing or cropping it. The technique of drawing out important information from an image is 
called image analysis. This could entail spotting movement, gauging distances, or recognizing items.(33,34)

Object identification is one of the most often used image processing and analysis techniques for UAV cameras. 
With the aid of machine and deep learning algorithms, this technology can recognize people, buildings, and 
automobiles among other items in an image. This can be used for monitoring or to spot potential dangers. In 
motion detection, algorithms are used to detect motion in photos, such as an automobile driving or a person 
walking. This can be used to monitor traffic patterns or for security concerns.(33)

A growing number of real-time crowd detection systems use UAV image processing techniques to identify 
target objects. In single and multi-UAV object detection systems, conventional imaging methods including 
preprocessing, feature extraction, and classification are applied.(35) The missing people are identified using 
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vision and thermal cameras in these systems, which use aerial photographs of specified objects to determine 
their whereabouts. Figure 5 visually illustrates the main flow of the UAV image processing system and specifies 
the following modules:

•	 Frame Capturing - From the UAV aerial photos, the video or imaging frames are captured.
•	 Preprocessing - To improve the quality of the images, filtering techniques like median, gaussian, 

adaptive, and others are applied at this step.
•	 Feature extraction - The features used to train the classifier have a significant impact on the 

detection performance.
•	 Classification - Typically, the target object is detected using machine learning/deep learning 

classification approaches based on the features extracted from the UAV photos.

A. Datasets
It is necessary to have trustworthy datasets with multi-task labels, such as regression and classification 

labels, for the application of supervised learning in visual-based navigation for UAVs. The available public 
datasets do, however, contain some restrictions.(36)

To identify and segment cracks in hydraulic concrete structures, the researchers in (37) developed the 
Deeplab V3+ network using the adaptive attention mechanism network and the Xception backbone. To create 
crack datasets, crack photos from various types of concrete hydraulic structures were gathered, and there are 
5000 photos in the dataset. The recognition results of the proposed technique often exhibited fewer fractures 
than those of the other comparative deep learning-based methods, which is more in accordance with the actual 
crack distribution. The experimental findings demonstrate that the proposed strategy may achieve pretty 
accurate crack detection, and the test set identification results were obtained with a 91,264 F1 score. 

In (38), researchers developed a single-frame infrared drone detection dataset (SIDD) and annotated the 
dataset’s infrared drone photos at the pixel level. The SIDD dataset includes 713 photos of sea scenes,4737 
photos of 640 × 512 pixels, 1093 photos of city scenes, 2151 photos of mountain landscapes, and 780 photos 
of sky scenes. Eight prevalent segmentation detection algorithms (Blendmask, Yolov5, CondInst, Mask-Rcnn, 
Yolact++, Solov2, BoxInst, and Yolov7) and the proposed IRSDD-YOLOv5 method were compared in various 
experiments on the SIDD dataset. 

Figure 3. UAV Remote Sensing Systems

The results showed that the proposed IRSDD-YOLOv5 method outperformed these segmentation detection 
algorithms. The IRSDD-YOLOv5 measurements in the ocean and mountain scenes obtained 93,4 % and 79,8 %, 
respectively, which represent gains of 4 % and 3,8 % above YOLOv5.

The researchers in (39) created a drone benchmark dataset by manually annotating object bounding boxes 
for 2860 drone photographs. In this study, they ran a series of tests on the dataset they gathered to assess 
the drone detection network using a tiny iterative backbone called TIB-Net, which is built on an iterative 
architecture that combines with a spatial attention module and cyclic pathways. The findings show that the 
researchers’ approach with a model size of 697 KB obtained a mean average precision of 89,2 %, which was 
higher than the mean average precision of the majority of detection methods used in this study (Faster RCNN, 
Cascade RCNN, YOLOv3, YOLOv4, YOLOv5, and EXTD). 

