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ABSTRACT

Breast cancer is the most prevalent form of the disease and the primary cause of cancer-related deaths 
among women globally. Early detection plays a pivotal role in substantially diminishing both the morbidity 
and mortality rates associated with this disease in women. Consequently, the development of an automated 
diagnostic system holds promise in enhancing the precision of diagnoses. To automatically classify breast 
cancer microscopy images stained into two distinct classifications—normal tissue and benign lesions—this 
study introduces a graph-based convolutional neural network with hybrid optimization (G-CNN) that makes 
use of a dataset that was specially selected for this purpose. The network layer is capitalized in our suggested 
model to extract reliable and abstract information from input photos. Initially, we used 5-fold cross-validation 
(CV) to optimize the suggested model on the original dataset. Our framework demonstrated a 98 % accuracy 
rate and a 0,969 kappa score. It also received an average AUC-ROC score of 0,998 and a mean AUC-PR value of 
0,995. In specific terms, it displayed 96 % and 99 % sensitivity, respectively, about the supplied photographs.  
Examining normalized photos, the suggested architecture outperformed the other approaches in terms of 
colour normalization methodology performance. These findings underscore the superior performance of our 
proposed model compared to both the baseline approaches and established prevailing models using default 
settings. Furthermore, it becomes evident that while existing normalization techniques delivered competitive 
performance, they fell short of surpassing the results obtained from the original dataset.
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RESUMEN

El cáncer de mama es la forma más prevalente de la enfermedad y la principal causa de muerte por cáncer entre las 
mujeres de todo el mundo. La detección precoz desempeña un papel fundamental en la disminución sustancial de 
las tasas de morbilidad y mortalidad asociadas a esta enfermedad en las mujeres. Por consiguiente, el desarrollo 
de un sistema de diagnóstico automatizado resulta prometedor para mejorar la precisión de los diagnósticos. 
Para clasificar automáticamente las imágenes de microscopía de cáncer de mama teñidas en dos clasificaciones 
distintas -tejido normal y lesiones benignas-, este estudio introduce una red neuronal convolucional basada en 
grafos con optimización híbrida (G-CNN) que hace uso de un conjunto de datos especialmente seleccionado para 
este fin. La capa de red se capitaliza en nuestro modelo sugerido para extraer información fiable y abstracta 
de las fotos de entrada. Inicialmente, utilizamos la validación cruzada (CV) quíntuple para optimizar el modelo 
sugerido en el conjunto de datos original. Nuestro marco demostró una tasa de precisión del 98 % y una puntuación 
kappa de 0,969. También obtuvo una puntuación media AUC-ROC de 0,998 y un valor medio AUC-PR de 0,995.
En concreto, mostró una sensibilidad del 96 % y el 99 %, respectivamente, sobre las fotografías suministradas.   
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Al examinar las fotografías normalizadas, la arquitectura propuesta superó a los demás enfoques en cuanto al 
rendimiento de la metodología de normalización del color. Estos resultados ponen de relieve el rendimiento 
superior de nuestro modelo propuesto en comparación tanto con los enfoques de referencia como con los 
modelos predominantes establecidos utilizando la configuración predeterminada. Además, resulta evidente 
que, aunque las técnicas de normalización existentes ofrecían un rendimiento competitivo, no llegaban a 
superar los resultados obtenidos con el conjunto de datos original.

Palabras clave: Imágenes Histopatológicas; Predicción; Cáncer; Aprendizaje Profundo; Optimización.

INTRODUCTION
As per the Global Cancer Statistics 2023 report, breast cancer stands out as the most prevalent malignancy 

and holds the leading position in causing fatalities related to cancer among women globally. Specifically, 2,26 
million cases, representing 11,7 % of all female cancer cases, were identified, resulting in 0,69 million deaths, 
representing 6,9 % of the overall cancer-related deaths in 2023. Consequently, an early and comprehensive 
understanding of the pathophysiology of breast tumours is crucial because it may help lower the incidence of 
morbidity and death among women globally. This cancer is understood to be a broad spectrum of illnesses with 
unique biochemical, clinical, and treatment-related characteristics. It mostly arises from abnormalities in the 
breast’s epithelial tissues, although it can also spread into the stroma, mammary duct, or lobes.

Even while mammography, MRI, and ultrasound are commonly used in regular clinical tests for breast cancer, 
these non-invasive procedures may not be able to adequately capture the varied characteristics displayed 
by breast cancers. As such, pathological analysis continues to be a crucial reference point for understanding 
the pathogenesis of these malignancies. The procedure entails obtaining tissue samples on glass slides, and 
colouring the slides after that to get a more comprehensive representation of the tumors’ morphological and 
immune phenotypical traits. Following this, pathologists meticulously examine these stained slides under a 
microscope to arrive at a potential diagnosis of breast cancer. The comprehensive steps involved in a detailed 
outline of the histological technique have been provided. However manually interpreting a histopathological 
image takes a lot of time and effort, and it might lead to biased results. Furthermore, the pathologists’ topic 
experience plays a major role in the morphological standards applied in the manual examination. For instance, 
the research found that participating pathologists had about 75 % overall concordance rate.

To mitigate inter-pathologist variances throughout the breast cancer diagnostic process, Tools for computer-
aided diagnosis (CAD) have been created to help pathologists improve diagnostic accuracy. However traditional 
computerized diagnostic approaches, which range from machine-learning methods to rule-based systems, may 
prove inadequate in handling the consistency between different classes and the variability within the same class 
of intricate pictures of breast cancer histology. Furthermore, these conventional approaches frequently depend 
on feature extraction methods such as local binary patterns, speed robust features, and scale-invariant feature 
transform. Yet, these methods depend on supervised information, potentially leading to biased outcomes when 
categorizing pictures like these. As a result, the need for a quick and accurate diagnostic answer has accelerated 
the creation of sophisticated computer models, or “deep learning,” that are built on several layers of nonlinear 
processing units. These models aim to surpass the limitations of traditional approaches by leveraging intricate 
architectures capable of learning representations directly from the data without explicit feature engineering.

