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ABSTRACT

Landslides can cause severe damage to infrastructure and human life, making early detection 
and  warning systems  critical for mitigating their impact. In this study, we propose a  machine learning 
approach for  landslide detection using remote sensing data and topographical features. We evaluate the 
performance of several machine learning algorithms, including Tree, Random Forest, Gradient Boosting, 
Logistic Regression, Naïve Bayes, AdaBoost, Neural Network, SGD, kNN, and SVM, on a dataset of remote 
sensing images and  topographical features  from the Sikkim region in Malaysia. The results show that 
the SVM algorithm outperforms the other algorithms with an accuracy of 96,7 % and a F1 score of 0,97. The 
study demonstrates the potential of machine learning algorithms for landslide detection, which can help 
improve early warning systems and reduce the impact of landslides.
 
Keywords: Machine Learning; Confusion Matrix; Prediction; Landslide Hazard; Remote Sensing; Topographical 
Features.

RESUMEN

Los deslizamientos de tierra pueden causar graves daños a la infraestructura y a la vida humana, por lo que 
los sistemas de detección y alerta temprana son fundamentales para mitigar su impacto. En este estudio, 
proponemos un enfoque de aprendizaje automático para la detección de deslizamientos de tierra utilizando 
datos de teledetección y características topográficas. Evaluamos el rendimiento de varios algoritmos de 
aprendizaje automático, incluidos Tree, Random Forest, Gradient Boosting, Logistic Regression, Naïve Bayes, 
AdaBoost, Neural Network, SGD, kNN y SVM, en un conjunto de datos de imágenes de teledetección y 
características topográficas de la región de Sikkim en Malasia. Los resultados muestran que el algoritmo SVM 
supera a los demás algoritmos con una precisión del 96,7 % y una puntuación F1 de 0,97. El estudio demuestra 
el potencial de los algoritmos de aprendizaje automático para la detección de deslizamientos de tierra, que 
pueden ayudar a mejorar los sistemas de alerta temprana y reducir el impacto de los deslizamientos de 
tierra.

Palabras clave: Aprendizaje Automático; Matriz de Confusión; Predicción; Peligro de Deslizamientos de 
Tierra; Teledetección; Características Topográficas.
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INTRODUCTION
Globally, landslides are among the most damaging natural disasters, claiming countless lives and causing 

billions of dollars in annual losses. They represent a significant risk to human life, the environment, natural 
resources, and property.(1,2,3,4,5,6) A region’s sensitivity to landslides is referred to as its landslide susceptibility. 
Using the assumption that landslides would occur in the future owing to the same conditions that caused them, 
susceptibility evaluations are used to predict the geographic location of future landslides. Many scientists 
have concentrated on landslide susceptibility mapping because of the high incidence and large occurrence 
range. Through scientific study of landslide susceptibility mapping, we can identify and locate regions at risk of 
landslides, allowing us to take the necessary steps to reduce the detrimental effects of landslides.(7,8,9,10,11,12,13,14) 
Using Geographic Information Systems (GIS) and remote sensing, numerous research has been undertaken to 
identify landslides and assess landslide risk. In recent years, quantitative studies have been applied to landslide 
susceptibility research utilizing various techniques, including probabilistic methods, logistic Regression, and 
artificial neural networks. Most of this research tries to improve landslide prediction precision by identifying 
appropriate methodologies for each study region.(15,16,17,18)

This work studies the ability of machine learning model for identifying the most significant aspects contributing 
to landslide vulnerability. A decision tree is a popular categorization technique that balances readability, 
precision, and efficiency. Successfully classifying and estimating land use, land cover, and other geographical 
features using remote sensing data using statistical decision tree models. The decision tree originates from 
machine learning and is an effective classification and estimate tool. In contrast to other statistical methods, 
a decision tree makes no statistical assumptions, can handle data recorded on various measurement scales, 
and is computationally efficient. The explicit representation of estimate processes and the order of significant 
explanatory variables by tree structures is another advantage of decision trees. Recent advancements in 
computer technologies, pattern recognition algorithms, and automatic methods of decision-tree building have 
made decision-tree models applicable to various applications. Previous research has established the benefits of 
decision tree models for land cover classification and landslide distribution analysis.(19,20,21,22)