In addition, table 1 displays the datasets that are available online and include images captured using a 
drone-based camera.
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Figure 4. SAR Operations

Figure 5. A UAV-Based Target Object-Detecting System

B. Image Preprocessing
Images need to be preprocessed before they can be utilized for model training and inference. This covers 

modifications to the orientation, color, and size, among other modifications. Enhancing the image’s quality by 
pre-processing will enable more efficient analysis. Preprocessing enables the enhancement of certain attributes 
that are crucial for the software and removes undesired distortions. These attributes may vary based on the 
intended use. The results of image analysis and the quality of feature extraction may both benefit from image 
preprocessing.(40)

The curved flight trajectory of UAVs makes it challenging to acquire and arrange data points effectively, as 
there is limited horizontal overlap between succeeding photographs. The accuracy of aerial triangulation is 
significantly impacted by this issue, which forces the development of novel solutions. Moreover, the irregular 
gray levels have a negative effect on the alignment of consecutive images, which lowers the accuracy of further 
image processing. Another concern with UAV photography is the significant amount of data and photos that are 
taken. Small image frames also make it more difficult and intense to come up with a solution.(41) As a result, 
the image preprocessing of multispectral sensors on UAVs generally involves five fundamental operations to 
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increase image quality and accuracy,(42) which are:
1. Noise correction: to improve the overall image quality, noise correction aims to eliminate systematic 

flaws found in multispectral sensors.
2. Vignetting correction: the term “vignetting” describes the spatially dependent reduction in light 

intensity away from the center of a picture. The goal of vignetting correction is to minimize this loss of 
brightness throughout the image and maintain homogeneity.

3. Lens distortion correction: lens distortion is a result of misalignment between the detector plane 
and the lens as well as changes in magnification across the lens surface. Any geometric distortions in the 
collected photos can be corrected by correcting lens distortion.

4. Band registration: to achieve spatial consistency between several spectral bands, band registration 
must be performed. The pictures from different bands are aligned throughout this procedure, allowing 
for precise comparison and analysis.

5. Radiometric correction: radiometric correction is essential for transforming the digital numbers 
that sensors record into useful spectral reflectance values.

Moreover, many image preprocessing techniques can be performed to improve image quality, pixel intensity, 
analysis, restoration, compression, reconstruction, reduce distortion, eliminate noise, remove unwanted and 
irrelevant elements, filter the images, and so forth. Some of these techniques are categorized into groups and 
illustrated in figure 6.(40,43,44,45,46,47)

C. Image Processing
With the fast advancement of image processing methods, numerous researchers have considered this topic 

and attempted to automate it by utilizing bio-metric identification techniques such as fingerprint recognition 
and facial recognition (FR). FR is one of the most efficient approaches utilized in comparison to other biometric 
measurements since it can detect and verify numerous identities at the same time utilizing a less expensive 
sensor, the camera.FR is primarily based on matching a camera-captured image of a person to the most similar 
image kept in a prepared database. FR requires precise face detection, as well as effective face analysis and 
transformation, to accomplish accurate matching. These processes may encounter certain difficulties that 
affect identification accuracy, such as variable head pose, lighting, occlusions, and facial expression settings. 
Furthermore, these difficulties are exacerbated by crowded settings and cluttered backgrounds.(48)

Computer vision (CV) and machine learning (ML) approaches provide reliable solutions for facial identification 
and representation. For instance, the Viola-Jones algorithm(49) detects human faces by cascading a series of 
Haar (an object detection approach (50)) or any engineered features. On the other hand, engineering approaches 
such as discrete wavelet transform (DWT), principal component analysis (PCA), discrete cosine transform 
(DCT), and eigenfaces were extensively employed to encode the facial characteristics for optimal recognition. 
These techniques, however, are likely insufficient for extracting representations with deep hierarchy from 
dimensional data. Deep learning models, on the other hand (such as CNN and YOLO), may learn high-level 
representations directly from raw images using certain representation layers. As a result, they performed well 
in tests involving recognition and unconstrained face detection.(49)

To maintain continued success using deep facial recognition, the training must be meticulously prepared 
by adding several samples for each identity to cover varied poses, light conditions, and occlusion conditions, 
allowing deep features to remain invariant for these variations. Besides deep learning models’ accuracy, deep 
learning models promise to satisfy real-time demands and provide a viable solution under real-time settings. 
Deep networks for face detection, such as Faster Region-Based Convolutional Neural Networks (Fast RCNN) and 
You Only Look Once (YOLO), can process video frames in real-time.