In the realm of activities involving eyesight, the Convolutional Neural Network (CNN) has gained prominence 
due to its translational equi-variance and invariance properties, characteristics obtained via pooling and sharing 
of parameters, respectively. Notably, CNNs have surpassed traditional multi-layer with deep CNN architectures 
demonstrating significant advancements in the last decade. Among these architectures, AlexNet stands as one 
of the earliest models that achieved commendable accuracy in the ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC). Subsequently, the VGG network introduced the concept of using smaller-sized convolutional 
filters in a deep network, securing the second position at ILSVRC. Szegedy et al. then presented the Inception 
architecture achieves an efficient receptive field by using many smaller convolutional filters claiming the top 
spot at ILSVRC in the same year. Following this, He et al. addressed the performance degradation that occurs with 
increased network depth by introducing residual connections, resulting in their first-place position at ILSVRC.

Using publically accessible datasets like BreakHis and BACH, several current research have used these 
previously described architectures—which were pre-trained on ImageNet—to successfully categorize photos 
related to breast cancer histopathology. On the BreaKHis dataset, Jiang et al., for example, proposed an altered 
version of the ResNet model and achieved cutting-edge multiclass classification accuracy. Comparably, for the 
multiclass classification of breast microscope pictures, either a single pre-trained network or an ensemble of 
pre-trained architectures was employed in the top papers in the BACH challenge. On the BACH dataset, Elmannai 
et al. recently attained state-of-the-art performance by recognizing the efficacy of residual connections 
and Inception modules as feature extractors. We employed the Xception model (extreme inception) in our 
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methodology, which is based on a successful combination of residual connections and Inception. Serving as a 
feature extractor, the Xception model consistently delivers results in classifying photographs of histopathology 
at various magnifications. As a feature extractor, the trained Xception model was utilized our approach 
successfully applies the ideas presented in these earlier studies to the extraction of important characteristics 
from histopathological pictures. The following describes the purpose and importance of this study:

The primary aim was to annotate and create a specialized dataset intended for the categorization of 
pictures from breast cancer histology into several groups, such as invasive carcinoma, normal tissue, in situ 
cancer, and benign lesions. The created dataset builds on our earlier research on binary classification that was 
released. Another key objective was to assess the performance of four commonly used colour normalization 
techniques, aiming to standardize the appearance of histopathology images. The study aimed to introduce a 
deep learning model that utilizes multi-level to increase classification accuracy, features are taken out of the 
graph-based model’s intermediate layers. The goal of the study was to refine the suggested model for accurate 
image categorization of breast cancer histology using hybrid cuckoo for swarm optimization (HCSO), both in 
their original form and after undergoing normalization procedures. Special emphasis was placed on enhancing 
accuracy, especially concerning the carcinoma classes. Notably, this study represents the first instance of 
annotating a new private dataset, introducing a comprehensive and effective computational model that uses 
a graph-based network as a feature extractor and evaluating the outcomes of widely used stain normalization 
methods. In conclusion, the suggested model produced dependable and consistent outcomes in accurately 
classifying breast cancer histopathology images into distinct categories, surpassing existing results that are 
cutting-edge. The parts that follow are the order in which this document is structured:

1)	 The principal aim of this investigation was to enhance breast histopathology classification 
accuracy at the image level by employing a patch-level G-CNN classification approach. To achieve this 
goal, we devised an effective approach for patch-level training that boasts computational speed. Our 
methodology involved fine-tuning a G-CNN model, initially trained on the cancer dataset, by incorporating 
convolutional, max-pooling and thick layers in the latter stages. With this model, we were able to extract 
patch characteristics.

2)	 To transform patch-level data into image-level predictions across four classes—normal, benign, in 
situ, and invasive—and two classes—cancerous and non-cancerous —our method used a two-stage model 
that leveraged a neural network.

3)	 The histopathology dataset, which is accessible to the public, was used to assess our model’s 
performance. With four classes and two classes, State-of-the-art classification accuracy of 97,50 % and 
98,6 %, respectively, were obtained using our technique.

This essay’s remaining sections are organized as follows: Section 2 provides a detailed description of the 
existing methodology. Section 3 elaborates on the process. The experimental findings and a critique of our 
methodology are included in Section 4 including a discussion of the outcomes. Finally, in Section 5, we conclude 
our work, highlight its limitations, and outline potential future directions for research.

Related works
From the existing literature, it is noted that several researchers have undertaken reviews about distinct 

aspects of histopathological image analysis, including studies on histopathological image analysis itself,(16) 
stain normalization techniques,(17) segmentation methods,(18) and classification methodologies.(19) This 
section specifically focuses on summarizing and detailing the findings derived from the review conducted 
on histopathological image analysis. The literature encompasses a multitude of reviews and surveys focused 
on different aspects of histopathological image analysis, each shedding light on distinct facets of this field: 
Choudhary et al.(20) provided an overview of the latest Computer-Aided Diagnosis specifically designed for 
histopathology image analysis (CAD) technology. They stressed the importance of employing standard datasets 
for evaluating CAD systems, making comparison and analysis simpler. A review of many techniques for the 
examination of Breast Cancer Histological Images (BCHI) was conducted by Ezhil et al.(21). They discussed the 
intricacy of tissue characteristics that demand examination to enhance the system’s robustness.

Fondón I et al.(22) delved into Machine Learning (ML) techniques utilized for histopathological image 
analysis. A list of accessible datasets for the investigation of breast cancer and generalized image classification 
techniques were presented in Hameed, Z.(23) including supervised, unsupervised, and DL classifiers.  Irshad and 
colleagues(24) examined various methods for histopathological image analysis, including the identification of 
nuclei, segmentation, extraction of features, and classification. Benchmark datasets, difficulties with topics 
covered included the value of resilience in technical and therapeutic settings, as well as microscopic image 
segmentation. In their investigation of cutting-edge methods for segmenting images for feature extraction and 
disease classification, Mostafa et al.(25) addressed the features of histological images. Ozaki et al.(26) explored 
the use of DL approaches in digital pathology across segmentation, detection, and classification tasks. They 
suggested enhancing classifier quality by combining hand-crafted features with DL approaches. A study of 
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several image analysis techniques in histological image analysis was conducted by Spanhol et al.(27) focusing on 
the cell detection problem and listing pertinent limitations. Aresta et al.(28) talked about potential research 
areas in diagnostic machine learning (ML) and identified difficulties in computational pathology procedures. He 
et al.(29) assembled the most recent methods and uses for large-scale medical image analytics. In their overview 
of DL approaches in medical image analysis, Holzinger et al.(30) addressed difficulties in assessing BCHI.