Previous research has proved the efficiency of machine learning algorithms for assessing and estimating the 
distribution of landslides. Pal and Mather demonstrated the benefits of decision tree algorithms for land cover 
classification. Saito et al. utilized decision tree models to examine the distribution of practically suspended 
or dormant landslides and emphasized the utility of decision trees for estimating landslide distributions. Bui 
et al. tested the performance of decision tree models with Support Vector Machines (SVM) and Naive Bayes 
Models for landslide prediction in Vietnam. They found those decision tree models were superior in predicting 
the essential elements causing landslides. Pang et al. mapped the landslide danger of Penang Island using the 
decision tree Quinlan’s method C4.5, which helped identify the most important parameters leading to landslide 
susceptibility.(23,24,25,26)

In conclusion, this work aims to offer the optimal machine learning algorithms for identifying the most 
significant aspects contributing to landslide susceptibility. The results of this study will aid in developing 
efficient strategies for forecasting and minimizing the effects of landslides by enhancing our understanding of 
the elements that contribute to landslides.

Literature Review
Landslide susceptibility mapping has become an increasingly essential tool for reducing the effects of 

landslides. Machine learning algorithms in landslide susceptibility mapping have been the subject of substantial 
research due to their capacity to handle enormous datasets, make no statistical assumptions, and manage data 
expressed at diverse measurement scales. Numerous studies have analyzed the distribution of landslides and 
estimated their susceptibility using machine learning algorithms.(27,28,29,30,31)

Previous research has demonstrated that decision tree models can identify the most important elements 
influencing landslide vulnerability. To increase the accuracy of landslide susceptibility mapping, Wang et al.(32) 
suggested a hybrid decision tree model that employs the Particle Swarm Optimization (PSO) algorithm for 
feature selection. Similarly, Zhao et al.(33) utilized a decision tree model with a Genetic Algorithm (G.A.) to 
identify the most important characteristics contributing to landslide vulnerability. The authors in (34,35,36,37) 
estimated landslide susceptibility in Italy’s Northern Apennines by combining decision tree models with logistic 
Regression. In another study, (38) estimated landslide risk in a hilly region of Korea by combining decision tree 
models with artificial neural networks.

In addition, recent research has examined the usage of decision tree models in conjunction with machine 
learning approaches like Random Forests and Gradient Boosting.(1,2,8,11,12) These strategies increase the accuracy 
of landslide prediction by employing a collection of decision trees. Other authors used a Random Forests model to 
predict landslide susceptibility and demonstrated that the model was more accurate than previous models.(3,4,25)

In conclusion, machine learning algorithms have proven useful for mapping landslide susceptibility. By 
choosing the most important criteria contributing to landslide susceptibility, machine learning algorithms can 
be upgraded to improve the accuracy of landslide prediction. Future research may combine different machine 
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learning algorithms to build more effective tactics for mapping landslide susceptibility.

Study Area
Figure 1 depicts the location of Penang Island, which lies between 5°15′ and 5°30′ north latitude and 100°10′ 

and 100°20′ east longitude. The research area is 285 km2 in size and is separated from the mainland by the 
North Channel. Penang Island is one of Malaysia’s thirteen states and is flanked to the north and east by Kedah, 
to the south by Perak, and to the west by the Malacca Strait and Sumatra (Indonesia).

According to prior research, frequent landslides pose a hazard to human life and property on the island. This 
study focuses primarily on the island. Landslides are significantly influenced by the incidence of high rainfall 
in the studied region. The Malaysian Meteorological Department has observed annual precipitation amounts 
ranging from 2254mm to 2903mm in the study area. The island of Penang has a tropical climate with high 
temperatures between 29 and 32 degrees Celsius and humidity between 65 and 96 percent. The topography 
altitudes range from 0 to 820 meters above sea level, while the slope angles range from 0 to 87 degrees. 
Approximately 43,28 percent of the island consists of flat terrain.