In a recent publication,(51) when trained on the MS COCO dataset, YOLOv7 surpassed all renowned object 
detectors in terms of accuracy and speed in the range of 5 to 160 frames per second (FPS). Its average precision 
(AP) of 56,8 % was the highest among all renowned real-time object detectors with 30 FPS or higher using GPU 
V100. Moreover, Convolutional-based detector ConvNeXt-XL Cascade-Mask R-CNN (8,6 FPS A100, 55,2 % AP) and 
transformer-based detector SWIN-L Cascade-Mask R-CNN (9,2 FPS A100, 53,9 % AP) were both outperformed 
by YOLOv7-E6 object detector (56 FPS V100, 55,9 % AP). In terms of speed and accuracy, Scaled-YOLOv4, ViT-
Adapter-B, YOLOR, YOLOX, DETR, YOLOv5, DINO-5scale-R50, and Deformable DETR were all outperformed by 
YOLOv7.

The recent version, YOLOv8, is developed by Ultralytics, the same company that released YOLOv5. With a 
picture size of 640 pixels, YOLOv8x earned an average precision of 53,9 % when tested on the MS COCO dataset 
test-dev 2017 at a speed of 280 frames per second using TensorRT and NVIDIA A100 (as opposed to 50,7 % for 
YOLOv5 on an input of the same size).(52) Moreover, figure 7 illustrates popular one and two-stage deep learning 
algorithms used by researchers to detect objects.(53,54,55)
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Figure 6. Image Preprocessing Techniques Commonly Used by Researchers

Figure 7. Popular One and Two-Stage Deep Learning Algorithms Used to Detect Objects 
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Table 1. Datasets That are Online Available and Include Images Captured Using a Drone-Based Camera
Developers Description Content Link to the dataset
Svanström, et 
al. 2021 (56)

A multi-sensor dataset for 
UAV spotting that contains 
visible and infrared films as 
well as audio recordings.

The film section, which is around 311,3 
megabyte (MB) in size, includes 650 visible 
and infrared films of helicopters, UAVs, birds, 
and aircraft (285 visible and 365 infrared). Each 
video lasts 10 seconds, for an overall of 203,328 
labeled frames. The dataset contains 90 audio 
recordings from the categories of background 
noise, helicopters, and UAVs.

http://dx.doi.org/10.5281/
zenodo.5500576

Vélez, et al. 
2022 (57)

A drone RGB footage dataset 
for 3D photogrammetric 
reconstruction and precision 
agriculture.

The dataset consists of 248 photos captured 
during two flights above a Spanish pistachio 
plantation. The dataset is around 22,3 gigabytes 
(GB) in size.

h t t p s : / / z e n o d o . o r g /
record/7271542

Maulit, et al. 
2023 (58)

A Dataset of Multispectral 
Drone Images of barley, 
soybean, and wheat harvests 
in east Kazakhstan

The drone photography dataset consists of two 
parts made up of eight files. The raw drone-
captured imagery is represented by the first part 
of the dataset, while the processed orthomosaic 
photography with crop categories is represented 
by the second part. The first part has around 
85,1 GB and 38,377 files, while the second part 
comprises approximately 26,84 GB and 131 files.

https://doi.org/10.5281/
zenodo.7749239
https://doi.org/10.5281/
zenodo.7749362
https://doi.org/10.5281/
zenodo.7748792
h t t p s : / / z e n o d o . o r g /
record/7860751

Suo, et al. 2023 
(59)

Using drones to produce 
an infrared thermal high-
altitude dataset for item 
detection

The dataset contains 2,898 infrared thermal 
photos taken from 43,470 frames in many films 
taken by drones in diverse contexts such as 
playgrounds, roadways, parking lots, and schools. 
The dataset is around 590 MB in size.

h t t p s : / / g i t h u b . c o m /
suojiashun/HIT-UAV-Infrared-
Thermal-Dataset

Krestenitis, et 
al. 2022 (60)

