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ABSTRACT

Network systems are susceptible to cyberattacks, which motivates attackers to exploit their vulnerabilities. 
Scanning network traffic to identify malicious activity is becoming a trend in the cybersecurity domain 
to mitigate the negative effects of intruders. Network intrusion detection systems (NIDS) are widely 
recognized as essential tools against cyberattacks. However, there is a need to go beyond designing 
traditional NIDS, which are preferred to be used with binary classification, towards designing multiclass 
network intrusion detection systems (MNIDS) to predict the cyberattack category. This, indeed, assists 
in understanding cyberattack behavior, which mitigates their effects quickly. Machine learning models, 
including conventional and deep learning, have been widely employed in the design of MNIDS. However, 
MNIDS based on machine learning can face challenges in predicting the category of cyberattack, especially 
with complex data that has a large number of categories. Thus, this paper proposes an enhanced MNIDS 
by exploiting the power of integrating continuous wavelet transform (CWT) with machine learning models 
to increase the accuracy of predicting cyberattacks in network traffic. This is due to the fact that CWT is 
considered as an effective method for feature extraction. The experimental results emphasize that using 
CWT with machine learning models improves the classification performance of MNIDS by up to 3,36 % in 
overall accuracy. Additionally, it enhances the F1-score value in up to 40 % of the total classes using the 
proposed model.

Keywords: Machine Learning; Deep Learning; Intrusion Detection System; Cyberattacks; Continuous 
Wavelet Transform.

RESUMEN

Los sistemas de red son susceptibles de sufrir ciberataques, lo que motiva a los atacantes a explotar sus 
vulnerabilidades. Escanear el tráfico de red para identificar actividades maliciosas se está convirtiendo en una 
tendencia en el ámbito de la ciberseguridad para mitigar los efectos negativos de los intrusos. Los sistemas 
de detección de intrusiones en la red (NIDS) están ampliamente reconocidos como herramientas esenciales 
contra los ciberataques. Sin embargo, es necesario ir más allá del diseño de los NIDS tradicionales, que se 
utilizan preferentemente con clasificación binaria, hacia el diseño de sistemas de detección de intrusiones 
en red multiclase (MNIDS) para predecir la categoría del ciberataque. Esto, de hecho, ayuda a comprender 
el comportamiento de los ciberataques, lo que mitiga sus efectos rápidamente. Los modelos de aprendizaje
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automático, incluido el aprendizaje convencional y profundo, se han empleado ampliamente en el diseño 
de MNIDS. Sin embargo, los MNIDS basados en el aprendizaje automático pueden enfrentar desafíos en la 
predicción de la categoría de ciberataque, especialmente con datos complejos que tienen un gran número de 
categorías. Por ello, este artículo propone un MNIDS mejorado que explota el poder de la integración de la 
transformada wavelet continua (CWT) con modelos de aprendizaje automático para aumentar la precisión de 
la predicción de ciberataques en el tráfico de red. Esto se debe a que la CWT se considera un método eficaz 
para la extracción de características. Los resultados experimentales ponen de relieve que el uso de CWT 
con modelos de aprendizaje automático mejora el rendimiento de clasificación de MNIDS hasta un 3,36 % en 
precisión global. Además, mejora el valor F1-score hasta en un 40 % del total de clases utilizando el modelo 
propuesto.

Palabras clave: Aprendizaje automático; Deep Learning; Sistema de detección de intrusos; Ciberataques; 
Transformada Wavelet Continua.

INTRODUCTION
The fast advancement of technologies has raised the number of devices that are connected to the internet. 

There are many emergent technologies commonly used which focus on connecting devices to the internet, 
such as the Internet of Things (IoT).(1) The number of connected devices is expected to reach approximately 80 
billion by 2030.(2) The fast increase in the number of connected devices every year results in a large amount 
of produced data that keeps growing rapidly. It also raises the complexity and the challenges in dealing with 
a huge amount of data,(3) different characteristic modes,(4) heterogeneous data,(5) and faster travel rates.(6) 
The IoT and other devices connected to the internet are vulnerable to different types of cyberattacks due to 
the complexity of the modern networks.(7) For example, compromised devices in a network controlled by an 
attacker who is responsible for bombarding a website that is cloud based by sending huge requests. This huge 
and excessive traffic results in overwhelming the cloud-based service, making access for authorized users 
difficult. This attack, called a Distributed Denial of Service (DDoS) attack, targets the network layer, and is 
considered as an extension of DoS attacks.(8)

Cybersecurity threats can vary from ransomware attacks that damage civil systems to spying on essential 
secret information to intelligent threats.(9) Traditional computer networks face challenges including the number 
of threats and the diversity of the threats.(10) As threats evolve, the techniques and mechanisms that detect 
them should counteract them. The National Institute of Standards and Technology (NIST) defines IDS as the act 
of scanning and analyzing network segments to capture attacks.(11) IDS can be hardware or software that can 
be used for monitoring procedures to protect the system from harmful activities.(12) It monitors network traffic 
to capture and alert administrators about possible unauthorized and malicious activity. This helps protect the 
violations of security protocols, such as data encryption, secure sockets layer (SSL) authentication, and firewall 
port settings.(13) 