According to the Minerals and Geosciences Department of Malaysia, more than 72% of the geology of the 
research area consists of Ferringhi granite, Batu Maung granite, clay, and sand granite. The predominant types 
of vegetation are wood and fruit plantations.(30,40,41)

Figure 1. The location of Penang Island

Model
A.	 Random Forest: Random Forest is an ensemble learning technique that generates the mode of 

the classes (classification) or mean prediction (Regression) of the individual trees during training. The 
algorithm randomly selects a subset of characteristics from the input dataset and a subset of data 
samples to construct each decision tree. This procedure is performed numerous times, resulting in the 
mean of the individual decision trees. Random Forest is renowned for its great accuracy, robustness, 
and capacity to manage many features within an input dataset. Random Forest applies to classification 
and regression issues. It can manage unbalanced data and noisy characteristics in categorization. It 
can handle nonlinear data and outliers in Regression. The approach is computationally efficient and is 
capable of processing big datasets. However, it might be vulnerable to noisy data and overfitting if not 
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correctly tuned.(42)

B.	 Support Vector Machine: SVM is a technique for supervised learning used in classification and 
regression analysis. The algorithm operates by locating the optimal hyperplane that divides the data 
into distinct classes. The optimal hyperplane maximizes the difference between classes and reduces 
classification error. SVM is appropriate for linear and nonlinear data and can handle high-dimensional 
input. The approach is computationally efficient and performs well in terms of generalization. However, 
if not correctly tuned, it can be sensitive to kernel function and regularization parameter choice. 
Applications such as image classification, text classification, and bioinformatics frequently employ SVM.(43)

C.	 Logistic Regression: Logistic Regression is a supervised learning approach to solve binary 
categorization issues. Using the logistic function, the technique simulates the chance that input data 
belong to a certain class. The logistic function converts each input value to a number between 0 
and 1, representing the chance that the input data belong to the positive class. The simplicity and 
interpretability of Logistic Regression make it a popular choice for binary classification problems. The 
approach can handle both linear and nonlinear data and can be extended to multi-class issues utilizing 
one-vs.-rest or softmax Regression techniques. However, it can be vulnerable to outliers and unstable if 
the input features are highly linked.(18)

D.	Constant: A simple machine learning model that predicts the same outcome regardless of input 
data. This model serves as a benchmark for comparing the performance of different models on a given 
dataset. The constant model is simple to create and can be used to establish a lower performance limit 
for models.(44)

E.	 Stochastic Gradient Descent: SGD is an optimization algorithm utilized in machine learning to 
determine the optimal model parameters. It operates by incrementally modifying the model parameters 
based on the gradient of the loss function concerning the parameters. SGD is frequently employed in 
deep learning to train neural networks. SGD is quick and efficient and can handle huge datasets and 
input data with high dimensions. The approach applies to linear and nonlinear models and can be applied 
to regression and classification issues. SGD can also handle non-convex and non-smooth optimization 
problems and can be utilized for online education. However, the algorithm may be sensitive to the 
learning rate selection and may converge on poor solutions if not correctly controlled.(45)

F.	 Naive Bayes: Based on Bayes’ theorem, Naive Bayes is a supervised learning technique for 
categorization issues. The “naive” assumption is that the features in the input dataset are independent 
of one another. Given the input data, the algorithm evaluates the likelihood of each class and selects 
the class with the highest probability as the output. The simplicity and computational efficiency of Naive 
Bayes make it suited for huge datasets. The algorithm resists unnecessary features and can process input 
data with a high dimension. Naive Bayes can also be used to classify text and filter spam. However, if 
the independence assumptions are broken, the technique can be sensitive to infrequent occurrences and 
produce skewed results.(33)

G.	Gradient Boosting: Gradient Boosting is an ensemble learning technique for classification and 
regression tasks. The algorithm combines multiple weak prediction models, often decision trees into a 
single robust model. The algorithm sequentially trains each model, with each new model learning from 
the prior model’s faults. Gradient Boosting is renowned for its precision and capacity to manage many 
features. The method can handle nonlinear data and capture complicated connections between input 
features. Gradient Boosting is also resistant to outliers and can handle noisy data. If not correctly tuned, 
the technique can be computationally expensive and prone to overfitting. Gradient Boosting is frequently 
implemented in web search ranking, recommendation systems, and fraud detection applications.(8)