A dataset of photographs 
taken by a drone for 
recognizing species and 
detecting weed

The dataset, which is around 436 MB in size, 
comprises 201 RGB (1280×720 RGB) photographs 
captured by a drone in a cotton growing area in 
Larissa city in Greece during the early phases of 
the plant’s growth.

h t t p s : / / z e n o d o . o r g /
r e c o r d / 6 6 9 7 3 4 3 # .
YrQpwHhByV4

Kraft et al. 2021 
(61)

Using a drone, a specific 
dataset for airborne litter 
and trash detection is 
gathered

The dataset includes 772 photos containing 3718 
manually annotated labels showing garbage in 
natural and urban areas including lawns, parks, 
and streets. The dataset is around 3 GB in size.

h t t p s : / / g i t h u b . c o m /
PUTvision/UAVVaste
or
h t t p s : / / z e n o d o . o r g /
record/8214061

Wang, et al. 
2022 (62)

A multiple-view dataset for 
automobile identification in 
complicated situations using 
drone-captured photos

The dataset is around 14 GB in size and has 49,712 
automobile examples (2193 large automobiles and 
47,519 small automobiles) labeled with arbitrary 
quadrilateral and oriented bounding boxes.

https://www.kaggle.com/
datasets/dronevision/vsaiv1 

Rosende, et al. 
2022 (63)

A dataset of drone-captured 
photos of road traffic in 
Spain for training machine 
vision algorithms to control 
traffic

The dataset consists of 30,140 files including 
photos (15,070 photos) and descriptions. These 
photos include 155,328 vehicles annotated, 
including motorbikes (17,726) and automobiles 
(137,602). The dataset is around 35 GB in size.

h t t p s : / / w w w. k a g g l e .
c o m / d a t a s e t s /
javiersanchezsoriano/traffic-
images-captured-from-uavs 

Brown et al. 
2022 (64)

A dataset gathered 
by employing drones 
to analyze group size 
inaccuracy and availability 
for aerial coastal dolphin 
surveys in Australia

The dataset contains around 20 hours of drone 
video collected following 32 confrontations 
with Australian dolphins off the coast of 
northwestern Australia. The dataset is around 1,2 
MB in size.

https://datadryad.org/stash/
dataset/doi:10.5061/dryad.
qbzkh18mq 

Milz, et al. 2023 
(65)

A drone-captured 
multidisciplinary 3D 
recognition dataset for the 
forest ecosystem

The study area includes 1967 trees, and the 
dataset was gathered in the Hainich-Dün region 
in Germany. The raw sensor recordings files on 
the Zenodo repository are around 217,0 GB in 
size, whereas the zipped file containing the 
metadata (which involves calibration) on the 
Dryad repository is around 34,32 MB in size.

ht tp s ://datad ryad .o rg/
stash/dataset/doi:10.5061/
dryad.4b8gthtft
or
h t t p s : / / z e n o d o . o r g /
record/6891131

Analysis of Relevant Studies in This Field
Table 2 includes a summary of recent studies that examined the use of UAVs for photo collection and image 

processing, as well as the findings and limitations.
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Table 2. A Comparative Analysis of UAV-Based Imaging Application Systems
Authors and Year Purpose Description Findings Limitations
Guo, et al. 2023 
(66)

Introducing An enhanced 
YOLOv5s-based algorithm 
called UN-YOLOv5s.

The goal of this study is to improve the 
detection of small targets by using the UN-
YOLOv5s algorithm.

1. The UN-YOLOv5s algorithm has a 
greater mean average precision (Map@0,5 
%) than YOLOv8s, YOLOv5l, YOLOv5s, 
and YOLOv3.
2. When compared to YOLOv5l, UN-YOLOv5s 
lowered the amount of computation by 65,3 
%.

1. The mean average accuracy 
(Map@0,5:0,95 %) of the UN-YOLOv5s 
algorithm is lower than that of the YOLOv8s 
method.
2. The precision rate of the UN-YOLOv5s 
algorithm is lower than that of the YOLOv8s 
algorithm.