IDS can be categorized into three groups based on their installation in a system: hybrid IDS, host-based IDS 
(HIDS), and network-based IDS (NIDS). HIDS analyzes the critical operating system files and detects threats from 
a single computer system.(14) This approach often easily identifies attacks on that system, however some filtered 
malware could be extremely difficult to detect. A network intrusion detection system (NIDS) can be installed 
on a router or switch in a network. It uses different computer connections to identify malicious data.(14) NIDS is 
usually placed on the trusted side of network architecture. It scans through incoming network traffic to identify 
malicious activity. On the other hand, hybrid IDS may be installed both on hosts and on the network.(13) The 
major aim of NIDS is to detect malicious logging data and notify the manager of the network. NIDS does not 
prevent the system from intrusion attacks but generates alarms after detecting an attack in real-time or before 
it arrives. It is crucial to notify the system after an attack, as an IDS has the ability to maintain and update the 
profile of an intrusion inside the log. The operating system needs to manage disk space and CPU resources for 
log analysis. Managing log formats and comparing them with identified attack patterns is a significant challenge 
in IDS.(15)

Anomaly-based intrusion detection system (AIDS) and signature-based intrusion detection system (SIDS) are 
two types of detection techniques used to identify malicious data. SIDS is a detection method designed based 
on a signature for detecting recognized patterns of an attack.(16) AIDS is a detection method that is also called 
behavior-based IDS. It works by creating a profile for normal behavior in a system. Then, it compares this profile 
with any unusual activities, which helps to identify threats.(16) The primary advantages of AIDS are that it can 
detect new and unidentified threats and that its normal activity profile is customized for certain applications 
and networks. HIDS is a detection method that combines AIDS and SIDS.(17) Existing IDSs concentrate on binary 
classification and using traditional machine learning (ML) algorithms, focusing on classifying actions as malicious 
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or normal without giving full attention to the details of the classification scheme, such as detecting the type of 
the attacks and distinguishing the risk level of an intrusion.(18) There are several issues of NIDS, including high 
false positive alarms and the constraint of adaptation when facing new threats.(13) The classification accuracy of 
ML models relies on different aspects such as the quality of training and testing data, feature selection, tuning 
the parameters of classifiers, and feature engineering.(19) The quality of data can be increased by performing 
data preprocessing steps. Feature selection is a technique that can be applied to selecting the most relevant and 
important features of a dataset to accomplish better results with reduced computation overhead. However, this 
technique can cause redundancy of features that provide similar information, especially with highly correlated 
features.(20) Feature engineering involves processing the original data to create new features to improve the 
performance of ML classifiers.(21) Feature engineering can overcome the issue of correlation complexity of 
features in data. 

It is insufficient to depend only on ML classifiers to achieve higher classification accuracy, especially with 
dataset containing multiple classes. Employing techniques such as feature engineering with ML classifiers can 
enhance the classification accuracy of classifiers.

There is a need to categorize cyberattacks in an effective way. The challenge arises when there are a diverse 
number of classes, the prediction process becomes more complex, which negatively affects the classification 
accuracy.(22) Traditional NIDS classification approaches might not be the most effective method, this means that 
enhancing multiclass NIDS is required to deal with many classes. Therefore, using an efficient technique like 
continuous wavelet transform (CWT) can help in improving the classification accuracy of multiclass NIDS. In 
this paper, we exploit the power of integrating CWT with machine learning models to enhance the accuracy of 
multiclass network intrusion detection systems (MNIDS) when predicting cyberattacks in network traffic. The 
contribution of this paper is summarized as follows:

•	 Applying the continuous wavelet transform with an IDS dataset to extract features by computing 
the magnitude and phase values of each feature in network traffic. Then the computed values are added 
as new features to the IDS dataset.

•	 Implementing MNIDS using various classifiers of ML to analyze the effectiveness of integrating CWT.
•	 Conducting a comparative and analytical study of the classification performance of each ML 

classifier to observe their effectiveness when utilizing CWT.

The rest of the paper is organized as follows. Section 2 presents related works in the field of intrusion 
detection systems. Section 3 details the research methods. Section 4 presents results, and section 5 discusses 
findings; Section 6 concludes with key findings, implications, and recommendations for future research. 

Related Works
There has been significant progress made in the domain of IDSs between 2020 and 2023. This review explores 

various methods that were published during this time frame. The related work section addresses deep learning 
and machine learning techniques, sensor fusion, control systems for autonomous cars, and classical and 
statistical methods in the field of IDSs. Additionally, some new approaches are also explored, including pipeline 
leak detection. The aim is to present a thorough grasp of the state of the art in IDS.

The authors in (23) proposed the Autoregressive Integrated Moving Average (ARIMA) and Z-score to reduce the 
training phase and vehicle reliance. However, a long window size is necessary for a satisfactory outcome, which 
would lengthen the detection time. The authors in (24) proposed a unique intrusion detection system known as 
the Clock Offset-based Intrusion Detection System (COIDS) to identify unusual behaviors. The authors employed 
the cumulative sum technique to track every unusual departure in the clock offset and active learning to shape 
the typical clock behavior of Electronic Control Units (ECUs). The authors in (25) created a technique for anomaly 
detection using unsupervised deep learning. The authors learned a behavior pattern from typical sensor signals 
using an artificial neural network and a deep autoencoder, then compared it with observations of the vehicle 
based on the nominal behavior they had developed for vehicle anomaly detection.

The authors in (26) proposed a sensor fusion technique based on the line of lane data captured by an onboard 
camera built into smart cars. This method complemented the sensor information using a visual-aided strategy. 

