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ABSTRACT

Structural Health Monitoring (SHM) plays a vital role in damage detection, offering significant maintenance 
and failure prevention benefits. Establishing effective SHM systems for damage identification (DI) traditionally 
requires extensive experimental datasets collected under varied operating and environmental conditions, 
which can be resource-intensive. This study introduces a novel approach to SHM by leveraging a Hybrid 
Weighted Sequential Learning Technique (HWSLT) classifier, which uses Finite Element (FE) computed 
responses to simulate structural behaviors under both healthy and damaged states. Initially, an optimal FE 
model representing a healthy, benchmark linear beam structure is developed and updated using experimental 
validation data. The HWSLT classifier is trained on SHM vibration data generated from this model under 
simulated load cases with uncertainty. This allows for minimal real-world experimental intervention while 
ensuring robust damage detection. Results demonstrate that the HWSLT classifier, trained with optimal FE 
model data, achieves high accuracy in predicting damage states in the benchmark structure, even when mixed 
with random disturbances. Conversely, data from non-ideal FE models produced unreliable classifications, 
underscoring the importance of model accuracy. These findings suggest that the integration of ideal FE 
models and deep learning offers a promising pathway for future SHM applications, with potential for reduced 
experimental costs and enhanced damage localization capabilities.

Keywords: Structural Health Monitoring; Damage Detection; Deep Learning; Finite Element Analysis; 
Vibration.

RESUMEN

La monitorización de la salud estructural (SHM) desempeña un papel fundamental en la detección de daños y 
ofrece importantes ventajas para el mantenimiento y la prevención de fallos. El establecimiento de sistemas 
SHM eficaces para la identificación de daños (DI) requiere tradicionalmente amplios conjuntos de datos 
experimentales recogidos en condiciones de funcionamiento y ambientales variadas, lo que puede requerir 
muchos recursos. Este estudio introduce un enfoque novedoso para la SHM aprovechando un clasificador 
de técnica de aprendizaje secuencial ponderado híbrido (HWSLT), que utiliza respuestas calculadas de 
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elementos finitos (FE) para simular comportamientos estructurales tanto en estados sanos como dañados. 
Inicialmente, se desarrolla un modelo de EF óptimo que representa una estructura de viga lineal sana de 
referencia y se actualiza utilizando datos experimentales de validación. El clasificador HWSLT se entrena con 
datos de vibración SHM generados a partir de este modelo bajo casos de carga simulados con incertidumbre. 
Esto permite una intervención experimental mínima en el mundo real a la vez que garantiza una detección 
robusta de los daños. Los resultados demuestran que el clasificador HWSLT, entrenado con datos óptimos del 
modelo FE, alcanza una alta precisión en la predicción de estados de daño en la estructura de referencia, 
incluso cuando se mezcla con perturbaciones aleatorias. Por el contrario, los datos de modelos de EF no 
ideales produjeron clasificaciones poco fiables, lo que subraya la importancia de la precisión del modelo. 
Estos resultados sugieren que la integración de modelos FE ideales y el aprendizaje profundo ofrece una vía 
prometedora para futuras aplicaciones SHM, con potencial para reducir los costes experimentales y mejorar 
las capacidades de localización de daños.

Palabras clave: Monitorización de la Salud Estructural; Detección de Daños; Aprendizaje Profundo; Análisis 
de Elementos Finitos; Vibración.

INTRODUCTION
Structural Health Monitoring (SHM) focuses on indirectly detecting structural changes, allowing for 

maintenance and damage prevention without physical inspection.(1) Similar to Condition Monitoring (CM) 
in mechanical systems, SHM involves data collection over time, facilitating damage identification through 
analysis of structural responses.(2,3) SHM has gained prominence due to its potential to reduce maintenance 
costs and prevent catastrophic failures in both large structures, such as bridges and turbines, and smaller, 
complex systems, like aircraft components and transmission networks.(4) Typically, SHM systems employ a 
sensor network to gather acoustic or vibrational data for either on-demand or continuous real-time processing. 
Through a training phase, models are taught to differentiate between faulty and normal conditions using 
either supervised or unsupervised learning.(5)

Effective SHM design involves three key phases: learning, data collection, and real testing.(6) The data 
acquisition stage is particularly crucial, as it influences subsequent processes. Structural responses can 
be simulated using numerical techniques like Finite Element (FE) analysis or collected through sensors. 
However, empirical data collection can be limited by environmental complexities and practical constraints.
(7) Laboratory alternatives or unsupervised learning are often utilized to overcome this limitation.(8,9) With 
realistic FE models, simulations can emulate various load scenarios and damage types, enabling SHM data 
generation with minimal experimental intervention.(10)