Fei, et al. 2023 (67) Estimating wheat production 
through combining data from 
the three UAV-based sensor 
types (TIR, MS, and RGB), 
as well as using the support 
vector machines, random 
forest, ridge regression, deep 
neural network, and Cubist.

The primary purpose of this study is to build 
an ensemble learning framework to enhance 
the prediction accuracy of machine learning 
algorithms and assess the multi-sensor data 
fusion of UAVAs for forecasting the yield of 
wheat at the stage of grain filling.

1. In the data fusion of three sensors, 
ridge regression, Cubist, DNN, and SVM all 
produced greater prediction values than 
individual-sensor and dual-sensor (with the 
exception of random forest).
2. In the data fusion of the three sensors, 
the ensemble models outperformed 
individual machine-learning models in 
terms of prediction accuracy.
3. The combination of both ensemble 
learning and multi-sensor data has enhanced 
the accuracy of wheat yield prediction.

1. Ensemble learning requires extensive 
training for each base model, requiring 
significant time compared to individual 
models.
2. This study did not use any modern deep 
learning algorithms.

Di Sorbo, et al. 
2023 (68)

Evaluating various models 
for safety-related phrases 
in drone platform issues, 
classifying accidents and 
dangers, and creating 
a dataset of 304 issues 
extracted from UAV 
platforms.

Evaluation of Random Forest, J48 decision 
tree, Naive Bayes, Logistic Regression, and 
SMO models for finding safety-related phrases 
in user-reported drone platform issues, as 
well as classifying accidents and dangers in 
safety-related issues encountered on open-
source drone platforms.

1. The findings reveal that the Random 
Forest results are comparable to the ones 
achieved by utilizing fastText.
2. The research discovered that the bulk of 
the dangerous scenarios in the studied UAV 
issue reports are due to software-related 
faults.

1. No modern deep learning methods 
(such as Bert) were used in this research. 
The trials were only carried out utilizing 
machine-learning algorithms provided by 
Weka software.
2. The research didn’t show any 
preprocessing methods for preparing 
the text (such as lemmatization) for 
categorization.

Yadav, et al. 2023 
(69)

Utilizing RGB photos obtained 
with a drone to identify 
volunteer cotton plants in 
a cornfield using a deep-
learning algorithm.

The goals of this study are to discover if the 
YOLOv3 algorithm can be used to detect 
volunteer cotton in a corn field using RGB 
photos collected from a drone, as well as to 
investigate how YOLOv3 performs on photos 
with three different pixel sizes.

1. Using a drone and computer vision, 
YOLOv3 can detect volunteer cotton plants 
regardless of the three input picture sizes as 
well as perform real-time mitigation and 
detection.
2. YOLOv3 had a greater average detection 
accuracy (mAP) than the researchers’ prior 
papers, where they utilized traditional 
machine-learning techniques and the 
simple linear iterative clustering super 
pixel segmentation algorithm.

1. The researchers used just one algorithm 
to detect volunteer cotton plants in a 
cornfield.
2. The researchers did not conduct 
experiments using the most recent versions 
of the YOLO algorithm (such as YOLOv8). If 
they did, it may enhance the results.
3. The researchers only compared the 
results of their study to their previous 
works, not to similar papers that employed 
new deep learning algorithms.
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Chen et al. 2023 
(70)

Examining the use of 
drone remote sensing for 
ecological environment 
investigation and regional 
three-dimensional model 
development.

The research employs drone remote sensing 
to investigate the natural environment on 
a regional scale and build a 3D model. The 
data from the drone is initially gathered. 
Furthermore, the geometric validity of the 
3D model is assessed using the Pix4D Mapper 
program. The researchers next analyzed the 
regional environment and assessed the trial 
results using the leaf area index, fractional 
vegetation cover, and normalized difference 
vegetation index data. The normalized 
differential vegetation index computation 
results are then utilized to examine the 
water environment in the research region.

1. The high-resolution photos produced by 
drone remote sensing may address the issue 
of the hyperspectral photos’ inadequate 
resolution in the satellite remote sensing 
approach and increase the precision of 
border discrimination.
2. This research resolved the problems of low 
timeliness in conventional environmental 
quality studies using the satellite remote 
sensing method.