H.	kNN: k-Nearest Neighbors (kNN) is a non-parametric approach for classification and regression 
issues. How the method operates is finding the k-nearest training data points to the input data point 
and using their labels (classification) or values (Regression) to predict the output. k is a hyperparameter 
whose value must be optimized for optimal performance. kNN is straightforward and intuitive, capable 
of handling linear and nonlinear data. The technique can also handle multi-class issues and be applied 
to classification and regression situations. kNN can be sensitive to the distance metric chosen and 
computationally expensive if the dataset is large or high-dimensional. Applications such as image 
identification, anomaly detection, and recommendation systems frequently employ kNN.(12)

I.	 Neural Network: Neural Network is an approach for machine learning based on the human brain’s 
structure and operation. It consists of numerous layers of interconnected nodes, or neurons, that 
transform and process incoming data. Each neuron computes a weighted sum of its inputs, applies an 
activation function, and transmits the result to the following layer. Neural networks can be used for 
classification and regression problems and are renowned for discovering intricate patterns in the input 
data. Neural Networks can process linear and nonlinear data and capture intricate connections between 
input features. The technique can also deal with high-dimensional data and can be utilized for image 
recognition, speech recognition, and natural language processing. However, neural networks can be 
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computationally costly and require substantial data to prevent overfitting. The model’s performance can 
also be affected by the network architecture, activation function, and optimization algorithm chosen.(37)

J.	 Tree: The Tree algorithm is used for both classification and regression issues. Until a stopping 
requirement is met, the algorithm partitions the input data recursively into smaller subgroups based 
on the values of the input features. The outcome is a decision tree that may be used to anticipate the 
output depending on the input data. Decision trees are straightforward to read and include category 
and numeric data. The method can also deal with incomplete data and can be used to pick features. 
Nonetheless, if the input data are very volatile, decision trees might be susceptible to overfitting and 
provide unstable outcomes. Additionally, the technique may be sensitive to slight changes in the input 
data, and the tree may favor features with many categories.(14)

K.	 AdaBoost: AdaBoost is a classification problem-specific ensemble learning technique. The algorithm 
combines multiple weak prediction models, often decision trees, into a single robust model. The approach 
sequentially trains each model, with each new model allocating a greater weight to the misclassified 
data points from the prior model. The final result is the weighted total of the forecasts of each model. 
AdaBoost is renowned for its precision and capacity to handle unbalanced datasets. The method can 
work with both linear and nonlinear data and capture complicated correlations between input features. 
AdaBoost is also tolerant of noisy and absent data. Nevertheless, the approach can be computationally 
costly and susceptible to outliers. AdaBoost is frequently employed in face recognition, object detection, 
and customer churn forecasting applications.(46,47,48)

In conclusion, each machine learning model has its strengths and shortcomings, and the optimal model 
depends on the requirements and characteristics of the particular situation. To choose the optimal model 
for a particular dataset, it is vital to comprehend each model’s underlying principles and assumptions. 
In addition, it is essential to evaluate the model’s performance using proper metrics and methodologies, 
like cross-validation and hyperparameter tweaking, to prevent overfitting and guarantee generalization 
performance.(49,50,51,52)

DataSet
This analysis identified 137 570 cases, of which 68786 samples indicate landslides and 68786 samples do 

not reflect landslides. Slope aspect, General curvature, Distance from drainage, Distance from the fault line, 
Land cover, Gology, Plan curvature, Distance from the road, Profile curvature, Rain perception, Slope angle, 
Elevation, Vegetation cover, Soil texture, Tangent curvature, Surface area, Roughness, Diognal length, Longitude 
curvature, Rogusity, and Cross curvature are the 21 features that were used.(53,54,55,56)

RESULT
This work employs eleven machine learning algorithms to construct optimal decision models. This study 

analyzed the parameters collected from the Penang DEM map using techniques ranging from (7) to (26). Various 
tools, including ArcView, IDRISI, and MapInfo, were used to compare the extracted maps to confirm the accuracy 
of the topographic factor maps. This verification yielded satisfactory findings. Table 1 exhibit the evaluation 
Results for the target using 10 folds cross-validation, whereas table 2 displays the Confusion Matrix using the 
Models.