By combining data from an inertial measurement unit (IMU) in driverless cars with that from a worldwide 
navigation satellite system (GNSS), Xiong et al.(27) demonstrated an innovative approach to sensor processing. 
A GNSS and IMU fusion-based approach was proposed by Liu et al.(28) to overcome measurement signal delay 
and deal with inaccuracies brought on by GNSS’s low sampling rate. Researchers in (29) evaluated the K-Nearest 
Neighbor (KNN) method for network anomaly detection and tested the efficiency of the proposed intrusion 
detection system utilizing the KDD CUP 99 dataset. A detection model based on multiple traditional ML 
classification techniques was suggested by Alqahtani et al.(30) However, earlier approaches used in the field of 
intrusion detection had ineffective classification performance, resulting in a higher false positive rate (FP) and 
a lower rate of detection (DR) in the identification (ID) system. 
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In (31), the authors combined chi-square and random forest to provide a technique that is mixed feature 
selection (FS) for detecting intrusions. They evaluated the effectiveness of features and the correlation between 
data attributes and labels. The researchers utilized the ANOVA F-test when they considerd the univariate 
feature selection technique.(32) Also, they utilized a Kalman filter for prediction and an automated method 
of machine learning. They utilized Bayesian optimization as the optimization method for the architecture of 
neural networks search to choose the most accurate design among architectures that are in a list. The authors 
in (33) propsoed a Deep-AE-based model for detecting anomaly to create a model that is effective for intrusion 
detection that utilizes the Restricted Boltzmann Machine (RBM). 

Authors in (34) propsoed an enhanced workflow for feature selection in intrusion detection systems. They 
utilized power transformation, multi objective optimization and normalization in their model. They have 
achieved F1 score is 93,17 % on dataset called ISCX-IDS2012 dataset and on dataset called CIC-IDS2017 they 
achieved F1 score is 99,69 %. This indicates that a significant improvment in feature selection techniques in 
Intrusion detection systems. The researchers in (35) proposed an artificial intelligence-based intrusion detection 
system (AI-IDS) for real-time HTTP traffic. Their research shows that the algorithm can differentiate between 
complex attacks and patterns that aresafe traffic. In addition, it improves the signature-based network intrusion 
detection s and refines Snort rules refined. The study in (36) conducted experiments and stated that in network 
anomaly detection deep learning methods can be utilized. They applied a technique to the anomaly using flow 
identification established based on a deep neural network. An ensemble-based method for detecting network 
anomalies in IDS was presented by Imran et al.(37) This approach breaks anomalies into several classes by 
combining prediction and learning processes. 

The authors in (38) examined the effectiveness of four popular classifiers for binary classification on the UNSW-
NB15 dataset: Support Vector Machine (SVM), Random Forest, Naive Bayes, and Decision Tree. After converting 
classified information to attribute values using one-hot encoding, the researchers ran machine learning upon 
the whole feature set. The trials’ outcomes showed that the researchers’ accuracy on SVM, Naive Bayes, 
Random Forest, and Decision Tree were 79,59 %, 66 %, 76 %, and 78 %, respectively. Hybrid techniques have 
surfaced to overcome the constraints in the design of IDS feature selection. By combining the wrapping and 
filtering procedures, these strategies maximize the utility and efficacy of both methods while also enhancing 
computation to improve predictions. Utilizing the dataset UNSW-NB15, the authors performed a comparison 
analysis of ML models in (39). Ghurab et al. performed a thorough examination of NIDS benchmark datasets.(40) 
In (41), a thorough evaluation of supervised classifiers for NIDS design, the J48 Consolidated classifier was shown 
to be the best option. High-quality datasets are essential to train ML-based NIDS, according to Sarhan et al.(42) 

An innovative IDS using deep learning techniques, specifically the combination of LSTM and CNN, was 
proposed by Kanna and Santhi. As a result of their model’s superior accuracy, low false positive rate, and 
competitive classification coefficients, IDS performance has significantly improved.(43) Payload embeddings, 
a technique that combines byte embedded data and a shallow neural network, were proposed in (44). This 
method outperformed conventional intrusion detection algorithms, consistently achieving rates of accuracy 
ranging from 75 % to 99 % across many datasets. It demonstrates how embeddings may be used to effectively 
identify network intrusions. Acknowledging the increasing demand for standardized methods in contemporary 
datasets for network intrusion detection, a trustworthy method for detecting pipeline leaks through AE signals 
was presented by Ahmad et al.(45) CWT is utilized to create AE pictures that show time-frequency scales, the 
technique effectively captures leak-related data using high-energy representations. Extracting global and local 
characteristics so these scalograms are processed by an ANN and a CAE. Improvement of the precision and 
dependability of leak detection, these characteristics are integrated into a single feature vector. A testbed 
dataset that is based on industrialized pipeline utilized to show the high accuracy of a shallow artificial neural 
network (ANN) when classifying the pipeline leak status, fluid pressures and irrespective of breach sizes. 

Xia et al.(46) presented an automobile sensors data processing technique that estimates the yaw misalignment 
of the IMU in the car. The method was based solely on integrating the IMU with the onboard sensor without the 
aid of any outside data. A sensor fusion framework based on car chassis sensors and GNSS was presented by 
Gao et al.(47) In order to prevent or lessen collisions, Alsuwian et al.(48) suggested a unique enhanced emergency 
braking system (EBS) that uses sensor fusion and is capable of independently recognizing insecure driving 
conditions and then activating the vehicle’s braking system. A fuzzy neural network-based active fault-tolerant 
control (AFTC) method for autonomous cars was also introduced by Alsuwian et al.(49) By successfully detecting 
any anomaly in wheel acceleration, the AFTC can stop possible instability issues in CAVs before they even 
develop. The trials were carried out with the reference dataset KDD CUP’99 by Qazi et al.(50) In another 
paper, the authors, Qazi et al.(51) suggested a deep learning system for detecting network intrusions based on a 
convolutional neural network with one dimension (1D-CNN). For the experiments, the researchers utilized the 
benchmark CICIDS2017 dataset. An AdaBoost-based network intrusion detection as well as classification system 
was proposed by Ahmad et al.(52) The UNSW-NB 15 dataset was utilized by the authors to discover network 
anomalies. The results of the experiment demonstrated that the suggested technique could detect various 
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types of network intrusions on networks of computers. A branch of machine learning called “deep learning” 
uses hidden layers to identify the characteristics of a deep network. These methods are more effective than 
conventional machine learning (53) because of their all-inclusive structure and ability to independently extract 
and understand the pertinent features of the dataset. DL has been more popular recently and is being used for 
intrusion detection; studies show that DL works better than conventional techniques. ML approaches are being 
used progressively to enhance anomaly-based NIDS accuracy and decrease false positives.(54,55) 