1. Due to structural restrictions on drones, 
low spectral resolution remains a concern 
when compared to satellite remote sensing 
technology, and this has an effect on data 
processing. 
2. This work does not cover the 3D model’s 
generalization or applications in different 
domains.

Beltran-Marcos, 
et al. 2023 (71)

Examining the feasibility 
of using multispectral 
photographs at 
various geographic and 
spectral resolutions for 
determining soil markers of 
fire severity.

The paper includes findings from an 
examination of soil biophysical characteristics 
in burnt regions using remote sensing image 
fusion methods effective for predicting the 
effects of burn at a small spatial scale. A 
decision tree algorithm was employed to 
evaluate which soil parameters (mean weight 
diameter, soil moisture content, and soil 
organic carbon) were most associated with 
soil burn damage.

1. Spectral and spatially upgraded 
photographs produced by merging satellite 
and drone images are helpful for assessing 
the main effects on soil characteristics 
in burnt forest zones where emergency 
actions are needed. 
2. An efficient technique for estimating 
soil organic carbon in heterogeneous and 
complex forest landscapes affected by 
mixed-severity fires is produced by the 
fusion of multispectral data at various 
spatial and spectral resolutions, collected 
immediately after wildfire by sensors 
onboard Sentinel-2A satellite platform and 
drone.

1. An increase in the spatial resolution of 
multispectral photography may result in a 
modest reduction in the spectral quality of 
the combined images. Poor performance 
in the soil moisture content projections 
may have occurred due to geographical 
variability in the pre-fire soil characteristics 
at the research location.
2. Using commercial satellite sensors with 
enhanced spatial and spectral resolution or 
aircraft hyperspectral surveys can improve 
the outcomes.
3. Further development is required to boost 
the fused datasets’ predictive potential.
4. The results may not be generalizable 
due to logistical limitations in the field 
sampling, such as the limited time available 
for data gathering following the fire and the 
particular distribution of samples gathered 
from soil fields.

Chao-yu, et al. 
2023 (72)

Introducing the YOLOX-tiny 
algorithm for detecting 
maize tassels in a convoluted 
background in the flowering 
phase.

The researchers employed a drone to gather 
photographs of maize tassels at various 
times. They also presented a SEYOLOX-
tiny architecture that extends YOLOX by 
incorporating a Squeeze and Excitation 
Block. Furthermore, to train the object 
branch, the researchers used Binary Cross-
Entropy Loss instead of Varifocal Loss to 
improve sensitivity to ignored aspects while 
decreasing the influence of negative variables 
like overlap, diverse sizes, and occlusion.

1. The experimental findings in a real-world 
context demonstrate that this approach 
effectively recognized maize tassels, 
outperforming competing approaches in 
terms of prediction accuracy.
2. In comparison with earlier study efforts, 
the research’s approach is more effective 
at solving the issue of incorrect recognition 
brought on by small size and occlusion.

1. When comparing the YOLOX models 
in the trials, the researchers excluded 
several deep-learning models, such as the 
modified YOLOv5n, which proved effective 
at identifying maize tassels.
2. The proposed method included a few 
cases of missed identifications, including 
high overlap, tiny size, and severe occlusion, 
that demonstrated the various extremes in 
the identification of maize tassels.
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Cruz et al. 2023 
(73)

Evaluating the efficiency 
of drone remote sensing in 
mapping different types of 
complicated coastal dunes 
habitats.

Using multi-temporal photos collected 
over the course of the growing season, the 
researchers assessed how categorization 
accuracy varies. After that, they determined 
if adding topography from drones enhances 
categorization accuracy. In order to 
distinguish between distinct coastal dune 
ecosystems, the researchers determined 
the best time of the growth season for 
drone data collecting. The Random Forest 
algorithm was used to categorize the various 
habitat categories.

1. This study demonstrated how to 
integrate drone data into the monitoring 
of complicated dune habitats and used 
the Random Forest classification algorithm 
to automatically and accurately map the 
habitats.
2. Based on the findings of the study, the 
researchers argue that for Irish coastal dune 
systems, the middle of the growth season is 
preferable to the late or early seasons for 
picture gathering. 
3. The researchers recommend the 
adoption of their approach to aid in the 
spatiotemporal monitoring of ecosystems 
located in Annex I.