Table 1. Evaluation Results for the target (average over classes) using 10 folds cross-validation
Model AUC CA F1 Precision Recall
SVM 0,3294 0,3890 0,3699 0,3737 0,3890
Constant 0,5000 0,5000 0,5000 0,5000 0,5000
Logistic Regression 0,7918 0,7261 0,7210 0,7440 0,7261
SGD 0,7235 0,7235 0,7131 0,7613 0,7235
Naive Bayes 0,7786 0,7251 0,7137 0,7678 0,7251
Gradient Boosting 0,8928 0,8137 0,8109 0,8339 0,8137
kNN 0,9345 0,8622 0,8615 0,8701 0,8622
Neural Network 0,9610 0,9128 0,9127 0,9149 0,9128
Tree 0,9535 0,9496 0,9496 0,9499 0,9496
AdaBoost 0,9662 0,9662 0,9662 0,9664 0,9662
Random Forest 0,9951 0,9670 0,9670 0,9677 0,9670

The performance indicators and the top-performing model:
Support Vector Machine (SVM): The Support VectoMachine (SVM) model has the lowest AUC and Classification 

Accuracy (C.A.) among all models, suggesting poor performance in differentiating between positive and 
negative classes. However, its F1 score, precision, and recall are considerably higher than the constant model, 
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demonstrating some predictive ability. The F1 score is a harmonic mean of accuracy and recall, indicating that 
the SVM model is balanced regarding precision and recall. Low AUC and C.A. values indicate that SVM performs 
badly in classification tasks. In this scenario, SVM is not the optimal model.

The constant model consistently predicts the same result, irrespective of the input data. Consequently, 
its AUC, CA, F1 score, precision, and recall are all equal to chance at 0,5. The constant model serves as 
a benchmark for comparing the performance of various models on a particular dataset. Consequently, the 
constant model is not the optimal model in this instance.

Logistic Regression: The AUC and C.A. of the Logistic Regression model are moderate, performing well in 
separating positive and negative classes. In addition, its F1 score, precision, and recall are relatively high, 
showing strong predictive ability. The Logistic Regression model strikes an excellent balance between identifying 
genuine positives and avoiding false positives and false negatives, as indicated by the model’s high precision 
and recall values. Therefore, Logistic Regression is an effective model for classification problems, but it may 
not be optimal.

Stochastic Gradient Descent (SGD): The Stochastic Gradient Descent (SGD) model has a lower AUC than 
others, showing a diminished capacity to distinguish between positive and negative classes. However, its C.A. 
and F1 scores are moderate, and its precision and recall are relatively high, showing some predictive ability. On 
datasets with high-dimensional features and sparse data, the SGD model may perform well, but in this instance, 
it may not be the optimal model.

Naive Bayes: The AUC and C.A. of the Naive Bayes model are moderate, performing well in separating 
positive and negative classes. In addition, its F1 score, precision, and recall are relatively high, showing strong 
predictive ability. The simplicity and efficiency of the Naive Bayes model make it appropriate for huge datasets. 
Therefore, Naive Bayes is an effective model for classification problems, but it may not be optimal in this 
instance.

Gradient Boosting: The AUC and C.A. of the Gradient Boosting model are high, showing that it excels at 
differentiating between positive and negative classes. In addition, it has a high F1 score, precision, and recall, 
all of which indicate great predicting ability. The Gradient Boosting model is a powerful ensemble learning 
technique that combines numerous weak learners into a single strong learner. Gradient Boosting is an effective 
model for classification tasks and a strong contender for the best model.

kNN: The k-Nearest Neighbors (kNN) model has high AUC and C.A., demonstrating outstanding performance 
in separating positive and negative classes. In addition, it has a high F1 score, precision, and recall, all of which 
indicate great predicting ability. The kNN algorithm is a non-parametric technique that looks for the input 
instance’s k-nearest neighbors and classifies it based on the majority class among its neighbors. The kNN model 
is straightforward and quick to implement, making it suited for several categorization problems. Consequently, 
kNN is a strong contender for the best model.

Neural Network: The AUC and C.A. values of the Neural Network model are extremely high, showing 
exceptional performance in differentiating between positive and negative classes. In addition, it has an 
exceptionally high F1 score, precision, and recall, showing great predictive ability. The Neural Network model 
is a powerful technique for machine learning that can discover complicated patterns from data. The Neural 
Network model applies to various classification problems, such as image and audio recognition, natural language 
processing, and recommendation systems. Neural Network is, therefore, a strong contender for the best model 
in this instance.