Machine learning (ML) classifiers, particularly artificial neural networks (ANNs) and support vector 
machines (SVMs), offer powerful damage detection solutions.(11,12) ANNs, especially Convolutional Neural 
Networks (CNNs), excel at feature extraction from raw data, reducing the need for manual preprocessing.(13) 
CNN-based SHM classifiers can handle both supervised and unsupervised detection if provided with accurate 
input data. We employ CNNs with FE-simulated data to minimize data preprocessing, leveraging optimal 
FE models fitted to healthy states and adjusted for damaged scenarios. This combination supports efficient 
damage classification with minimal empirical testing.(14)

Our study uses a benchmark steel beam to validate the CNN-based SHM system. With minimal artificial 
damage introduced, CNNs trained on FE data detect structural states, assessing damage identification 
accuracy across binary and multiclass classification tasks. Comparing nominal and optimal FE-trained models 
emphasizes the importance of model accuracy, with Hybrid Weighted Sequential Learning Technique (HWSLT) 
classifiers offering promising potential for future SHM tools that integrate supervised DL classifiers with 
numerically generated data.(15)

This paper is structured as follows: Section 2 reviews key approaches, Section 3 details methodology, 
Section 4 presents findings, and Section 5 concludes.

Related works
Long-term exposure to external stresses, such as wind, earthquakes, vehicles, environmental vibrations, 

etc., can cause a variety of problems in building structures. As a result, it may compromise the building’s 
overall security and structural integrity, thereby endangering people and property.(16) Therefore, SHM is 
crucial regardless of how complex the facility is or how many key components it contains. For example, 
the proper growth of concrete constructions requires the preservation of solid and long-lasting properties, 
which are intimately tied to the mortar’s composition and ratio.(17) SHM is necessary to evaluate durability by 
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examining vibration, stress, and other relevant factors since a decrease in strength and durability indicates 
structural instability. As stressed by (18), structural characterization and sensing technologies are essential for 
detecting potential damage or deterioration in SHM. As said, SHM includes evaluating structural conditions, 
recognizing various forms of structural degradation, and keeping an eye on operational status. Essentially, 
SHM’s primary goal is to identify, detect, and evaluate the structural operating conditions to facilitate 
efficient damage detection and condition evaluation. Its core element is Damage Detection (DD), which is 
the identification, localization, and evaluation of structural damage. Four categories were established for 
damage identification in the Rytter research.(19) (1) Detection: the process of figuring out whether harm 
exists. (2) Location: Find the coordinates and location of the damage. (3) Assessment: figuring out how 
much damage has been done. (4) Repercussions: acquiring precise safety information for the structure in 
its evaluated level of damage.(20) Identifying the system, evaluating its state, collecting data, and carrying 
out maintenance are the fundamental elements of structural health monitoring, or SHM. Sensors and sensor 
data collected during the data-collecting phase are essential components of SHM applications.(21) Contact 
sensors, such as strain gauges, accelerometers, and fiber optic sensors, as well as non-contact sensors, such 
as telephones, drones, and high-speed cameras, are used to assess the building’s operating state. Following 
the diagnosis of damage, the status is evaluated by employing data processing methods including machine 
learning (ML), deep learning (DL), and signal processing techniques to find characteristics linked to damage.
(22) The optimal course of action for preserving the structure’s service and safety life is finally decided by the 
evaluation’s findings. In the past, visual inspection was the main technique for SHM; however, it had a number 
of drawbacks, such as poor accuracy, low efficiency, subjectivity, and high labor and time costs. The main 
structural component is progressively monitored using non-destructive testing (NDT) techniques, such as eddy 
current, X-ray, magnetic particle inspection, ultrasound, and acoustic emission (AE).(23) The most often used 
methods at the moment are vibration-based, guided wave (GW)-based, AE-based, and electromechanical 
impedance (EMI)-based structural health monitoring (SHM) techniques. A popular technique is vibration-
based SHM, which looks at the relationship between damage states and vibration characteristics. For SHM, 
it is often possible to distinguish between model-driven and data-driven DD techniques.(24) The former 
calibrates a Finite Element Model (FEM) for structural damage analysis using optimization techniques and 
sensor data. The latter detects structural degradation immediately by using sensor data. Additionally, data-
driven methodologies are growing in popularity because of their versatility and capacity to identify structural 
integrity by extracting damaged properties from sensor data. Consequently, the Gaussian model, ML, and DL 
have gained popularity as data analysis methods.(25)

