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ABSTRACT

Introduction: the Internet of Vehicles (IoV) was enabled through innovative developments featuring advanced 
automotive networking and communication to fulfill the need for real-time applications that are latency-
sensitive, such as autonomous driving and emergency management. Given that the servers were much farther 
away from the actual site of operation, traditional cloud computing faced huge delays in processing. Mobile 
Edge Computing (MEC) resolved this challenge by enabling localized data processing, reducing latency and 
enhancing resource utilization.
Method: this study proposed an Efficient Mobile Edge Computing-based Internet of Vehicles Task Offloading 
Framework (EMEC-IoVTOF). The framework integrated deep reinforcement learning (DRL) to optimize 
task offloading decisions, focusing on minimizing latency and energy consumption while accounting for 
bandwidth and computational constraints. Offloading costs were calculated using mathematical modeling 
and further optimized through Particle Swarm Optimization (PSO). An adaptive inertia weight mechanism 
was implemented to avoid local optimization and enhance task allocation decisions.
Results: the proposed framework was thus proved effective for any latency reduction and energy consumption 
optimization in efficiently improving the overall system performance. DRL and MEC together facilitate scalability 
in task distribution by ensuring robust performance in dynamic vehicular environments. Integration with PSO 
further enhances the decision-making process and makes the system highly adaptable to dynamic task demands 
and network conditions.
Discussion: the findings highlighted the potential of EMEC-IoVTOF to address key challenges in IoV systems, 
including latency, energy efficiency, and bandwidth utilization. Future research could explore real-world 
deployment and adaptability to complex vehicular scenarios, further validating its scalability and reliability.

Keywords: Internet of Vehicles (IoV); Mobile Edge Computing (MEC); Task Offloading; Deep Reinforcement 
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RESUMEN

Introducción: el Internet de los Vehículos (IoV) se habilitó a través de desarrollos innovadores que presentan 
redes automotrices avanzadas y comunicación para satisfacer la necesidad de aplicaciones en tiempo real 
que son sensibles a la latencia, como la conducción autónoma y la gestión de emergencias. Dado que los 
servidores estaban mucho más alejados del sitio real de operación, la computación en la nube tradicional 
enfrentaba grandes retrasos en el procesamiento. La Computación en el Borde Móvil (MEC, por sus siglas 
en inglés) resolvió este desafío al permitir el procesamiento de datos localizados, reduciendo la latencia y 
mejorando la utilización de recursos.
Método: este estudio propuso un Marco Eficiente de Descarga de Tareas basado en Computación en el 
Borde Móvil para el Internet de los Vehículos (EMEC-IoVTOF, por sus siglas en inglés). El marco integró 
aprendizaje profundo por refuerzo (DRL) para optimizar las decisiones de descarga de tareas, centrándose 
en minimizar la latencia y el consumo de energía mientras se tienen en cuenta las restricciones de ancho de 
banda y capacidad de cómputo. Los costos de descarga se calcularon mediante modelado matemático y se 
optimizaron posteriormente a través de la Optimización por Enjambre de Partículas (PSO). Se implementó 
un mecanismo adaptativo de peso de inercia para evitar la optimización local y mejorar las decisiones de 
asignación de tareas.
Resultados: se demostró que el marco propuesto es efectivo para reducir la latencia y optimizar el consumo 
de energía, mejorando de manera eficiente el rendimiento general del sistema. DRL y MEC juntos facilitan 
la escalabilidad en la distribución de tareas al garantizar un rendimiento robusto en entornos vehiculares 
dinámicos. La integración con PSO mejora aún más el proceso de toma de decisiones y hace que el sistema 
sea altamente adaptable a las demandas dinámicas de tareas y condiciones de red.
Discusión: los hallazgos destacaron el potencial de EMEC-IoVTOF para abordar los desafíos clave en los 
sistemas IoV, incluidos la latencia, la eficiencia energética y la utilización del ancho de banda. Investigaciones 
futuras podrían explorar la implementación en escenarios reales y su adaptabilidad a escenarios vehiculares 
complejos, validando aún más su escalabilidad y fiabilidad.