In 2022, Farrukh et al.(56) presented Payload Byte. This adaptable instrument expedites the curation of 
datasets and creates a uniform groundwork for further investigations. It provides the capacity to identify and 
label different protocols, which makes it possible to convert data with labels into byte-wise vectors of features 
that are used for training machine learning models. All this research points to how important payload analysis 
is for detecting network intrusions. These studies greatly contribute to the ongoing development of NIDS by 
employing a variety of approaches, from cuttin- edge technologies to NLP techniques, and they offer insightful 
information for dealing with cybersecurity risks. Ho et al. provided a novel approach to intrusion detection that 
combines a vision transformer (ViT) classifier with a flow to image conversion algorithm. This process converts 
traffic from the network flows into a series of vectors, which are then encoded into a space of latent information 
and decoded into pictures. With binary classification, the score of the F1- score is 96,3 % on UNSW NB15 and 
98,5 % on the CIC IDS2017 dataset; their trials notably provide significant results. Their approach achieves an 
F1 score of 96,4 % in multiclass classification.(57) A thorough analysis of NIDS methodologies was provided by 
Albasheer et al., who emphasized the need for sophisticated ML algorithms and alert correlation.(58) To identify 
pipeline leaks utilizing AE signals, the technique presented herein shows a hybrid methodology that integrates 
the characteristics retrieved from STFT and CWT. A study of the AE signals that capture both spectral and 
temporal information is made possible by the integration of STFT and CWT, in contrast to other approaches that 
only use one transform technique. The time domain AE signals are converted into time frequency representations 
via STFT. Consequently, at various time intervals, the spectral content and energy distribution are detected.
(59) In the realm of autonomous vehicles, Xia et al.(60) developed a unique sensor fusion strategy by combining 
GNSS-IMU fusion-based techniques with the vehicle dynamic model. In resource-constrained contexts, Rizvi 
presented a deep learning solution for intrusion detection that achieved high accuracy.(61) Table 1 presents a 
summary of related works in intrusion detection systems. 

Table 1. Summary of related works
Reference Description Methodology
Tomlinson et al.(23) Automotive CAN cyberattacks detection to identify 

anomalies of packet timing in time windows.
ARIMA and Z-score.

Halder et al.(24) Proposed an IDS called COIDS based on clock offset. Utilized active learning and cumulative 
sum to monitor anomalous clock offset.

He et al.(25) Designed anomaly detection method based on an 
unsupervised deep learning.

Used ANN and deep autoencoder to learn 
normal behavior patterns from sensor 
messages.

Liu et al.(26) Proposed a method in sensor fusion using visual-aided 
strategy with lane line data.

Complemented sensor information using 
lane line data from onboard camera.

Xiong et al.(27) Proposed a novel method for sensor processing through 
fusing GNSS and IMU in automated vehicles.

Fused GNSS and IMU information for 
automated vehicles.

Liu et al.(28) Presented a GNSS and IMU fusion-based method to 
overcome signal delay and address low sampling rate 
errors.

Fused GNSS and IMU information to address 
signal measurement issues.

Xu, H. et al.(29) K-Nearest Neighbor for network anomalies using KDDCUP 
dataset.

K-Nearest Neighbor (KNN).

Alqahtani, H. et 
al.(20)

Cyber intrusion detection using ML classification 
techniques.

Multiple ML classification algorithms.

Song, J. et al.(31) Hybrid feature selection for lightweight IDS. Chi-square with RF.
Biney, G. et al.(32) Adaptive scheme for ANOVA models. ANOVA F-test.
Khan, M.A. et al.(33) Efficient Conv-AE-Based IDS using heterogeneous dataset. Convolutional Auto-Encoder (Conv-AE).
Siddiqi and Pak.(34) Optimized feature selection process for IDS with 

normalization and multi-objective optimization.
Feature selection optimization.

Kim et al.(35) AI-based IDS for real-time HTTP traffic distinguishing 
complex attacks from benign traffic patterns.

Deep learning for real-time HTTP traffic 
analysis.

Girdler, T. et al.(36) Developed an ID and prevention system utilizing SDN. Software-Defined Networking (SDN).
Imran, R. et al.(37) Presents a group of learning and prediction methods to 

improve the accuracy of anomaly detection.
ANOVA F-test, automated ML, Kalman 
filter.
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Hossain, Z. et al.(38) NIDS using ML approaches. SVM, RF, Naive Bayes, Decision Tree.
Disha and Waheed.
(39)

Compared ML models by utilizing the dataset UNSW-NB15. Machine learning model comparison.

Ghurab et al.(40) Benchmark datasets for NIDS are analyzed in detail. Dataset analysis.
Panigrahi et al.(41) J48 consolidated classifier was found to be the ideal 

selection when supervised classifiers were evaluated for 
NIDS.

Supervised classifier assessment.

Sarhan et al.(42) Shown how crucial high-quality datasets are to the 
training of ML-based NIDS.

Dataset quality analysis.

Kanna and Santhi.
(43)

Proposed an inventive IDS harnessing CNNs and LSTMs for 
high accuracy and low false positive rate.

CNNs and LSTMs integration.

Hassan et al.(44) Proposed payload embeddings for intrusion detection 
with byte embeddings and a shallow neural network.