Aksac et al.(31) investigated magnification-independent multi-category classification issues and conducted 
a thorough assessment of DL approaches for automated breast cancer detection using the BreakHis dataset. 
Additional evaluations by Aksac, A. et al.(32) covered a wide range of subjects, such as deep neural network designs 
for histopathological image analysis, DL algorithms for breast cancer identification, lymph node support for 
breast cancer pictures, ML and DL approaches for breast carcinoma diagnosis, and issues involved in developing 
CAD systems for cancer diagnosis. These reviews collectively contribute a comprehensive understanding of the 
various methodologies, challenges, and advancements in histopathological image analysis using a spectrum 
of computational techniques.(33) Indeed, the existing literature highlights several reviews concentrating on 
distinct facets of automating histopathological image analysis. However, a comprehensive and detailed review 
encompassing it appears that every facet of histological image analysis, including colour normalization, feature 
extraction, possible Region of Interest (ROI) identification and segmentation, and classification—are absent.(34,35)

While numerous review papers exist, they often tend to focus on specific segments or aspects within 
breast histopathological image analysis. These reviews provide in-depth insights into individual elements such 
as detection algorithms, classification methodologies, or segmentation techniques, rather than offering a 
comprehensive overview covering the entire spectrum of histopathological image analysis.(36) This observation 
underscores the need for a comprehensive and integrated review that synthesizes every facet of histopathology 
image analysis, including segmentation, ROI detection, colour normalization feature extraction, and classification 
within a singular, encompassing framework.(37,39) Such a comprehensive review would be instrumental in 
consolidating diverse methodologies and advancements across the entire pipeline of histopathological image 
analysis, providing a more holistic understanding of this field’s current state and future directions.(40)

METHOD

Figure 1. Flow diagram of the proposed model
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Histopathological image analysis serves the purpose of categorizing images into benign and malignant 
classifications, serving as an essential tool for decision-making. Several stages are included in this analysis 
utilizing image processing techniques, encompassing colour normalization, classification and optimization. 
While traditional methods follow a step-by-step pipeline, modern approaches, particularly based on DL adopt a 
complete learning approach. The conventional method uses colour normalization as a first step to standardize 
colour and lighting variances between photos. Using the characteristics that were retrieved, DL algorithms 
are trained to categorize the photos into several groups. The methods established for colour normalizing are 
described in depth in this section, which is followed by the discussion of methods for detecting and classifying 
potential regions of interest within histopathological images. Additionally, an overview of diverse techniques 
employed for classification specifically tailored for Breast Cancer Histological Images (BCHI) will be presented. 
Finally, hybrid optimization approaches are adopted to attain global outcomes. These techniques constitute 
essential components in the comprehensive analysis of histopathological images, aiming to enhance the 
accuracy and reliability of image-based diagnosis and decision-making processes. Figure 1 shows the workflow.

Dataset
The Breast Cancer Histology images (BACH) collection from the ICIAR 2018 was used in this investigation. 

It consists of whole-slide pictures and breast histology microscopy Hematoxylin and eosin (H&E) staining. 
Depending on which type of cancer is most common or whether there is no cancer at all in each microscope 
picture, the pictures are categorized as invasive, benign, in situ, or normal. Two medical specialists annotated 
these photos, and those with inconsistent annotations were removed from the dataset. There are 400 
microscope photos in total in this collection, 100 images for each of the four classes. The microscope pictures 
have particular characteristics and are saved in a.tiff format. RGB Pixel Scale: 0,42 µm × 0,42 µm; Dimensions: 
1536 × 2048 pixels; Memory Space: Approximately 10–20 MB per image, Label: Image-wise classification. These 
images serve as a valuable resource for training and validating models regarding the field of image analysis 
in histopathology of breast cancer, providing a diverse set of samples representative of various histological 
classes, annotated by expert medical professionals.

Pre-processing 
The process of slide preparation significantly impacts the results of histopathological images due to potential 

variations in colour distribution. To address these variations, colour normalization processes are commonly 
employed. However, a notable observation in the literature is the lack of suitable evaluation metrics for 
assessing the efficacy of colour normalization techniques. Identifying appropriate metrics for evaluating the 
effectiveness of the colour normalization process is thus an important endeavour in this field. Additionally, 
graph-based CNN (G-CNN) present a promising avenue for future exploration. G-CNN can learn and generate 
images based on specified constraints. This potential enables G-CNN to facilitate the transfer of colour 
distributions from a reference image to an input image. Leveraging G-CNN for such colour distribution transfer 
tasks holds promise for enhancing the standardization and normalization of histopathological images, thereby 
potentially improving the consistency and reliability of subsequent analyses. Exploring the utilization of G-CNN 
in this context remains an intriguing area for future research and development within histopathological image 
analysis.

Methodology description
The methodology employed in this study encompassed several key steps in the analysis of histopathological 

images: initially, the dataset of 400 histology images was separated into sets for testing, validation, and training. 
This division involved an 80/20 split, with 80 % of the images allocated to the intermediate set (further divided 
for training and validation) and 20 % reserved for the test set. Within the training and validation sets; images 
were segmented into patches for more granular analysis. A patch-level classifier was trained using these patches 
and a pre-processing step involving color stain normalization was applied to normalize the images. To extract 
characteristics from these patches, several deep-learning models that had already been trained were used. 
Patch-level predictions were processed through different classifiers, and ensemble techniques were employed 
to merge and analyze these predictions. This process aimed to improve accuracy and robustness in classifying 
patches into malignant (invasive and in situ) and benign (normal and non-cancerous) classifications. Instead 
of using traditional ensemble methods, a graph-based neural network was devised. This network managed the 
shift from patch-level to image-level classification, effectively categorizing the final images into four groups: 
normal, benign, in situ, and invasive. This suggested methodology’s pipeline consisted of many steps, including 
dataset partitioning, pre-processing, classification, and optimization model for image-level classification. This 
approach aimed to streamline and enhance the accuracy of the classification process for histopathological 
images, potentially offering a more efficient and accurate analysis framework.
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Classification
Once the extraction of image candidates is completed, an initial classification of images is conducted for each 

particle utilizing G-CNN. To evaluate the effectiveness, we compared the proposed with distinct architectures. 
These architectures varied based on the dimensionality of patches (2D/3D) and the consideration of image 
strength. In the subsequent sections, this work will initially delineate the suggested method, which emphasizes 
the G-CNN architecture and patch extraction. Following this, this section provides comprehensive details about 
the alternative architectures employed for comparison purposes. These architectures are aimed at discerning 
differences based on patch dimensions and the incorporation of image strength in the classification process.