SHM is also included in the vibration-based and image-based DL techniques. Image processing methods 
including segmentation, classification, and identification are made possible by the use of deep learning 
to extract features from images of structural surface damage. The photos are then separated into two 
groups: damaged and undamaged. Additionally, the location and coordinates of the affected area have been 
determined. The last method uses pixel-level segmentation to categorize picture pixels as intact or degraded. 
Convolutional Neural Networks (CNNs) are the most widely used deep learning (DL) method for detecting 
damage in structural surface pictures. CNN may be used for tasks including object identification, image 
classification, and semantic segmentation. Two-Dimensional Convolutional Neural Networks (2D-CNN), Mask 
Region-Based Convolutional Neural Networks (Mask R-CNN), Fully Convolutional Networks (FCN), Region-based 
Convolutional Neural Networks (R-CNN), U-Net, and Look Only Once (YOLO) are a few of the CNN algorithms 
that are commonly used for this purpose.(26,27) The author in (28) classified the nuts, nut holes, and bolts on 
the steel bridge using convolutional neural networks (CNN) using pooling and convolution techniques after 
assessing the bridge picture using the sliding window methodology. In order to quantify cracks, the author 
used edge detection techniques to extract cracking outlines and boundary frame selection in combination 
with YOLOv4 to identify bridge fractures.(29) To generate an iterative loop U-Net that can accurately identify 
fracture forms, they divide pictures between pixels that have cracks and those that do not. In images 
of infrastructures including dams, frame buildings, bridges, tunnels, and more, our deep learning system 
can identify structural abnormalities like cracks, rebar surface flaws, bolt loosening, voids, displacement, 
delamination and reinforcement exposure. A number of studies have shown this capacity.(30)

The objective of this study is to develop an efficient Structural Health Monitoring (SHM) framework that 
integrates optimal Finite Element (FE) models with deep learning classifiers, specifically a Hybrid Weighted 
Sequential Learning Technique (HWSLT). This framework aims to minimize experimental interventions 
by leveraging FE-simulated data to train convolutional neural network (CNN)-based classifiers, ensuring 
accurate and reliable damage detection in structural systems. By testing on a benchmark structure with 
simulated damage scenarios, this study seeks to demonstrate the potential of a numerically driven SHM 
approach, advancing future applications of SHM in complex environments while reducing dependency on 
costly experimental data collection.
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METHOD
The objective of this study is to develop an efficient Structural Health Monitoring (SHM) framework 

by integrating Finite Element (FE) models with deep learning classifiers, specifically a Hybrid Weighted 
Sequential Learning Technique (HWSLT), for accurate damage detection. This applied research leverages FE-
simulated structural response data to train convolutional neural networks (CNNs), enabling automated feature 
extraction with minimal manual preprocessing and reliable classification of structural states. Statistical 
analysis is conducted through accuracy, precision, and recall metrics to evaluate classifier performance, 
with comparative analysis of nominal and optimized FE models validating the framework’s robustness across 
different damage scenarios. The study involves no human or animal subjects; ethical considerations include 
maintaining data integrity, transparent modeling practices, and result reproducibility to ensure applicability 
in structural safety and SHM advancements.

Dataset
A variety of random signals with different signal-to-noise ratios (SNR) were added to the experimental 

function of the architecture. This approach used measurement noise instead of actual empirical information 
to evaluate the impact of sensor accurateness on the efficacy of the developed methodology. Further details 
are provided in the next sections. With an evenly distributed floor mass of m = 620, tones, the hypothetical 
eight-story shear building under examination has a uniform inter-story rigidity of ksh=106 kN/m.

Prediction
The simulated ideal FE information is sent into the convolutional neural network for learning at the next 

step of the suggested SHM approach. Only supervised learning that applies DI to the structure of interest 
will be used in this research. The Hybrid Weighted Sequential Learning Technique (HWSLT) classifier designs 
allows the prediction of SHM. The dataset is partitioned into learning and verification portions at the learning 
stage, and our general goal is a high learning testing precision. For the actual testing that comes at the 
final process, this is the only proof that the artificial neural network has mastered the task effectively. More 
load cases required the FE model if the data is not sufficiently even or if substantial deviation is measured 
throughout feature learning.