Payload embeddings, shallow neural 
network.

Ahmad et al.(45) Pipeline leak detection using AE signals and deep learning 
with acoustic imaging and CWT.

Application of CWT to generate AE images 
processed through CAE and ANN for 
feature extraction.

Xia et al.(46) Proposed a vehicle sensor data processing method 
integrating onboard sensor with IMU.

Estimated yaw misalignment of IMU 
without external information.

Gao et al.(47) Proposed a sensor fusion framework is proposed that is 
based on GNSS and vehicle chassis sensors.

Enhanced vehicle localization with the use 
of lateral velocity and onboard sensors.

Alsuwian et al.(48) Proposed an advanced emergency braking system (EBS) 
using sensor fusion.

Autonomous detection of insecure driving 
states and triggering braking system.

Alsuwian et al.(49) Proposed a fuzzy neural network-based active fault-
tolerant control (AFTC) method.

Detected wheel speed abnormalities to 
prevent instability problems.

Qazi et al.(50) Intelligent and efficient network IDS using deep learning. Non-symmetric deep auto-encoder.
Qazi et al.(51) In NIDS, a deep learning system based on 1D-CNN is 

proposed.
1D-Convolutional Neural Network.

Ahmad, I. et al.(52) Efficient NIDS and classification system based on AdaBoost 
is presented.

AdaBoost approach.

Ahmed et al.(54) Analyzed ML/DL solutions for network threat detection in 
SDN-based platforms.

State-of-the-art ML/DL solutions analysis.

Farrukh et al.(56) Introduced Payload-Byte tool for standardized dataset 
curation and feature extraction.

Payload-Byte tool for dataset curation and 
feature extraction.

Ho et al.(57) Innovative IDS using flow to image conversion and vision 
transformer classifier.

Flow-to-image conversion, vision 
transformer classifier.

Albasheer et al.(28) A survey of NIDS approaches, highlighting alert correlation 
and advanced ML.

Survey of NIDS approaches.

Jiang et al.(59) Hybrid approach for pipeline leak detection using AE 
signals with STFT and CWT.

Combining CWT with STFT for a more 
analysis of AE signals.

Xia et al.(60) Sensor fusion method introduced to integrate GNSS-IMU 
with vehicle dynamic model.

Synthesized kinematics and dynamics 
of autonomous vehicle for sideslip angle 
estimation.

Rizvi et al.(61) Deep learning method used for intrusion detection in 
resource-constrained environments with high accuracy.

Deep learning for resource-constrained 
environments.

Most of the related works are aligned with the contribution of this paper, since most of the researchers have 
made efforts to enhance the accuracy of intrusion detection by using various methods. However, improving the 
accuracy of intrusion detection systems is still an important aspect in the field, especially with the increase 
in the number of cyberattack categories. This is considered challenging for conventional IDS to have high 
classification accuracy with great number of cyberattack types. Therefore, this paper addresses this issue by 
integrating the CWT with ML model to have high classification accuracy for multiclass cyberattacks.

METHOD
This section explores and discusses the research methodology of this study. First, it demonstrates the 

operational environment of the proposed MNIDS. Second, it explores the dataset utilized to assess and evaluate 
the performance of the proposed MNIDS. Third, it explains the theory of the CWT. Fourth, it discusses classifiers 
based on machine learning and deep learning that are used to implement MNIDS.

The Architecture of the Proposed Model
Figure 1 demonstrates the operation environment of the proposed model. The network traffic coming 

from the internet is usually untrusted traffic and potentially has malicious activity that could pass firewalls. 
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Therefore, it is important to not be limited to only detecting cyberattacks but also to learn the attack types. 
The proposed model detects network traffic to identify and categorize cyberattacks based on their types. It 
uses CWT and MNIDS techniques. The CWT is integrated to enhance the classification accuracy of the MNIDS. 
It is applied to the incoming network traffic and then its results are added to the features of the network 
traffic. The main goal of using CWT is to improve the detection accuracy of MNIDS. Finally, the MNIDS classifies 
cyberattacks into categories.

Figure 1. The Proposed Model and the Operational Environment

Dataset
This research leverages the CSE-CIC-IDS2018 (62) dataset because it contains fourteen cyberattack types. 

It is considered as an IDS dataset of network traffic that was built on Amazon Web Services (AWS). In addition, 
it can be utilized to evaluate the detection mechanism and the ability of a classifier to predict the category of 
cyberattacks. CSE-CIC-IDS2018 is a popular dataset, and it is frequently utilized by researchers, this explains 
its use in this study. The dataset comprises eighty columns in total, seventy-nine columns are used as features 
of network traffic and the last column is used as the label of the cyberattack type. It consists of ten comma-
separated values (CSV) files and each file holds numbers of rows as listed in Table 2.(62)

Reviewing the table, each file contains a few types of cyberattacks, nevertheless, to serve the purpose of 
this research we combined all types of cyberattacks which are provided in the dataset in a single CSV file. This 
objective is achieved by selecting a maximum of 2 000 rows of each cyberattack category from each CSV file as 
shown in table 3. It can be observed that some cyberattacks contain a number of rows less than 2 000 because 
the original dataset includes a number of rows less than 2 000 rows. As a result, there are 15 unique classes 
in the aggregated dataset. Class 0 refers to “Benign” which means normal network traffic. Classes 1-14 refer 
to the attack category. The total number of rows in the aggregated dataset is 413 648 and it includes fifteen 
categories of classes.