Patch Extraction: only 3D patches taken from the CT scan surrounding the tumour under study are used in 
the suggested G-CNN. On the reformatted plane, a centred patch encompassing a 32x32 pixel region is removed 
along the particle’s principal axis. This main axis, which is created by resampling the original picture using 
cubic interpolation, is defined by the first eigenvector of the Hessian matrix and isotropically spaced at 0,625 
mm. The particular centre particle’s patch and the patches surrounding four neighbouring particles that belong 
to the same picture in its reformatted direction are taken into consideration to create the 3D patch. As a result, 
on the reformatted plane along the picture point of interest, every patch is a 32 x 32 x 5 voxel small picture 
section.

Architecture: the architecture of the proposed G-CNN is depicted in figure 2. Three convolutional layers, two 
dropout layers, one max-pooling layer, and three fully-connected layers make up the network. Our hypothesis 
posits that employing a 3D approach yields superior performance compared to 2D CNNs. This superiority arises 
from the crucial role of connectivity information in distinguishing between the two vascular trees, a factor that 
2D-CNNs can only emulate through specific workarounds. Additionally, this work conjectures that the inclusion 
of additional information does not significantly enhance the network’s ability to learn image characteristics. 
To validate this hypothesis, we formulated different architectures for comparison alongside the proposed 
approach. For this purpose, with several approaches, we were able to extract 2D and 3D patches surrounding 
every particle location. 

Feature representation: in our approach for extracting 3D patches, we maintained the same method as 
the one used in the suggested approach. In particular, we took into account the surrounding 32x32 pixel area 
on the particles’ reconstructed plane for 2D patches. However since we knew that the connection between 
picture spots may offer crucial information for classification, we came up with a method to merge the 2D patch 
of the target sample using the two nearest particles whose orientations were the most similar. This image 
amalgamation was achieved by merging the extracted 2D patches with the original patch with more channels 
designed to make a more reliable comparison and mimic 3D representation. These patches are referred to 
as 2.5D. As a result, a three-channel, 32x32-pixel 2.5D patch surrounding a potential vessel is created using 
the CT scans of the centre point and the two nearest spots. To explore whether G-CNN could benefit from 
structural information in differentiating between normal and benign, we incorporated tumour-enhanced images 
in alternative architectures. Given that the study focused on particles from the given structure, the inclusion 
of the tumour-enhanced image would appear redundant, but we hypothesized that the G-CNN might use this 
image to identify and evaluate extra local information.

Figure 2. Architecture of G-CNN

To improve, we used a Frangi filter by adjusting the parameters through grid search to optimize the 
enhancement of CT images. Subsequently, from these improved pictures, we took 2D and 3D patches from the 
vicinity of the potential locations and we used two different approaches to merge these patches into the CT 
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patches. Using the first method, we added the improved photos as additional patch channels. In the second 
approach, we concatenated the three patches at the fully connected level and let the network learn from them 
separately. For instance, a 2,5D patch with enhanced images added as extra channels comprises nine channels 
total, including the centre point’s CT image plus the two closest ones and 32x32 pixels surrounding the particle 
point. In contrast, better photographs used as separate inputs for the 2D network employ three patches of 
32x32 pixels and three channels (the centre point and the two adjacent ones).

The 2D architecture, shown in figure 2, shows the G-CNN when it uses 2.5D patches, using either the 
histopathological picture alone or with augmented images added as additional channels or separate inputs. 
Despite variations in inputs, the fundamental CNN architecture remains consistent across all three cases. This 
architecture comprises five 2D convolutional layers, the network topology is shown by three fully-connected 
layers, dotted with two max-pooling and two dropout layers. Convolutions and max-pooling techniques are 
applied to the three inputs simultaneously to integrate picture strength as independent inputs with the local 
information obtained from the histopathology analysis, all while maintaining the same architecture. This allows 
the network to automatically pick up new features from each patch. Therefore, just before the fully linked 
processes are started, the resulting weights and biases are concatenated. For each of these networks, the 
hyper-parameters have been meticulously chosen through empirical experimentation to optimize performance 
specifically for the problem at hand. This careful parameter selection aims to achieve the best results for the 
classification task.

Graph-based feature representation
The cancer classification process may exhibit inconsistencies due to intertwined and touching areas within 

the vascular trees, particularly when conducting classification on individual particles without explicitly 
considering smoothness at the tree level. To mitigate these inconsistencies observed during the initial G-CNN-
based classification, using an automated graph-cuts (GC) technique, we improve the classification outcomes. 
This GC strategy combines graph theory principles with energy minimization methods to identify minimum cuts 
in the graph, thereby defining an optimal solution. The graph is composed of a set of vertices V={vi|i=1,…, Nnodes} 
and edges connecting different nodes ϵ={(vi,vj )|i,j=1,…,Nnodes}. It includes two terminal (or virtual) nodes, 
namely the source, s, and the sink, t, denoted as Vt  = {s} ∪ {t}, alongside a collection of real non-terminal 
nodes, Vn-t. The edges consist of connections between pairs of non-terminal nodes (nlinks), εn-t = {(vi,vj)| vi,vj  ∈ 
Vn-t}, and connections between a terminal node and a non-terminal node (tlinks), εt = {(s,vi )∪ (vi,t)| vi  ∈ Vn-t  
and s,t ∈ Vt}.

Since energy is specified as a function, the minimal cut problem is handled from the perspective of energy 
reduction.

The obtained by minimizing this energy function, which effectively determines the optimal partitioning of 
the graph, enhancing the accuracy of the classification. The formulation of the energy function involves two 
essential components: the boundary term (ξbound) and the regional term (ξreg). ξbound signifies the coherence among 
neighbouring nodes reflecting the details of the connection. The weights connected to the links decide it. The 
regional term, represented by ξreg represents the probability of each class (in this case, the similarity between 
arteries and veins). This term is denoted by the weights assigned to the links. The objective of minimizing the 
combined energy function is to achieve a classification that optimizes both the coherence among neighbouring 
nodes and the likelihood estimation for different classes. In this particular problem scenario, the probabilities 
obtained from the CNN’s pre-classification step are used to generate the arterial-venous similarity score that 
forms the regional term, which is defined by the edges εt. As a result, the weights links of  are directly set to 
these probabilistic estimations: they represent the probability-based assessments obtained from the initial 
G-CNN-based classification step.