Testing and evaluation
The suggested SHM approach moves on to actual testing, which incorporates actual damage conditions 

next to the HWSLT have been effectively trained. For representative assessments, a sufficient number of 
actual measurements have to be taken for every case. Following that, the signals are fed into FE-trained 
HWSLT, which identify potential actual standard states. The accuracy of classification is typically the first 
criterion used to evaluate DI systems. Recall and precision values, as well as potential classifier biases, 
are additional metrics that are utilized as standards in DL applications and include useful data in addition 
to classification accuracy. The level of the testing conducted at the HWSLT learning reflects actual testing 
accuracy and how well it may serve as a reliable predictor for issues of a similar nature in future phases can 
also be investigated.

LSTM
One kind of network that provides data persistence simpler is LSTM because it can handle huge parameter 

sizes and employ nonlinear activation functions in each layer related to SHM, it is especially well-suited 
for managing enormous quantities of data. By analyzing individual SHM data points and complete data 
sequences, LSTM, in contrast to the original RNN, resolves the vanishing gradient problem. It also captures 
nonlinear trends in the data and retains historical information for a long time. LSTMs can learn from long-
term dependencies and alter their cell state and other gates. There were several hidden layers present in the 
architecture of LSTM. The framework becomes increasingly intricate and appropriately categorized as a deep 
learning technique when LSTM hidden layers are added. Figure 1 shows the input gate, forget gate, output 
gate, and self-circulation neuron, which are the four primary parts of an LSTM memory cell. An input gate 
allows memory cells to exchange information to each other and to their neighbors. The input gate decides 
whether a signal that arrives can alter the memory cell’s configuration. However, depending on whether the 
other memory cell condition is flexible, the output gate could control the memory cell state. Additionally, 
the forget gate has the option to retain or delete the prior state. We employed a 3-layered weighted LSTM 
design in this investigation. 
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Figure 1. Traditional LSTM model

The activation function present in the 32 cells was included in both the first and second hidden layers. 
This solves the issue of vanishing gradients, where output recognition reliability and efficacy are at their 
highest. 32 cells in the third layer use the sigmoid activation function to forecast the output’s possibility. One 
fully connected neuron makes up the output layer. Figure 2 shows the framework’s specification. The neural 
network was configured using the “keras” repository and a collection of functions called LSTM, Sequential, and 
Dense. The following hyper-parameters were used in the model’s construction: Batch size = 30 (samples count 
per gradient update); epochs = 500 (epochs count for the methods training); units = 32 (dimensionality of the 
output space). Adaptive Moment Estimation (Adam), an optimization approach that is successful in reality, was 
employed with a learning rate, which is equal to 0,001. To avoid over-fitting, early termination was employed 
as a form of regularization.

Figure 2. Hybrid model

Hybrid model
A class of DL techniques called Convolution Neural Networks (CNNs) was created especially to handle data 

with grid-like arrangements, like photographic images. As shown in figure 2, convolution, pooling, and a fully 
connected layer are the three primary parts of a CNN. Feature extraction is done in the pooling and convolution 
layers. The fully connected layer then maps the retrieved features into the final results, which could include 
classification. Digital images’ values for pixels can be shown as 2-D grids known as matrices. For extracting 
the image features this research implements kernel, which is a supplementary grid parameter. The efficiency 
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of the entire image learning procedure is derived from the features of the images that are determined by 
the “kernel”. By implementing an integrated CNN-LSTM deep learning approach, this study offers a novel 
method for predicting temperature time series information. A series of historical data points is used to predict 
the following series of further data points in the prediction process, which operates as a sequence-sequence 
learning methodology. The numbers for the next 6-month timeframe are predicted using the previous 12-month 
records. The model gains insight into the expected patterns on the test dataset that have not been seen before. 
Trends and seasonality are both well-represented in the framework. For CNN operations on 1-D time sequence 
information, the first step entails performing matrix operations using a 3-D array structure. Furthermore, the 
CNN layer performs a convolution operation on the time series data once it has been processed as a 3-D array. 
Conv1D is used to execute calculations on the CNN layer, yielding the feature map. The recurrent layer’s LSTM 
cells are then linked to learn the time series data. Without requiring extensive fine-tuning, the design of the 
framework has the capacity to learn the seasonality and pattern of the series automatically. Figure 2 shows the 
schematic depiction of the proposed concept. First, the data is resized and reshaped to meet the sequential 
system’s 3-D input demands. For a basic univariate approach, the input shape would include only one feature. 
Additionally, we decided on a kernel size of 5. Six output numbers are generated by the dense layer. A thorough 
model summary can be found. The size of the batch input is 16. Ultimately, the model outputs the loss after 
being fitted for 200 epochs. Adam optimization and the mean squared error loss function were applied. Through 
the processes of data selection, extraction, and preparation, a high-quality fundamental training dataset is 
obtained, which enables the effectiveness of the technique for temperature prediction. Performing a transfer 
test and identifying the missing values in the adopted dataset are included in the following steps. The model is 
obtained by monitoring and identifying the optimal hyper-parameters for the suggested model.