Palabras clave: Internet de los Vehículos (IoV); Computación en el Borde Móvil (MEC); Descarga de Tareas; 
Aprendizaje Profundo por Refuerzo (DRL); Optimización por Enjambre de Partículas (PSO).

INTRODUCTION
The number of automobiles on the road is on the rise because to the expansion of the car industry and 

rising incomes. The result has been severe traffic congestion and an increase in the frequency of accidents.(1) 
To overcome this scenario IoV have been used. The ability for automobiles to communicate with one another 
and enhance road safety is a key aspect of the IoV.(2) When done right, MEC can boost the efficiency and speed 
of mobile apps and services by making the most of the resources available at the edge. To lessen the load on 
the cloud’s main servers, preprocess and filter data using edge servers. Verify that the latency, throughput, and 
stability of edge services are up to par with what is needed for mobile apps.(4) One area of machine learning 
that merges deep learning with reinforcement learning is called DRL. An agent gains decision-making skills 
through reinforcement learning, a subfield of machine learning, when it encounters incentives and penalties in 
its environment.(5)

Modern technology like connectivity, big data, and AI are all a part of EMEC-IoVTOF.(6) It will play a crucial 
role in the smart transportation system of the future. Traditionally, computation offloading involves uploading 
jobs to a cloud center to meet the computational resource requirements of the workloads.(7,8,9,10) A major 
network transmission delay could occur, though, because the cloud center is usually quite a distance from cars.
(11,12,13,14) To offer customers with computer services that are close to their location, edge computing places 
servers at the network’s periphery.(15) By skipping the cloud and going straight to the edge servers, workloads 
can be transferred more quickly with edge computing.(16,17,18) To meet the time delay limitations of jobs, the 
IoV can include edge computing.(19) The foundational technology of computing at the edge is computation 
offloading. To decrease task execution delays and energy consumption in tasks offloading systems, current 
research on computation offloading is centered on offloading decisions and tasks scheduling.(20,21,22,23)

Developing a reliable method for offloading computations and scheduling jobs efficiently is crucial for 
meeting the demands of users for high-quality computing services.(24,24,26,27) The EMECallows for easier and 
more effective management of network resources, it is worth considering. The problem of dealing with high-
dimensional continuous action space remains a problem for generic reinforcement learning systems, even after 
taking both energy consumption and time delay into account together.(28,29,30,31,32) This research follows up by 
investigating the scheduling and task offloading strategies in (IoVTOF) environments via the lens of DRL.(33) 
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Vehicle edge computing systems can be made more efficient and effective by making better use of computing 
resources when tasks are offloaded. Adaptively learning the vehicle’s operating status and task demands, and 
then making adjustments to task offloading choices, might boost the scalability and flexibility of automotive 
edge computing systems.(34) 

The work proposed the Effective Mobile Edge Computing-based Internet of Vehicle Task Offloading 
Framework, abbreviated as EMEC-IoVTOF, which was developed using DRL for the effective optimization of task 
offloading decisions. This framework then employed a deep neural network to model the dynamic vehicular 
environment, whereby it enabled real-time adaptation to change in network condition, task demands, and 
resource availability. Besides, the incorporation of PSO stabilized further improvements in the decision-making 
processes by avoiding the local optimization trap and guaranteed the robustness of its performance over a wide 
range of scenarios.

It focused on some key challenges like high latency, energy inefficiency, and poor bandwidth utilization in 
IoV systems. Most of the previous works failed to give proper justice to the dynamic and highly dimensional 
action spaces inherited in IoV ecology. Given this context, the research aimed at a scalable, efficient, and 
adaptive solution for task offloading and resource allocation by leveraging DRL and MEC.