The boundary term, represented by εn-t, requires information about the connectivity among particles (P(pi)). 
As individual particles themselves don’t offer information on direct connectivity, a conservative structural 
connectivity approach is employed. Using a radius of neigh = 3 mm, this technique entails creating connections 
between every particle and every other particle inside a cylinder formed along the vessel’s main direction. 
Additionally, to manage concerns in densely populated areas, a limit is set on the number of allowable 
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connections per node (Ncon = 5). These parameters were adjusted through empirical tweaking following multiple 
tests. To determine the weight of the links, three primary characteristics are taken into consideration to 
indicate the strength of the bonds between particles: 

1)	 Scale Consistency (wσ (p1,p2)): Particles with similar scale are more likely to be neighbours.
2)	 Particle Proximity (wdist (p1,p2)).
3)	 Direction Consistency (wk (p1,p2)): The greater the likelihood that two particles belong to the 

same tree, the closer they are in terms of Euclidean distance. determined by the local direction of the 
particles under consideration and the alignment of the connection vector connecting two particles.

By considering these three characteristics, various weighting functions can be formulated to define the 
strength of the links: these functions evaluate the relationships between particles based on their scale, 
proximity, and direction consistency. Occasionally, the method produces isolated sub-trees, which might make 
categorization more difficult. To address this, an additional step is taken after the initial graph-cut classification 
to iteratively join all of these separated sub-trees edges. Until the complete graph is made up of a single linked 
component, the isolated sub-trees are joined iteratively using the following steps: 

a)	 Designating the primary component as the one with the greatest connectedness. 
b)	 calculating the Euclidean distance between the points inside the isolated sub-trees and the main 

component. 
c)	 Adding an edge to join particles from the isolated sub-trees to the main component, with a weight 

derived from equation (4). 

Using the suggested min-cut/max-flow conversion, the minimal cut, or Cmin, is calculated after the final 
graph has been obtained through this iterative process. The graph G is divided into G1 and G2, two linked 
components, as a consequence of this algorithm. In the equation mentioned, the parameter  which has a value 
of  was determined as the optimal value through grid search. This parameter serves to balance the contributions 
of the regional and boundary terms within the graph-cut method.

Optimization
Cuckoo search

Using a population-based methodology, a stochastic global search method is the Cuckoo Search (CS) 
algorithm draws inspiration from specific behaviors observed in birds, particularly the flying patterns and 
breeding habits of specific cuckoo species known as Levy flights in various bird species. Utilizing CS presents 
two primary advantages: first, it requires minimal configuration of parameters during the initial search phase, 
and second, it offers ease of interaction even for inexperienced users. However, it’s commonly observed that 
CS might display relatively sluggish convergence speed and lower search accuracy due to diminished diversity 
within the population. Three fundamental rules emulate the behaviours of cuckoos, rendering them suitable 
for application as a tool for optimization: First, every cuckoo lays one egg, which is then arranged in a nest 
at random. Secondly, nests containing superior-quality eggs are perpetuated into the subsequent generation. 
Thirdly, there is a finite number of host nests, and a host bird has a chance pa ∈ [0,1] of identifying an egg laid 
by a cuckoo. When a host bird finds an egg, it can either discard it or abandon the nest entirely to construct 
a new one. To put it simply, every egg in a nest in the CS algorithm is a possible solution, and each cuckoo’s 
egg represents a novel answer. By iteratively replacing the candidate solutions with more advantageous 
created solutions (cuckoo’s eggs) depending on their fitness scores, the CS algorithm aims to improve the 
results. This method consists of two phases: a local random walk controls the exploitation phase, while the 
switching parameter pa, a global Levy flight random walk, controls the exploration phase. Throughout the 
whole procedure, this parameter controls the population update. In the first step, we create new solutions 
around the best nest, gBest, in the current generation using the global Levy flight random walk.  Concerning 
the CS algorithm, let’s consider a population consisting of Np eggs denoted as X = {X1,...,XNp}, where each egg 
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comprises C decision variables represented as Xi = {xi1,...,xiC}. Mantegna’s algorithm is used to identify the step 
in the Levy flight, as seen below:

Where Xi
k represents the ith egg within the population during the kth iteration. In our study, the value of α is 

fixed at 1.5. The variables u and v follow a normal distribution, with u ∼ N(0,σu
2)and v ∼ N(0,σv

2). The definition 
of the randomly generated matrix’s standard deviation is as follows:

Subsequently, the new egg denoted as Xi
(k+1) can be obtained through the following equation:

where random scalars selected from the standard normal distribution are denoted by the symbol, randn 
[C]. To increase variety and boost global exploration capabilities in a finite number of generations by exposing 
hitherto unexplored regions inside the search space, we suggest taking an extra step: generating new eggs 
when superior ones cannot be discovered. Specifically, if a newly generated egg fails to surpass the previous 
one about the significance of fitness, the suggested Differential Evolution (DE) method to produce another egg, 
is denoted as Xi

’(k+1). This scheme is formulated as follows:

Where, Xbest
k and Xworst

k represent the best and worst options, respectively, depending on fitness value within 
the current population. Xr

k denotes a solution whose fitness value falls within the range of [round(εNp),Np-
round(εNp)], where ε ∈ (0,0,5). For our study, the value of ε is designated as 0,15, and Fm is uniformly generated 
within the interval (0,1,1) for each iteration. Employing this scheme yields two significant advantages. Firstly, 
the target vector gravitates toward superior solutions as it consistently follows the path of the superior ones. 
Second, it directs the search to areas of the search space that show promise by avoiding the direction of the 
worst answer. In the second stage, CS continues by employing a biased/selective random walk technique to 
generate additional eggs. With consideration for the likelihood that cuckoos will be found, the following new 
egg is created using a crossover operator:

In this context, r1 and r2 represent distinct random integers and Fc signifies the scaling factor, an evenly 
distributed random number in the range [0,1]. The operator, Xjump

k  = Xi
k + Fc (Xr1

k - Xr2
k) is intended to facilitate 

a leap to evade local entrapment. However, if Xr1
k and Xr2

k are in relative proximity, this method may fail to 
explore new potential zones. To tackle this issue, in this study, instead of utilizing Xjump

k = X(i
k + Fc (Xr1

k - Xr2
k), 

we implement an operator defined as follows:

In this context, r1, r2, r3, and r4 represent distinct random integers. The symbol FDRi represents the fitness 
difference ratio (FDR) of the ith solution inside the current population, which has the following definition:
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Where fi represents the fitness value of the ith solution, and fg
best denotes the fitness value of the best solution 

discovered thus far. Additionally, to augment exploration within the search space during the initial stages and 
to emphasize exploitation of the best solutions identified as the algorithm progresses towards completion, the 
parameter pa is updated as follows:

Where pa(k) represents the switching parameter pa at the kth iteration; [pamin,pamax] signifies the range within 
which pa fluctuates with pamin set at 0,01 and pamax at 0,5; Niter denotes the highest number of iterations that 
are permitted. Finally, a greedy technique is used to create the next-generation solution. Every cycle ends with 
an update to the best solution found thus far. The pseudo-code in Algorithm 1 can be used to explain the steps 
of the improved CS algorithm.

Particle Swarm Optimization (PSO)
The Particle Swarm Optimization (PSO) algorithm is a population-based stochastic optimization technique 

that is employed as a global search strategy, much like the Cuckoo Search algorithm. It takes inspiration from 
the gregarious and cooperative behaviours seen in a flock of birds. Owing to its simple graphical representation 
and very few tunable parameters, PSO has become one of the most used methods, effectively solving a wide 
range of optimization issues. However, one significant disadvantage of PSO is its susceptibility to being trapped 
within local optimal solution regions, a concern that has been extensively discussed in comprehensive reviews. 
In the PSO algorithm, each individual, referred to as a particle, embodies a potential solution within a given 
population termed as a swarm. These particles are continually updated based on their own experiences and 
the experiences of their neighbouring particles. The corresponding fitness value is used to assess the quality 
of a potential solution. Considering a swarm comprising Np particles, each particle possesses a position vector 
denoted as Xi= {xi1,...,xiC}, a velocity vector Vi= {vi1,...,viC}, It interacts with nearby particles using the best 
position gBest found in the neighbourhood and its own best position pBest found so far. Particles are relocated in 
the search process by the following equations during the kth iteration:

The equations for updating particles in the PSO algorithm involve stochastic weighting of various components 
using random variables r1 and r2, uniformly distributed within the range [0, 1]. These components influence 
velocity adjustment through acceleration coefficients c1 and c2 which respectively scale the impact of cognitive 
and social factors. The inertia weight is denoted as w plays a significant role and the flying velocity is constrained 
within a reasonable range [Vmin, Vmax]. For this study, Vmin is set to -3 while Vmax is set to 3 imposing limits on 
particle movement. To enhance the PSO algorithm’s performance is adopted to generate a diverse population 
that provides effective guidance for particles. This approach aids in mitigating premature convergence issues 
and bolstering the algorithm’s exploitation capabilities. Specifically, a differential mutation scheme proposed 
is formulated as follows:

Xbest
k, Xbetter

k, and Xworst
k represent, respectively, the top three randomly chosen particles from the current 

population for the tournament. For every iteration, the mutation factors Fp1, Fp2, and Fp3 are individually 
produced from an even distribution throughout the range of (0,1). As a result, throughout the optimization 
process, this method creates triangles in the feasible zone that are different in size and form. Moreover, Xi

(k) 
denotes a convex combination vector with the triangle as its source and has the following definition:
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The actual weights δi, where i = 1,2,3 are determined by δi = pi/(∑i=1
3pi ). Here, p1, p2, and p3 are set as 1, 

rand(0,75,1),and rand(p2,1), respectively. The function rand(a,b) generates a real number between a and b. 
Considering equation (20), two primary advantages emerge. Firstly, by constructing different-sized and shaped 
triangles throughout the optimization process, global exploration capabilities are considerably enhanced and a 
variety of sub-regions around the optimum vectors may be explored. Second, since the convex combination X ̅i

k 
mostly contains the best vector because of its larger weight, it is easier to obtain the global solution assuming 
the optimal vectors are the ones that all the vectors point toward. Additionally, to keep exploration and 
exploitation in a correct balance during the optimization process, improving exploration capacity initially and 
shifting towards increased exploitation later—a parameter control strategy is implemented. In this strategy, c1 
and c2 are both set to 2 while the updating scheme for the inertia weight denoted as w is expressed as follows:

Where w(k) represents the inertia weight during the kth iteration. The range for the inertia weight, denoted 
as [wmin, wmax] is specified with wmin set to 0,4 and wmax set to 0,9. The steps outlining the enhanced PSO 
algorithm are detailed in the fictitious code that Algorithm 1 shows.

Hybrid optimization
Theoretical and experimental studies do not guarantee the prevention of optimization algorithms from 

being mired in mediocre fixes. To increase the accuracy of the findings and lessen the likelihood of being 
trapped in small solution zones, it is usual practice to hybridize or mix several methodologies. We present 
an effective hybrid optimization approach in this research, which we call hybrid leveraging the strategies 
outlined previously. This algorithm is constructed upon two primary steps. The initial step involves identifying 
diversity by using hybrid algorithms, and promising areas inside the search space are located. The second phase 
then concentrates on choosing and revising solutions while maintaining the advantages of both methods. As 
a result, this strategy seeks to accomplish quick convergence while also somewhat reducing the risk of being 
caught up in less-than-ideal solutions. Until the termination requirements are satisfied, these two processes 
are again performed recursively. Algorithm 3 describes the main steps of the hybrid algorithm. Hybridizing CS 
and PSO algorithms has been used in several research to solve global optimization issues. On the other hand, 
the suggested approach has unique features that set it apart from other algorithms in the literature. First, the 
search space’s hitherto undiscovered regions are now better probed by the improved CS and PSO algorithms. 
Secondly, as the hybrid algorithm operates independently during the optimization process, the strengths of 
both approaches are retained. Thirdly, through a simple yet effective selection mechanism, Potential solutions 
avoid going in the wrong way as well as going in the optimal one. Additionally, the sharing of solutions aids the 
hybrid algorithms in compensating for their respective weaknesses.