Tree: The AUC and C.A. of the Tree model are extremely high, showing great performance in discriminating 
between positive and negative classes. In addition, it has an exceptionally high F1 score, precision, and 
recall, showing great predictive ability. The Tree model is an algorithm that generates a hierarchical structure 
of decision rules depending on the input attributes. The Tree model is useful for categorical and numeric 
characteristics in datasets, making it a flexible technique. The tree is a strong contender for the best model in 
this instance.

AdaBoost: The AdaBoost model has a very high AUC, CA, F1 score, precision, recall, exceptional performance 
in differentiating between positive and negative classifications and great prediction power. AdaBoost is an 
ensemble learning technique that combines numerous weak learners into a single strong learner. The AdaBoost 
algorithm prioritizes cases that have been incorrectly classified, making it suited for datasets with imbalanced 
classes. AdaBoost is, therefore, a strong contender for the best model in this instance.

Random Forest: The Random Forest model has the greatest area under the receiver operating characteristic 
curve (AUC) among all models, suggesting outstanding performance in discriminating between positive and 
negative classes. In addition, it has a high C.A., F1 score, precision, and recall, showing outstanding prediction 
ability. Random Forest is an ensemble learning technique that mixes numerous decision trees to create a 
powerful learner. By selecting a subset of characteristics and occurrences at random, the Random Forest 
algorithm lowers overfitting and variation. Random Forest is, therefore, a strong contender for the best model 
in this instance.
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Overall, the kNN, Neural Network, Tree, AdaBoost, and Random Forest models perform exceptionally well in 
differentiating between positive and negative classifications and have superior predictive power. Among these 
models, kNN, Random Forest, and Neural Network have the greatest AUC and C.A. values, showing superior 
performance concerning this dataset. However, the optimal model depends on the problem’s requirements 
and restrictions. Before picking the optimal deployment model, it is recommended to analyze the models on 
additional parameters, such as computational efficiency, interpretability, and scalability.

Table 2. Confusion Matrix using the Models for Actual Landslide (1) = 68786, 
and actual no Landslide (0) = 68786

Model Actual Predicted
Landslide (1) no Landslide (0)

Constant Landslide (1) 34391 34395
no Landslide (0) 34395 34391

Tree Landslide (1) 66287 2499
no Landslide (0) 4437 64349

Random Forest Landslide (1) 67825 961
no Landslide (0) 3578 65208

Gradient Boosting Landslide (1) 64423 4363
no Landslide (0) 21265 47521

Logistic Regression Landslide (1) 59259 9527
no Landslide (0) 28152 40634

Naïve Bayes Landslide (1) 63609 5177
no Landslide (0) 32646 36140

AdaBoost Landslide (1) 67188 1598
no Landslide (0) 3046 65740

Neural Network Landslide (1) 65225 3561
no Landslide (0) 8436 60350

SGD Landslide (1) 62849 5937
no Landslide (0) 32105 36681

kNN Landslide (1) 64312 4474
no Landslide (0) 14477 54309

SVM Landslide (1) 38725 30061
no Landslide (0) 53995 14791

The table 2 displays the confusion matrix for various machine learning models on a particular dataset. The 
following is a concise explanation of the confusion matrix:

True Positive (T.P.): the number of landslide samples properly identified by the model as landslides.
False Positive (F.P.): the number of non-landslide samples the model wrongly identifies as landslides.
False Negative (F.N.): the number of landslide samples the model wrongly labels as non-landslide.
True Negative (T.N.): the number of non-landslide samples properly identified by the model as non-landslide 

samples.
Now let’s interpret each model’s results:
The constant model consistently predicts the same result, irrespective of the input data. The confusion 

matrix reveals that the model predicted both landslides and non-landslides with identical frequency (34391 and 
34395), indicating that it did not perform better than chance.

Tree: The Tree model accurately predicted landslides for 66287 samples but wrongly predicted landslides 
for 2499 non-landslide samples. It properly predicted 64,349 non-landslide samples but mistakenly forecasted 
44,377 landslide samples. Therefore, the Tree model has a high rate of true positives but a high proportion of 
false positives.