Numerical results and discussion
The numerical discussion presents the numerical findings of the hybrid weighted sequential learning technique 

(HWSLT) and the learning data production stage. To demonstrate the possible performance improvement of the 
most favorable FE data on identifying the observed states, frameworks are trained on FE-produced information 
in 2 scenarios: i) optimal FE and ii) nominal FE-produced data. This section also presents the forecasting of 
experimental states, where class scores are computed using FE-trained HWSLT using actual measured input. The 
learning outcomes and empirical validations obtained from “multi-head” and “single-head” one-dimensional 
convolutional neural networks with Grid-Search-tuned parameters are displayed. Results are shown for the 
binary DI issue, which involves separating the Healthy from Damage 1 and Damage 2 beam states. Table 1 
displays the HWSLT learning outcomes for the data obtained from the nominal and optimal FE. The algorithms 
have effectively learned the FE task, as seen by the values, which show a significant learning accuracy in 
validation for all cases. It is hoped that the networks trained using FE would also generalize effectively on 
actual measurements. Moving on to the empirical verification, Fig 2 displays the trained network forecasting 
class scores based on the learning data from the FE structure. The following is how all of the inputs for the 
class forecasting values are obtained from set 14 to set 16. The class forecasting values for inputs provided 
from the empirical observations set 14, which represents the Healthy benchmark states, are displayed in 
the top portion of the charts. The bottom plots, which are equally selected from experimental sets display 
class predictions based on the damaged benchmark state data. The network kind “single” or “multi-head” is 
employed to separate the left and right outcomes, respectively. The class threshold for the network prediction 
scores is 0,5, and the scores range from 0 to 1. The network uses red for the damaged class score and blue 
for the Healthy class score. In the network results, the total columns are always 1. The confusion matrices in 
figure 3 summarize the whole prediction of class scores for 10 experimental inputs, excluding the displayed 20 
measurements. The matrices show the same correlation between class predictions and inputs as shown in figure 
4. Set 14 provides 100 inputs corresponding to the healthy class targets, whereas sets 15 and 16 facilitate 50 
measurements each belonging to the damaged class targets. The following is an explanation of the confusion 
matrices’ components. While off-diagonal components always display misclassified cases, diagonal components 
display the number of accurately categorized cases (in conjunction with their proportion).

Table 1. HWSLT parameters

Layers Output Parameters

Conv_1D (-,8,6) 36

LSTM (-,8,6) 312

LSTM_1 (-,6) 312

Dense (-,6) 42
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Figure 3. Evaluation metrics with kernel weight

Figure 4. FPR and FNR evaluation 

Figure 5. Evaluation metrics with successive iterations 
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Figure 6. FPR and FNR evaluation with successive iterations 

Figure 7. Comparative analysis based on conventional approaches

The average precision and damage are displayed that are arranged diagonally. The accuracy and false 
prediction rates are displayed. Recall and FN rates are displayed. As anticipated, the “single-head” systems 
trained by the conventional set obtained the lowest scores, while the “multi-headed” systems trained by the 
best possible FE feature set scored the highest. The latter generated forecasts were skewed heavily in favor 
of the Healthy class. For this binary issue an optimal technique proved to be more significant than adopting a 
“multi-head” design. The “single-head” system outperformed the “multi-headed” network by a slight margin. 
Even when trained using nominal FE-derived datasets, the “multi-headed” DL classifier was still able to produce 
satisfactory results, with the lowest accuracy of 67 %. It must be emphasized once more that the combination 
of random base excitations and the minor damage magnitudes applied to the benchmark create a challenging 
problem. In contrast to the inaccurate outcomes obtained when single filter learners were employed, the 
multiple filter length structure demonstrated that it was learning enough appropriate characteristics regardless 
of nominal FE data. Additionally, the researcher should be informed that the experimental forecasting accuracy 
and the network learning reliability for validation differ. The superior learning accuracy of 93 percent, 
particularly for the “single-head” system trained using nominal FE data, indicates that it has mastered the 
FE task effectively; nevertheless, this is not at all represented in the actual setup. Therefore, the difference 
between simulated and actual responses can be reduced by using an optimal FE technique and wider DL 
properties by varying the filter sizes. 