Table 2. Distribution of CSE-CIC-IDS2018 Dataset
CSV File Name Label Name Number of Row
02-14-2018 Benign 667 626

FTP-BruteForce 193 360
SSH-BruteForce 187 589

02-15-2018 Benign 996 077
DoS attacks-GoldenEye 41 508
DoS attacks-Slowloris 10 990

02-16-2018 Benign 446 772
DoS attacks-Hulk 461 912
DoS attacks-SlowHTTPTest 139 890
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02-20-2018 Benign 7 372 557
DDoS attacks-LOIC-HTTP 576 191

02-21-2018 Benign 360 833
DDoS attack-HOIC 686 012
DDoS attack-LOIC-UDP 1 730

02-22-2018 Benign 1048 213
Brute Force -Web 249
Brute Force -XSS 79
SQL Injection 34

02-23-2018 Benign 1048 009
Brute Force -Web 362
Brute Force -XSS 151
SQL Injection 53

02-28-2018 Benign 544 200
Infiltration 68 871

03-01-2018 Benign 238 037
Infiltration 93 063

03-02-2018 Benign 762 384
Botnet 286 191

Total Rows 16 232 943

Table 3. Aggregated Cyberattack Dataset
Class # Cyberattacks Number of Rows
0 Benign 200 000
1 Botnet 20 000
2 Brute Force -Web 611
3 Brute Force -XSS 230
4 DDoS attack-HOIC 20 000
5 DDoS attack-LOIC-UDP 1 730
6 DDoS attacks-LOIC-HTTP 20 000
7 DoS attacks-GoldenEye 20 000
8 DoS attacks-Hulk 20 000
9 DoS attacks-SlowHTTPTest 20 000
10 DoS attacks-Slowloris 10 990
11 FTP-BruteForce 20 000
12 Infiltration 40 000
13 SQL Injection 87
14 SSH-BruteForce 20 000
Total Rows 413 648

Continuous Wavelet Transform (CWT)
CWT is a mathematical technique that is used by researchers in different domains such as signal processing 

and image processing.(64,65) In signal processing, CWT is an effective tool to reduce noise level and extract 
features for further analysis. In image processing, it is applicable for image compression and texture analysis. 
CWT breaks signals into small waves to analyze and provide information from frequency domain and time 
domain. As opposed to Fourier transform which focuses only on frequency domain of a signal. 

CWT can be expressed mathematically using equation 1.(65) Where W is the desired output in the CWT.  is 
the width of wavelet and  refers to the translation factor. x(t) refers to the original signal. 1/√a represents the 
energy of the wavelet and  is the analytical function.

Algorithm 1 demonstrates how CWT is applied in this study. Algorithm 1 is constructed using three parameters 
Input, Output, and Procedure. The Input contains the dataset before implementing CWT. The dataset includes 
seventy-nine features and column number eighty is used for labelling. The baseline dataset is named before.
csv and the total number of rows in its file is 413 648. The Output holds the generated after.csv file after 
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implementing CWT. It includes eighty-one features, the previous seventy-nine features plus two features 
generated by the algorithm, and the last column used for labeling. The total number of rows in the after.csv 
file is 413 648. 

The Procedure performs the processing of Algorithm 1. Initially, the variables beforeData and signal are 
initialized. beforeData is used to store the data of the before.csv file, which is converted from CSV format 
to matrix. To exclude the column that is used for labeling, all features except the last column are stored in 
the variable signal. After that, the wavelet parameters are defined. The scales variable is used to set wavelet 
scale, and the wavelet function used to specify the use of Complex Morlet wavelet function, which is set to 
‘cmor3.5-1’. Then the CWT is performed on the signal and the results are stored in the coefficients variable as 
complex numbers. Each complex number has magnitude and phase. The magnitude of wavelet measures the 
strength of the wavelet coefficients is stored in magnitudeMatrix. Then the mean of magnitude is calculated to 
extract meaningful summary of the processed data. The phase analyzes the shift and the change in the signal’s 
behavior over time. It is stored in phaseMatrix. A summary of the phase is stored in meanPhase. Finally, the 
meanMagnitude and meanPhase are appended to the afterDataset, and then it is saved in the after.csv file.

1: Input:

 2: before.csv 

 3: Output:

 4: after.csv

 5: Procedure: 

 6: beforeData ← ReadMatrix(‘before.csv’)

 7: signal ← beforeData [all rows, columns 1 to end-1]

 8: Set scales

 9: waveletFunction ← ‘cmor3.5-1’

10: coefficients ← CWT(signal, scales, waveletFunction)

11: magnitudeMatrix ← abs(coefficients)

12: meanMagnitude ← mean(abs(magnitudeMatrix), axis = scales)

13: phaseMatrix ← angle(coefficients)

14: meanPhase ← mean(abs(phaseMatrix), axis = scales)

15: afterDataset ← signal

16: AppendColumn(afterDataset, meanMagnitude’)

17: AppendColumn (afterDataset, meanPhase’)

18: WriteTable(NewDataset, ‘after.csv’)

Figure 3. Algorithm 1 Apply CWT

Classifiers
To explore the effectiveness of using CWT in improving the classification performance of MNIDS, we 

implemented various classifiers named, Random Forest (RF), Decision Tree (DT), Feedforward Neural Network 
(FFNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU). 

RF is an ensemble classifier comprised of sets of decision trees and each set votes to the final decision. Each 
tree is built with random groups of features and trained data to reduce overfitting.(66) RF classifier was trained 
with standard parameters. There are 100 trees, and Gini is used for evaluating the quality of a split.

The DT classifier is simpler and faster than the RF classifier. In addition, it is suitable to deal with high-
dimensional data efficiently; for that reason, DT is employed in data engineering to analyze various types of 
data.(67) DT classifier was trained with standard parameters. 