1. Dunes with dune slacks and Salix repens 
were incorrectly classified as Annex I 
habitats. The classification of white dunes 
as recolonizing bare ground and exposed 
sand was similarly incorrect. White sands’ 
outcome was in line with its slightly lower 
accuracy values.
2. Even with the addition of topographic 
data, distinguishing between white dunes 
and grey dunes is still problematic.
3. This study might benefit from adopting 
LiDAR technology to obtain optical and 
topographic data since it provides more 
precision due to its laser-based method of 
data collection.

Quan et al. 2023 
(74)

Evaluating the application 
of a hybrid feature selection 
approach for categorizing tree 
species in natural secondary 
forests. The researchers in 
this research combined laser 
scanning and hyperspectral 
data from drones.

From drone hyperspectral imagery, 
the researchers produced texture and 
spectral variables, and from laser scanning, 
they produced radio-metric and detailed 
geometric variables. The most beneficial 
feature sets from drone hyperspectral 
imagery and laser scanning were then 
chosen by the researchers, who used these 
features to distinguish between different 
species of trees. Finally, the researchers 
investigated and determined how robust the 
selected features were using a simulation 
program.

1. The findings showed that combining drone 
hyperspectral imaging with laser scanning 
enhanced tree species categorization 
accuracy when compared to relying on 
either one alone.
2. The simulation program demonstrated 
that the selected features had considerable 
robustness with pictures of varying spatial 
resolutions and in point clouds of varying 
densities.

1. For several tree species, such as Tilia, 
Acer Mono, and Phellodendron Amurense, 
incorrect categorization was observed. 
The similarity in morphology and spectra 
and between various tree species as well 
as variation among the species of a single 
tree, in addition to the impact of the 
limited sample size, are likely responsible 
for this.
2. Incorrect tree identification results in a 
decrease in crown architecture because the 
crowns of nearby trees overlap.
3. Leaf-off/on data from several seasons 
should be used to examine shifts in tree 
characteristics over the course of the 
phenological cycle and to increase the 
accuracy of species categorization.
4. More data should be gathered 
and experiments using deep learning 
algorithms that do not depend on feature 
selection should be conducted to enhance 
classification results.

Zhou et al. 2023 
(75)

Proposing the Temporal 
Attention Gated Recurrent 
Unit to efficiently extract 
temporal information 
based on transformers 
and recurrent neural 
networks in an effort to solve 
the problem of basic feature

o allow high efficiency and accuracy for 
drone-based image object detection, the 
researchers created the Temporal Attention 
Gated Recurrent Unit (TA-GRU) YOLOv7 
video object identification framework. T 
The researchers created four modules in 
particular: 

1. By using a frame-by-frame alignment 
technique instead of aligning each 
adjacent frame with a frame of reference, 
this approach minimizes computation while 
also improving alignment accuracy.
2. Using the VisDrone2019-VID dataset, the 
TA-GRU YOLOv7 approach outperformed 
YOLOv7 in terms of mAP and detection

1. The module struggled to handle 
information about long-term motion, and 
the deterioration of appearance features in 
different objects within drone photos made 
it difficult for the module to successfully 
learn temporal information.
2. For improvements, more accurate motion 
predictions and annotated data are required.
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aggregation approaches 
which often introduce 
background interference into 
targets.