Algorithm 1: Hybrid optimization
//Standard CS

Input: Initialize population randomly and establish 
Output: Attain optimal gBest
Initialize
       For every nest do
            Establish random cuckoo;
            Compute fitness function;
                 Select nest randomly;
        If f1 is superior to fj then
             Substitute successive nest Xj;
         Else
               Generate cuckoo based on Xi

’;
                Substitute Xj;
                 Evaluate worst nest and construct newer one;
                       Update gBest to successive generation;
Until stopping criteria is fulfilled

//Standard PSO

Input: Initialize population randomly and establish  and p
Output: Attain optimal gBest
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Initialize  
       For every nest do    //Xi
            Establish random cuckoo;
            Compute fitness function;
                 Select nest randomly;
        If  is superior to fj then
             Substitute successive nest Xj
Revise the population size;
Revise inertia weight w
             For every particle Xj do
                     Revise position and velocity;
                      Evaluate fitness function;
Update gBest and pBest
Until stopping criteria is fulfilled

//Hybrid Optimization

Input: Initialize population randomly of particles and cuckoo and establish  and p
Output: Attain optimal gBest
Initialize  
       For every solution do    //Xi
             Execute initialize phases of standard cuckoo search;
                  Sort and hold newer solution;
              Execute initialize phases of standard particle swarm;
                    Update pBest and preserve the solution;
              Determine the present best;
Update gBest successively;
Update X based on finest solution;
Until stopping criteria is fulfilled

Searching process
This study suggests employing the hybrid algorithm as detailed for the optimization phase. Leveraging the 

strengths of both the classification and finding the best answer to the picture classification problem involves 
using both the hybrid algorithm and the model. An overview of the approach used to solve this issue may be 
found in Algorithm 1. As stated earlier, this study is predicated on the assumption that the initiation and bias 
correction issues have been partially addressed. The objective here is to provide a well-approximated solution 
termed a starting point enabling the proposed algorithm to converge swiftly and attain the best possible answer 
worldwide. In this particular paper, we utilize the hybrid-based approach. This decision was mostly made 
because the approach provides a collection of solutions as opposed to a single answer. As a result, it makes the 
suggested algorithm’s beginning point selection more flexible. The coefficient of joint variation (CJV) between 
the WM and GM areas is used as a metric to determine this point. Then, solutions are generated at random 
around this fixed point to produce the starting population. Here is how the CJV is defined:

The formula for CJV involves σ(.) representing the standard deviation and µ(.) indicating the mean intensity. 
A lower CJV value signifies superior performance in this context. To further guarantee that all solutions remain 
inside the search space and avoid diverging behaviour (figure 3), the boundary requirements for the ith possible 
solution are restricted as follows:
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Figure 3. Flow diagram of hybrid model

The boundary conditions for the ith potential solution are subject to the following restrictions: vmin and vmax 
indicate the smallest and largest step sizes that are allowed in each dimension. With a specific setting of vmin= 
-vmax= -3 in this paper. {xmin, xmax} denote the search space’s boundaries in each dimension, which normally 
match the input image’s minimum and maximum intensity values.

To effectively terminate the hybrid algorithm phase, two standards are set: the highest allowable maximum 
number of negligible gains in the fitness value and the number of iterations, fgBest. The phase stops either when 
(iter >Niter) is attained or when (|fgBest, new-fgBest, old| <10-4 occurs 0,1 × Niter times. Lastly, to overcome the 
challenge of selecting parameter β as described, the CJV criterion is utilized to assess the quality of solutions. 
This criterion aids in determining the final solution.

RESULTS AND DISCUSSION
The computational system utilized for this study featured a single GPU system with a P100 GPU, furnished 

with 128 GB of storage space and 25 GB of RAM. The research was conducted using a MATLAB 2020a environment 
for code development. To expedite the model development process, several libraries were employed. These 
included libraries enabling the utilization of built-in layers like Dense and Convolution. Additionally, matplotlib 
was utilized for visualizing graphs depicting accuracy versus epochs, while sklearn was used for the train-
test-split function facilitating the division of the dataset into the requisite sets for training, testing, and 
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validation. These libraries were instrumental in accelerating the development and analysis of the proposed 
model, enabling efficient experimentation and faster results retrieval.

Metrics evaluation
Certainly, accuracy, in the context of evaluating the way a categorization model performs, shows the 

proportion of successfully predicted labels to the dataset’s overall size. The following equation is frequently 
used to define this metric:

In simpler terms, accuracy assesses the capacity of the model to accurately categorize instances across all 
classes in the dataset. It’s a fundamental metric used to gauge the overall correctness of predictions made 
by the model and has a percentage attached to it. When assessing a classification model, the percentage of 
correctly predicted samples in a given class compared to the total number of samples categorized in that class 
is known as precision. Precision may be computed mathematically using the following formula:

Put differently, precision expresses how well a model predicts positive outcomes for a given class and 
demonstrates the model’s capacity to misclassify negative instances as positive within that class. Recall, in the 
context of evaluating a classification model, is the ratio of correctly predicted positive instances to all positive 
cases in a class that happen. Mathematically, recall is calculated using the following formula:

Recall, to put it simply, measures how well the model captures all pertinent instances of a given class by 
accurately identifying all positive occurrences inside that class. The F1 score is a statistic that integrates recall 
and accuracy into one assessment. It is expressed as follows and is computed as the harmonic mean of recall 
and precision:

The F1 score offers an aggregate metric that takes into account both false positives and false negatives by 
striking a balance between recall and accuracy. where there is an unequal class distribution or where recall and 
precision are equally crucial for assessing a model’s performance, it is very helpful. The following definitions 
apply when assessing a classification model for true positive (TP), true negative (TN), false positive (FP), and 
false negative (FN):

True Positive (TP): the quantity of cases that are accurately assigned to a specific class.
True Negative (TN): the number of cases that were correctly classified as not fitting into a certain category.
False Positive (FP): the number of cases that are incorrectly allocated to a particular class when they don’t 

belong there.
False Negative (FN): the number of examples that are wrongly classified as not belonging to a particular 

class when they do.
These metrics are fundamental in evaluating the performance of classification models, helping to assess the 

model’s accuracy in predicting different classes within a dataset.