The FFNN classifier is designed based on neural network. It usually consists of an input layer, hidden layer, 
and output layer. The input layer receives the input data as vector. The hidden layer processes the input data, 
and the output layer provides the decision made by the neural network.(68)  The FFNN classifier was trained 
with 100 neurons in the hidden layer, with the use of ReLU activation function, and Adam is used as a weight 
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optimization.
The LSTM classifier is considered as an advanced recurrent neural network. LSTM can remember information 

for longer duration which is useful with sequential data. It comprises three gates, which are forget gate, input 
gate, and output gate. Forget gate decides whether the incoming information is important or not, therefore 
important information is held and unimportant information is forgotten. The important information is written 
in the LSTM’s memory through the input gate after deciding what new information can be added to the cell. 
The output gate controls which cell to be used when predicting.(69) The LSTM classifier was trained with 50 
units, Adam was used as a weight optimization, the epoch was equal to 50, and the batch size was equal to 32.

The GRU classifier simplifies the LSTM model by combining the forget gate and the input gate in one gate 
named update gate. In addition, GRU has a second gate called rest gate used to manage data inside the unit 
unlike the LSTM which requires a separate memory cell.(70) The GRU classifier was trained with Adam as a weight 
optimization, the epoch was equal to 50 and the batch size was equal to 32.

System Flows 
Figure 3 illustrates the flowchart of the proposed model. Initially, the before.csv file was imported into 

MATLAB project. It contains a collection of network traffic data with malicious activity as discussed previously. 
Then the CWT is computed which generates the magnitude and the phase values. Both values are added as 
new features to the dataset. The CWT is calculated using MATLAB’s built-in function called cwt.(71) The new 
dataset is saved as after.csv that contains network traffic data, magnitude, and phase values. Then the data 
in after.csv file is split into two sets as 80:20 ratio, 80 % is used for training and 20 % is used for testing. The 
train set is used to train RF, DT, FFNN, LSTM, and GRU classifiers. The test set is used to evaluate each classifier 
by calculating F1-score and test accuracy as shown in equations 2-3.(72) In addition, the percentage increase 
in test accuracy is calculated using equation 4. F1-score measures a classifier performance after combining 
precision and recall as shown in equation 2. Therefore, it provides a single accuracy performance metric that is 
useful for imbalanced classes. Test accuracy measures the overall accuracy of a classifier as shown in equation 
3. Basically, it evaluates all correct predictions made by a classifier out of all the number of predictions. The 
percentage increase is computed as shown in equation 4. It indicates the percentage enhancement of the test 
accuracy of a classifier.

 

The reason for evaluating each classifier with the above equations is to assess its classification performance. 
In addition, it is to compare the results of baseline classifiers (when the proposed model is not used) with 
classifiers that used the proposed model.

RESULT
This section presents and discusses the findings of the experimental results. As mentioned in the previous 

section the CSE-CIC-IDS2018 dataset was used to evaluate the classification accuracy of the proposed model. 
Table 4 presents the accuracy performance, measured by F1-score for the baseline classifiers using RF, DT, 

FFNN, LSTM, and GRU classifiers. In this case baseline means without utilizing the proposed model. Meanwhile, 
Table 5 shows the F1-score results for the same ML models but with using the proposed model. Basically, each 
classifier is evaluated twice, without utilizing the proposed model and with utilizing the proposed model. 
Each table contains fifteen classes in total, fourteen of them (class 1-14) represent network traffic related to 
cyberattacks while class number 0 represents normal traffic. 

For the RF classifier, F1-score was improved by the proposed model, classes 0,2,9,11, and 12 indicated a 
rise in the F1-score value. In addition, the results of the F1-score for the DT classifier show that DT gained an 
increase in the attack classes 3,5,9,11,12, and 13. Class 9 had a significant increase in F1-score. Regarding the 
F1-score values of the FFNN classifier, the results were enhanced in classes 2,3,9, and 11 using the proposed 
model. Class 2 increases by 3,03 %, class 3 improves by 29,31 %, class 9 enhances by 19,74 %, and class 11 
increases by 56,90 %.
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Figure 3. Flowchart of Proposed Model

The F1-score value for the LSTM classifier was improved in classes 0,9,11 and 12. The performance of F1-
score of classes 0, and 9 was enhanced by 1,02 %. Meanwhile class 11 improved by 2,06 % and class 12 increased 
by 2,20 %. Finally, classes 2, 9,11,12, and 13 experienced an increase in the F1-score value of the GRU classifier. 
Thus, class 2 increased by 1,01 %, classes 9 and 11 enhanced by 1,02 %, class 12 increased by 1,11 %, and class 
13 improved by 6,38 %. 

Table 4. F1-Score Results of Baseline Models
Class # RF DT FFNN LSTM GRU 
0 90 % 89 % 92 % 98 % 98 %
1 100 % 100 % 100 % 100 % 100 %
2 83 % 89 % 66 % 99 % 99 %
3 92 % 95 % 58 % 99 % 100 %
4 100 % 100 % 100 % 100 % 100 %
5 100 % 99 % 100 % 100 % 100 %
6 100 % 100 % 100 % 100 % 100 %
7 100 % 100 % 100 % 100 % 100 %
8 100 % 100 % 100 % 100 % 100 %
9 63 % 63 % 76 % 98 % 98 %
10 100 % 100 % 100 % 100 % 100 %
11 74 % 74 % 58 % 97 % 98 %
12 41 % 42 % 38 % 91 % 90 %
13 83 % 69 % 73 % 94 % 94 %
14 100 % 100 % 100 % 100 % 100 %
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Table 5. F1-Score Results of Proposed Models
Class # RF DT FFNN LSTM GRU 
0 91 % 89 % 92 % 99 % 98 %
1 100 % 100 % 100 % 100 % 100 %
2 87 % 89 % 68 % 99 % 100 %
3 92 % 96 % 75 % 99 % 100 %
4 100 % 100 % 100 % 100 % 100 %
5 100 % 100 % 99 % 100 % 100 %
6 100 % 100 % 100 % 100 % 100 %
7 100 % 100 % 100 % 100 % 100 %
8 100 % 100 % 100 % 100 % 100 %
9 92 % 90 % 91 % 99 % 99 %
10 100 % 100 % 100 % 100 % 100 %
11 92 % 90 % 91 % 99 % 99 %
12 46 % 46 % 34 % 93 % 91 %
13 73 % 70 % 44 % 94 % 100 %
14 100 % 100 % 100 % 100 % 100 %