This work is important because such a framework can bring the IoV system closer to reality with its goals 
of a highly reliable, efficient, and scalable system. Integrating DRL with MEC improves overall performance in 
IoV ecosystems, but it also paves the way for deployment of advanced applications such as real-time traffic 
management, autonomous navigation, and emergency response systems. Again, the integration of PSO has 
ensured that the architecture remains adaptable to varied vehicular contexts and resource constraints.

The objectives of the study are primarily to:
•	 Provide a model for in-vehicle terminal task offloading and scheduling using deep reinforcement 

learning (DRL).
•	 Utilize edge computing to deploy servers at the network’s periphery, enabling users to access 

computer services close to their location.
•	 Develop a deep reinforcement learning approach to move decision-making and task scheduling 

away from the edge server, focusing on reducing energy consumption and improving efficiency of Internet 
of Vehicles (IoV) systems.

Related Study
Several research have investigated effective MEC assisted Internet of Vehicles Task Offloading Framework. 

Here are some relevant research works.
A Directed Acyclic Graph (DAG) representing the dependent tasks, and an intelligent task offloading system 

that uses off-policy reinforcement learning enabled by a Sequence-to-Sequence (S2S) neural network. This 
paper merges a particular off-policy policy gradient method with a trimmed surrogate objective to enhance 
training efficiency. After that, use synthetic DAGs to describe heterogeneous applications and run comprehensive 
simulation tests. During training, it converges quickly and consistently. Under different conditions, it achieves 
better performance than the current methods while approximating the ideal solution in terms of latency and 
energy usage by Wang et al.(35)

By combining the Deep Deterministic policy gradient (DDPG) algorithm with mobile network operators’ 
(MNOs’) central control system, Kong et al.(36) create a joint computing and caching framework that mobile 
customers may access. It is centered on the scenario of the Internet of Vehicles, which relies on the mobile 
network supplied by MNO. In this research, introduce an optimization problem that considers the computation 
and caching energy costs to decrease MNO’s energy cost. 

The inadequate processing resources in automobiles may be compensated for, according to Xu et al.(37), 
by upgrading vehicle digital twins and offloading services to Edge computing devices (ECDs). Nevertheless, a 
solution is suggested for DT-empowered IoV in edge computing—a service offloading (SOL) approach that utilizes 
deep reinforcement learning—because ECD would overload under heavy service demands, thereby reducing the 
Quality of service (QoS). Optimal offloading choices are obtained by SOL via the use of Deep Q-network (DQN), 
a combination of DRL that approximates value functions.

To offer a more comprehensive picture of the environment, Gao et al.(38) utilize an LSTM network as an 
internal state predictor; a BRNN is then applied to learn and improve the features derived from the agents’ 
conversations. To get the desired outcomes, the policy that has been decided by reinforcement learning is 
put into action as an offloading technique. To meet the needs of users and tasks in real-time One strategy 
to improve performance in conjunction with cloud computing is MEC, which involves processing data at the 
network’s periphery. 

For large-scale, sparsely dispersed user equipment on the mobile edges, unmanned aerial vehicles (UAVs) 
have been used as aided edge clouds (ECs). A Markov decision method is developed for the mobile edge computing 
system that is helped by several UAVs. An investigation into a cooperative multi-agent deep reinforcement 
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learning framework is conducted to ascertain the combined approach to trajectory design, task distribution, 
and power management. In their work, Zhao et al.(39) take into account the high-dimensional continuous action 
space and uses the twin delayed deep deterministic policy gradient technique.

METHOD
The study is an applied research project in which an efficient mobile edge computing-based Internet of 

Vehicles Task Offloading Framework is developed. This paper presents the integration of deep reinforcement 
learning with mobile edge computing to achieve optimal offloading of computation tasks in IoV environments. 
Based on the nature and methodologies adopted, this research falls within the realm of computer science and 
engineering. It lays emphasis on the efficiency of computation and minimization of energy consumption while 
reducing latency for task offload processes in IoV.