Experimental outcomes
The experimentation with transfer learning models involved fine-tuning various pre-trained models on the 

BACH dataset and the results were assessed based on accuracy. Here’s a breakdown of the experimentation 
process and observations: Initially, several learning models were experimented with and their accuracy on the 
BACH dataset was evaluated. Models like VGG-16 and VGG-19 despite being relatively smaller in size compared 
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to deeper models demonstrated comparatively better results in terms of accuracy. The fine-tuning process 
involved freezing all layers except the last layer in every model. To get class predictions, a thick layer with 
softmax activation was then implemented. Next, each model’s final two layers were unsealed, and the accuracy 
was determined as more layers were unfrozen progressively. The number of unfrozen layers was optimized 
based on observations. It was noticed that after unfreezing more than four layers, the model’s accuracy didn’t 
improve but rather began to decrease. This trend was attributed to the relationship between the available 
training data and the increasing number of parameters to train. Typically, the training model utilized around 50–
60 epochs to avoid over-fitting after which showed a decline in validation accuracy. Specific parameter settings 
were used with the Adam optimizer, such as setting beta1 to 0,8 and beta2 to 0,99, while the other parameters 
remained unaltered. Among the models experimented with, the fine-tuned G-CNN model showcased the best 
performance achieving a validation accuracy of 95 %. This outcome surpassed the performance of Inception-
Resnet v2 and VGG-19. Notably, it was shown that while processing huge amounts of data, lighter models like 
results with VGG-16 or VGG-19 tended to be better as in figure 4 and figure 5.

Table 1. Accuracy comparison

Model Training accuracy Validation accuracy

G-CNN 99 % 95 %

VGG-16 97,1 % 81 %

Inception V3 97 % 80 %

VGG-19 96 % 81 %

Xception 93 % 71 %

ResNet 110 94 % 73 %

Table 2. Train-Test splits

Model Training accuracy Validation accuracy

50-50 99 % 95 %

60-40 98 % 94 %

75-25 98,5 % 96 %

80-20 98 % 96,5 %

85-15 97 % 97 %

90-10 99 % 98 %

Figure 4. Performance evaluation comparison
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Figure 5. Testing and training data partitioning

Figure 6. Training and validation accuracy

Figure 7. Training and validation loss
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Figure 8. Confusion matrix

Then, the experimentation revealed that smaller models, particularly VGG-16 outperformed deeper models 
like Inception-Resnet v2 and VGG-19 when handling substantial amounts of data in the context of the BACH 
dataset. The fine-tuning strategy involving layer unfreezing up to a certain extent was critical in optimizing the 
models’ performance. Certainly, in the process of finding the optimal solution after fine-tuning the pre-trained 
model, various train-test splitting combinations were experimented with to strike a balance between training 
data sufficiency and preventing over-fitting. Over-fitting, a prevalent challenge during the training phase was 
addressed by introducing the validation dataset idea. After every epoch, the validation set played a crucial role 
in tracking cross-entropy loss and categorical accuracy. This approach helped in assessing whether the model 
was improving its accuracy on unseen data or if it was beginning to overfit the training data. Consequently, when 
the validation accuracy reached a plateau or showed no further improvement, indicating potential over-fitting, 
the training process was halted at that juncture. Table 2 indicates that the 80/20 train-test split configuration 
yielded the best results among the splitting combinations tested. As the number of epochs rose, the accuracy 
of the training and validation processes improved as seen in figure 6. It’s clear that the prototype experienced 
over-fitting, but training was stopped when the validation accuracy plateaued, indicating a diminishing return in 
accuracy improvement with additional epochs. Moreover, the VGG-16, VGG-19, and Inception-ResNet v2 models’ 
validation loss curves are shown in figure 7 providing insights into their performance in terms of minimizing 
loss during the training process. These visualizations were instrumental in understanding and controlling over-
fitting tendencies while training the models on the dataset, ultimately guiding the decision-making process for 
terminating training to prevent over-fitting. Figure 8 shows the confusion matrix.

Classification outcomes
In a binary classification scenario, the model distinguishes between malignant (normal and benign) and 

benign (invasive and in situ) classifications with an astounding 98,6 % accuracy. Upon closer examination, 
however, we find that we just utilize the posterior probability to adjust the frequency array and use these 
probabilities as weighting elements to enhance the input of the final picture classification model. The benign 
class is less accurate than the normal, in situ, and invasive classes. We significantly beat several cutting-edge 
models and obtained an outstanding overall accuracy of 97,50 % in all four classes.

The performance metrics for patches inside each of the four classes. Notably, the accuracy of in situ patches 
is the lowest whereas invasive patches exhibit the best precision. This variance can be attributed to the distinct 
structural characteristics of invasive images in contrast to the other courses. In situ, photos tend to exhibit 
localized infections, which in benign and normal circumstances may resemble lobules. Moreover, during the 
process of converting images into patches, all patches were labelled identically to their respective images. 
This methodology might make it challenging to accurately identify in situ images, leading to lower precision 
scores. However, it’s important to note that in real scenarios, within in situ imaging, a few normal or benign 
areas may be seen. Designating these spots as being in situ could potentially misinform the model, impacting 
the accuracy of patch predictions adversely. In essence, while the precision of in situ patches may appear lower 
due to the challenges associated with their identification in the patch-level classification model, it’s crucial to 
consider the intricacies involved in accurately labelling patches within the in-situ category, as mislabeling could 
adversely affect the model’s predictive accuracy.
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CONCLUSIONS
Using histological pictures to classify breast cancer tissues is a challenging undertaking. In the present 

study, we suggested a deep learning (DL)-based technique designed to use histopathological images for breast 
cancer picture categorization. Since the great resolution of these pictures makes direct processing inside DL-
based models’ resource-intensive, we first devised a model for classifying image patches. This work derived 
image-level accuracy using this patch-level data. Rather than using conventional methods, our strategy was to 
create a new G-CNN. To produce image-level predictions for the four groups of normal, benign, invasive, and 
in situ, this network mapped the patch-level data. When our suggested method’s findings were compared to 
those of earlier techniques, encouraging results were found, suggesting that our method has the potential to 
be a reliable diagnostic tool for the categorization of breast cancer using histological pictures. Our suggested 
paradigm does, however, have certain drawbacks. Notably, training numerous models is necessary to achieve 
validation accuracy, which adds complexity to the overall model architecture and takes time. We propose 
that future work should focus on creating an end-to-end deep learning model that can directly analyze high-
resolution photos as input and provide optimum outcomes. Moreover, instead of giving all of the patches in an 
image the same label, to increase patch-level accuracy, a model that is capable of accurately assigning patch-
level labels may be developed.  Additionally, investigating other histopathology imaging datasets can increase 
the model’s resilience and breadth of use.
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