1. TA-GRU to obtain better attention to 
particular features in the present frame and 
boost the accuracy of motion information 
extraction across frames.
2. The temporal deformable transformer 
layer, which improves the target features 
while reducing unnecessary computational 
costs.
3. A deformable alignment module that 
extracts motion data and aligns features 
using two frames of pictures.
4. A temporal attention-based fusion module 
that merges important temporal feature 
information with the present frame feature.

across a wide range of categories.
3. The proposed approach successfully 
addressed the visual degradation in UAVs 
and made it possible to switch from 
effective static picture object recognition 
to video object recognition.
4. The combination of fusion modules, 
feature alignment, transformer layers, 
and recurrent neural networks resulted in 
a robust module for dealing with temporal 
features in UAV videos.
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Future Trends
Although advanced deep learning algorithms have been employed in drones, they have yet to be completely 

deployed. It’s because of restricted processing and power capabilities.(76) As a result, developers should develop 
unique deep-learning-based drone approaches, notably for SAR tasks. These approaches can help with learning 
and contextual judgments based on trajectory information. Moreover, fog, precipitation, and strong winds can 
negatively impact a UAV’s visibility, endurance, and sensors for collision avoidance and navigation, even though 
numerous developments have been implemented in the design of UAVs in order to make them better adapted 
for situations like these.(76) Therefore, to guarantee the effective execution of duties, further studies should be 
done to evaluate the impacts of poor weather on drone resilience and to develop solutions.(77)

Drones are vulnerable to cyber-attacks on several levels, raising security concerns. Malicious actors take 
advantage of drone weaknesses, putting sensitive and personal data at risk. UAV manufacturers sometimes 
overlook privacy and security problems during production, indicating the necessity for further research in 
this area.(78) Furthermore, because drones are now often used in sectors containing critical data (such as 
infrastructure search, emergency services, and military), establishing security in drone communications and 
services is a demanding issue. As a result, effective techniques for providing secure and dependable services 
and communications in drone-related systems will be needed.(79)

Furthermore, because of their faint look and limited differentiating features, small items pose substantial 
hurdles in drone monitoring systems, resulting in a lack of critical information. This deficiency affects the 
tracking operation, frequently resulting in decreased accuracy and efficiency. Tracking may be fairly complicated 
because of a variety of circumstances. When items move quickly, become invisible, or undergo occlusion, 
problems arise. Problems also arise when moving cameras, rotation, non-rigid objects, scale changes, and 
noise are present. Despite significant developments in the field, these complications exist, particularly when 
detecting small items from a far distance (80) or in poor weather conditions,(81) and they should be addressed in 
future research.

The usage of drones in indoor conditions presents a number of technological challenges. These challenges 
include the size of the drone, the high machine/worker density, the height of barriers, GPS denial, and the 
risk of drone accidents and failures with indoor objects.(82) Although numerous studies have been undertaken to 
provide solutions to the drone avoidance of barriers challenge, it is important to note that there are currently 
many unresolved issues that necessitate new solutions and considerations. Airborne sensor modeling needs to 
be improved in future studies, and barrier information processing methods should be developed for drones’ 
sensors. The modeling of complicated settings with irregular and U-shaped barriers, and the dynamics of drones 
in tight areas such as caves and indoors need also to be focused on in future research. Moreover, future research 
should focus on the integration of heterogeneous data gathered from numerous sources. It is also important 
to focus on the drone controller features in route planning, as well as enhance drone path tracking accuracy 
to avoid barriers. It is important to continue developing 3D obstacle-avoiding models with improved detection 
accuracy.(9)

CONCLUSION 
This paper provided a comprehensive analysis of UAVs in various applications, discussing current datasets, 

image preprocessing, and analysis methods for photos captured by UAV cameras. It reviewed recent studies 
related to UAV-monitoring applications and identified prospective research gaps in UAV-monitoring systems. 
The paper illustrated the common use of machine learning and deep learning techniques for processing aerial 
images captured by UAVs, aiding in crowd detection, object identification, density estimation, and tracking. 
This paper argued that UAVs are highly regarded in both public and civil sectors for their capacity to issue 
warnings and alerts during disasters such as floods, terrorist incidents, and interruptions in transportation 
and telecommunications. Additionally, the paper explored other UAV applications, including remote sensing, 
logistics, military operations, search and rescue, and law enforcement.

Finally, this paper demonstrated that outfitting UAVs with advanced image capture and processing technologies 
would provide numerous benefits, address many current limitations, and significantly aid in enhancing many 
other community services highlighted in this paper. Nonetheless, future research needs to tackle the current 
constraints associated with deploying UAVs for monitoring applications, as highlighted in this paper.
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