DISCUSSION
This section discusses the performance of the proposed model against the baseline model of each ML classifier 

independently to further analysis the effectiveness of using CWT with ML classifiers. Figure 4 compares the F1-
score performance of the baseline model and the proposed model of RF classifier. The x-axis represents the classes 
of the dataset, and the y-axis represents the performance of the F1-score for both models. The orange bars refer 
to F1-score without using the proposed model and the green bars refer to the F1-score when using the proposed 
model. The improvement of the F1-score of RF classifiers is clearly noticed in classes 9 and 11. Meanwhile, there 
is a slight increase in the performance of RF classifiers in classes 0, 2, and 12. Therefore as five classes improved 
using the proposed model with RF classifier, it can be observed that 33,33 % of the total classes were enhanced.
 

Figure 4. RF Classifier F1-score: baseline vs. proposed model

Figure 5. DT Classifier F1-score: baseline vs. proposed model
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The performance of F1-score of DT classifier using and not using the proposed model is depicted in figure 5. 
Classes 9 and 11 indicate a significant rise in performance using the proposed model. At the same time classes 
3,5,12 and 13 present a small increase in the F1-score performance. It can be noticed that six classes were 
enhanced using the proposed model with DT classifier, therefore 40 % of the classes improved, as the figure 
shows. 

Figure 6 illustrates a comparison study of the FFNN classifier performance when the proposed model is not 
in used and when it is used. The performance is measured using F1-score. Classes 3,9, and 11 demonstrate an 
observable increase, while class 2 shows a minor increase. Therefore, 26,66 % of the total classes improved as 
indicated in the figure. 

Figure 6. FFNN Classifier F1-score: baseline vs. proposed model

Figure 7 compares the F1-score performance of LSTM classifier using the proposed model and without using 
the proposed model. The improvement of F1-score of RF classifier is clearly noticed in classes 0, 9, 11, and 12. 
Therefore, four classes improved using the proposed model using LSTM classifier, as a result 26,66 % of the total 
classes being enhanced.

Figure 7. LSTM Classifier F1-score: baseline vs. proposed model

The performance of F1-score of GRU classifier using and not using the proposed model is depicted in figure 
8. Class 13 shows a fast improvement of F1-score using the proposed model. Meanwhile classes 2, 9,11 and 12 
indicate a rise in performance using the proposed model. It can be observed that five classes were enhanced 
using the proposed model with GRU classifier, therefore 33,33 % of the classes improved, as the figure shows. 

Table 6 summarizes the overall testing accuracy of each classifier utilized in this study. The improvement 
in percentage when employing the proposed model ranges between 0,40 % to 3,32 %. RF classifier using the 
proposed model shows the best enhancement compared with its baseline result which increased from 87,35 
% to 90,25 % that enhanced by 3,32 %. However, LSTM classifier demonstrates the smallest improvement in 
accuracy with using the proposed model compared with its baseline result which increased from 98,11 % to 
98,50 % by 0,40 %. The reason for the slight increase in LSTM and GRU classifiers compared with RF, DT, and 
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FFNN is because LSTM and GRU both have high test accuracy baselines. To sum up, LSTM classifier presents the 
highest classification accuracy among other classifiers, however RF classifier indicates the highest percentage 
of improvement compared to its baseline outcome. 

Figure 8. GRU Classifier F1-score: baseline vs. proposed model

Table 6. Percentage of Classifier Improvement
Classifier name Test Accuracy 

Baseline
Test Accuracy with 

Proposed Model
Percentage 
of Increase

RF 87,35 % 90,25 % 3,32 %
DT 86,04 % 88,62 % 3,00 %
FFNN 88,44 % 90,75 % 2,61 %
LSTM 98,11 % 98,50 % 0,40 %
GRU 97,73 % 98,24 % 0,52 %

CONCLUSIONS
In conclusion, network traffic is susceptible to cyberattacks which require not only predicting the presence 

of cyberattacks, but also to classify their types. Implementing an accurate multiclass IDS using a machine 
learning approach can be crucial, especially with a diverse range of cyberattack types. Due to the fact that 
wide array of cyberattack types impact the classification accuracy. Merely training classifiers is not enough for 
obtaining higher accuracy. To overcome the above-mentioned challenge, this paper proposed the MNIDS that 
was implemented using machine learning with the integration of CWT to increase classification accuracy. CWT 
was applied with various types of machine learning classifiers such as RF, DT, FFNN, LSTM, and GRU to explore 
and analyze the effectiveness of CWT. The experimental findings indicate that employing CWT with a classifier 
boosts prediction accuracy of the multiclass classifier in classifying cyberattacks. Moreover, CWT enhances the 
overall accuracy of classifiers as the percentage of overall accuracy improved between 0,40 % to 3,32 %. The 
improvement of F1-score value ranges between 26,66 % and 40 % of the total classes using the proposed model. 
Therefore, for future work we recommend studying the computation process of CWT to envision the possibility 
of applying it with multiclass IDS in the IoT domain which will be a challenge because of the capability limitation 
of IoT devices.
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