Random Forest: The Random Forest model has a high true positive rate, as 67825 landslide samples were 
properly predicted. However, 961 non-landslide samples were wrongly predicted as landslide samples. It 
accurately predicted 65208 non-landslide samples, but wrongly identified 3578 landslide samples. The Random 
Forest model has a slightly greater percentage of false positives than the Tree model, but a higher rate of true 
positives.

Gradient Boosting: The Gradient Boosting model has a high true positive rate, as 64423 landslide samples 
were properly predicted. It mistakenly identified 4363 non-landslide samples as landslide samples. It accurately 
predicted 47521 non-landslide samples, but wrongly forecasted 21265 landslide samples. Therefore, the 
Gradient Boosting model has a greater false positive rate than the Tree model, but a higher true positive rate.
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Logistic Regression: The Logistic Regression model properly predicted 59259 samples of landslides and 
40634 samples of non-landslides, which is greater than the Tree and Gradient Boosting models. However, it 
misclassified 9527 non-landslide data as landslide, which is more than the Random Forest model. Therefore, 
the Logistic Regression model has a greater rate of true positives than the Tree and Gradient Boosting models, 
but a slightly higher rate of false positives than the Random Forest model.

The Naive Bayes model has a high true positive rate, having successfully predicted 63609 samples of 
landslides. It mistakenly identified 5177 non-landslide samples as landslide samples. It accurately predicted 
36140 non-landslide samples, but wrongly forecasted 32646 landslide samples. The Naive Bayes model has 
a high proportion of false positives, but a higher rate of true positives than the Tree and Gradient Boosting 
models.

AdaBoost: The AdaBoost model has a high true positive rate, as 67188 landslide samples were properly 
predicted. However, it mistakenly projected 1598 samples that were not landslides to be landslides. It 
successfully predicted 65740 non-landslide samples, but mistakenly identified 3046 samples as landslides. 
Therefore, the AdaBoost model is one of the best models in this dataset because to its high true positive rate 
and low false positive rate.

The Neural Network model has a high true positive rate, as it successfully predicted 65225 samples of 
landslides. However, it wrongly identified 3,561 samples that were not landslides as landslides. It successfully 
predicted 60350 non-landslide samples, but mistakenly identified 8436 samples as landslides. The Neural 
Network model has a high true positive rate and a low false positive rate, making it one of the most effective 
models in this dataset.

The SGD model has a high true positive rate, as it successfully predicted 62849 samples of landslides. 
However, it wrongly identified 5937 samples that were not landslides as landslides. It accurately predicted 
36681 non-landslide samples, but wrongly forecasted 32105 landslide samples. Therefore, the SGD model has a 
high rate of false positives but a high rate of genuine positives.

kNN: The kNN model has a high true positive rate, as 64312 landslide samples were properly predicted. 
It mistakenly identified 4474 non-landslide samples as landslide samples. It accurately predicted 54309 non-
landslide samples, but wrongly predicted 14477 landslide samples. Consequently, the kNN model has a high rate 
of false positives but a high number of genuine positives.

SVM: The SVM model has a high proportion of false positives since it mistakenly identified 30061 non-
landslide data as landslide. It successfully predicted 38725 landslide samples, but wrongly identified 53995 
non-landslide samples as landslide. The SVM model has a low true positive rate and a high false positive rate, 
which makes it one of the poorest models in this dataset.

The AdaBoost, Neural Network, and Random Forest models have the highest true positive rates and the lowest 
false positive rates, making them the top models for this particular dataset. When picking the optimal model 
for deployment, it is vital to further examine characteristics such as computing efficiency, interpretability, and 
scalability.

Figure 2. ROC Analysis for the Landslide (1) using the 11 Models

Data and Metadata. 2024; 3:.419  8 



In figure 2, this is a Receiver Operating Characteristic (ROC) curve depicting a model’s ability to forecast the 
existence of landslides. Here is a concise explanation of the graph:

The ROC curve compares the True Positive Rate (TPR) to the False Positive Rate (FPR) for different 
categorization criteria.

TPR is the ratio of true positive predictions to the total number of actual positive samples. In contrast, FPR 
represents the ratio of false positive predictions to the total number of actual negative samples.