The learning and experimental validations from the “multi-headed” one-dimensional convolutional neural 
networks with grid-search-tuned parameters for the multiclass DI issue are presented. In this instance, the aim 
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is to split the three benchmark states: Damaged 1, Healthy, and Damaged 2 into a corresponding three-class 
problem following the FE training process. With CNN algorithms having poorer learning accuracy for validation 
on the FE-generated datasets, the computed values demonstrate that the multiclass DI is more highly required 
than the binary of paragraph 6,3. Except for the ideal FE dataset “single-head” convolutional neural network, 
validation accuracies of almost 80 % are noted, indicating that systems have sufficiently learned the task and 
may be able to solve the problem effectively. This time, the experimental data sets are the complete sets (14 to 
16) that include 100 measurements of every benchmark state. By the FE model learning data extraction, figure 
3 to figure 7 display the class identification values from the pre-trained CNN on the measurements. Class scores 
using Healthy benchmark research sources (set 14) are displayed in the top charts. The class identification 
outcomes based on Damage 1 (set 15) and Damage 2 (set 16) experimental inputs are shown in the center and 
bottom charts, respectively. The single-head and multi-head network forecasts are displayed respectively. This 
time, the class value falls between 0 and 1, but the overall average of the three classes equals 1. The highest 
score is used to identify the class. The same format is used to present the findings in the matrices. With 83,3 % 
global accuracy, the “multi-headed” network that was trained using the ideally FE extracted set can record the 
best predictions once more. With incorrect Damage 2 forecasts of 16 % in the Healthy benchmark measures and 
29 % in the Damage 2 observations, it seems to be the most challenging and hard to differentiate between the 
Healthy and Damage 2 states. On the other hand, Damage 1 measures seem to be accurately anticipated, with 
a 96 % TP rate. The prediction image is significantly different for the “multi-headed” network trained using the 
nominal FE-derived data set. Although the levels of Damage 1 are recognized with 100 % accuracy, the system is 
unable to differentiate states to a satisfactory degree, and its overall accuracy on the experimental data is 65,3 
%. Healthy measurements have a 56 % erroneous Damage 1 prediction rate, whereas Damage 1 measurements 
contain a 31 % false rate for Healthy forecasts. In contrast, single-head systems performed poorly in every 
scenario for both FE data sets. The researcher could additionally observe that the “single-head” systems 
struggled to make a definitive class prediction, with computed scores typically falling below 0,5. Therefore, it 
seems that the multiclass DI requires both excellent FE data and a “multi-headed” design. Lastly, discrepancies 
between the actual prediction values and the validation values for FE data learning show that only “multi-head” 
systems trained with an ideal FE data set can generalize accurately on experimental observations. When trained 
using the nominal FE data set, the “single-head” networks in particular displayed a high degree of discrepancy 
between learning and empirical validation results. It is additionally demonstrated that understanding the 
simulated FE issue does not guarantee successful standardization in the actual experiment.

CONCLUSION
The HWSLT-based deep learning classifiers, trained solely on numerically generated structural data, have 

demonstrated promising results for damage identification in Structural Health Monitoring (SHM). By leveraging 
simulated data and limiting experimental data requirements to the creation of an ideal benchmark model 
representing the healthy structure, this approach effectively models various damage scenarios. Real-world 
applicability of the HWSLT model is validated through experimental measurements on benchmark setups for 
binary and multiclass classifications, confirming its reliability. The integration of HWSLT learning with distinct 
data production processes has yielded significant performance improvements, with HWSLT models trained on 
simulated data from optimized finite element (FE) models surpassing conventional feature-based models in 
prediction accuracy. Despite the upfront costs of updating the FE model in healthy states, this investment 
enhances overall SHM system accuracy and reliability. However, discrepancies between HWSLT validation and 
experimental predictions underscore the need for continued experimental validations, as simulated data alone 
cannot ensure real-world accuracy. Future research will explore accuracy metrics of the proposed SHM method 
across diverse structures, uncertainty simulations, and experimental validations, with plans to test larger 
benchmark structures to further refine this innovative SHM approach.
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