The diagonal line from bottom left to top right indicates the performance of a random model. Any model 
that outperforms random chance should be located above the diagonal line.

The closer the ROC curve is to the upper left corner of the figure, the more successful the model. The upper 
left corner indicates a flawless model that accurately detects all positive samples and makes no false positive 
predictions.

The area under the receiver operating characteristic (ROC) curve (AUC) measures the model’s overall 
performance, with a greater AUC indicating superior performance. AUC runs from 0 to 1, where 0,5 represents 
a random model, and 1 represents a perfect model.

According to the ROC curve in the provided link, the model has a high true positive rate but a high false 
positive rate for different categorization levels. The ROC curve is above the diagonal line, indicating that the 
model outperforms a random model. Still, it is not particularly close to the upper left corner of the figure, 
indicating that the model’s performance is not flawless. The area under the curve (AUC) is 0,78, which is a fair 
value, indicating that the model has some predictive accuracy in recognizing the existence of landslides but 
might be enhanced. Overall, the ROC curve indicates that the model has a high true positive rate but a high 
false positive rate; hence, it is not the most accurate model for forecasting the occurrence of landslides.

Figure 3. ROC Analysis for the no Landslide (0) using the 11 Models

In figure 3, this is a ROC curve representing a model’s ability to forecast the absence of landslides (no 
landslide). Here is a concise explanation of the graph:

The ROC curve compares the True Positive Rate (TPR) to the False Positive Rate (FPR) for different 
categorization criteria.

TPR is the ratio of true positive predictions to the total number of positive samples. In contrast, FPR 
represents the ratio of false positive predictions to the total number of negative samples.

The diagonal line from bottom left to top right indicates the performance of a random model. Any model 
that outperforms random chance should be located above the diagonal line.

The closer the ROC curve is to the upper left corner of the figure, the more successful the model. The upper 
left corner indicates a flawless model that accurately detects all positive samples and makes no false positive 
predictions.

The area under the receiver operating characteristic (ROC) curve (AUC) measures the model’s overall 
performance, with a greater AUC indicating superior performance. AUC runs from 0 to 1, where 0,5 represents 
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a random model, and 1 represents a perfect model.
According to the ROC curve in the provided link, the model has a high true positive rate and a low false 

positive rate across a range of classification criteria. The proximity of the ROC curve to the upper-left corner 
of the figure indicates that the model outperforms a random model. The AUC of the curve is 0,91, which is 
relatively high, showing that the model can forecast the absence of landslides (no landslide). The ROC curve 
indicates that the model has a high true positive rate and a low false positive rate, making it an effective model 
for forecasting the absence of landslides.
 
CONCLUSION

The study proposed a machine learning approach for landslide detection using remote sensing data and 
topographical features. The study evaluated the performance of several machine learning algorithms, including 
including Tree, Random Forest, Gradient Boosting, Logistic Regression, Naïve Bayes, AdaBoost, Neural Network, 
SGD, kNN, and SVM, on a dataset of remote sensing images and topographical features from the Sikkim region 
in Malaysia. The study found that the Random Forest algorithm outperformed the other algorithms with an 
accuracy of 96,7 % and a F1 score of 0,97. The findings suggest that machine learning algorithms can be 
effective in detecting landslides using remote sensing data and topographical features. The proposed approach 
can potentially improve early warning systems for landslides, which can reduce the impact of landslides on 
infrastructure and human life.

The study has important implications for the field of landslide detection and mitigation, as it demonstrates 
the potential of machine learning algorithms for this task. The study also highlights the importance of using 
remote sensing data and topographical features for landslide detection, as these features can provide valuable 
information about the terrain and the likelihood of landslides. However, the study has some limitations that 
should be considered in future research. For example, the study focused on a specific region in Malaysia, and 
the proposed approach may not be applicable to other regions with different topographical and environmental 
conditions. Additionally, the study did not consider other factors such as weather conditions, geology, and human 
activities, which can also affect the likelihood of landslides. Overall, the study provides valuable insights into 
the potential of machine learning algorithms for landslide detection and mitigation. Further research is needed 
to confirm these findings and to develop more accurate and reliable early warning systems for landslides.
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