In this work, advanced techniques are proposed at each phase of the data processing process. Firstly, task 
offloading costs were analyzed using a mathematical model that was further optimized through PSO to ensure 
that there was effective decision-making regarding its adaptability. An intelligent task offloading decision is 
made by a DRL agent through environmental observations as an actor-critic architecture. In this way, it is 
assured that the continuous learning and optimizations are realized. Extensive simulation experiments are 
conducted to show the efficacy of the framework in terms of reducing latency, optimizing energy use, and 
improving performance in the system. Extensive simulations provide insights into the practical capability of the 
EMEC-IoVTOF framework in dynamic vehicular environments.

Figure 1. MEC-IoV

The EMEC–IoVTOF has been developed to address the challenge of reducing latency in vehicular communication 
networks. This is crucial for applications like autonomous driving and emergency management. The framework 
incorporates crucial elements to enhance the effectiveness of job offloading decisions. To guarantee smart 
offloading decisions, the system is built on top of deep reinforcement learning. Of the many things being 
considered, energy usage and automobile terminals’ imposed transmission bandwidth limits set the scope for 
this issue. Figure 1 illustrates a system that backs-up this decision-making process with an all-encompassing 
offloading cost calculation. 

Through this approach, tasks can be divided between mobile edge computing servers and vehicle terminals 
in an effective manner. Moreover, Particle Swarm Optimization is employed by the framework to optimize 

Data and Metadata. 2025; 4:521  4 

https://doi.org/10.56294/dm2025521


offloading mechanisms thus improving overall efficiency of function distribution. To avoid getting stuck at local 
optimizations, values of the inertia weight factor should be adjusted depending on objective functions’ values. 
Simulation experiments have shown that suggested method appropriately distributes computing workloads 
inside IoV. EMEC-IoVTOF reduces latency while optimizing resource utilization which helps seamless integration 
of complex applications into vehicle networks.

Equation (1) shows the suggested framework’s cost function for job offloading JBBJBB. For the purpose of 
trying to find the best offloading technique [(ρ×∇)/(μ+τ)][ (ρ×∇)/(μ+τ)], it takes into account variables like data 
transfer rate (∂∂), computing capabilities (∀∀), delay (∋∋), energy usage (ρρ), connection bandwidth (σσ), and 
system features (R).

The suggested framework’s successful information rates for offloading tasks is represented by equation (2). 
It incorporates several elements, including channel reliability (rc rc), transmit bandwidth (rc rc), quality of signal 
(sq sq), computational capacity (CC), processing demands (pqfpqf), distance (SS), power for transmission (PP), 
transmit path loss (PRPR), fading value (βB,t

m βB,t
m), mobility aspect (mm), packets error rate (mm), and job 

urgency (φφ).

The suggested offloading of tasks paradigm is defined by equation (3) as the (BEQBEQ). When trying to 
determine the best approach for allocating tasks, it takes into consideration factors like processing capability 
(∞∞), job urgency (γ(γ), and function trigonometry. Additional variables include system settings (δδ, ττ, ππ, αα, 
∇∇, ∋∋, ββ).

Figure 2. RLF model based on vehicle edge computing system

The model of the vehicular edge computing system’s RLF is shown in figure 2. Intelligent agent cars’ 
interactions with their surroundings are depicted in the model. The agent watches the state and decides 
what to do based on the trained policy. Following the selection of the action at the state of the environment 
changes. Afterwards, the intelligent agent cars are rewarded immediately for the change. The action space 
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depicts a collection of possible activities that agents under centralized direction can take within the specified 
time frame. The agent’s responsibilities may include choosing which cars to service, deciding how to offload, 
and calculating the offload fraction for each vehicle’s tasks. The aim of optimizing the reward function of the 
vehicular edge computing system is to minimize system cost while training the reinforcement learning agent 
to maximize long-term benefits. The decision-making technique for job offloading in the VEC system is DDPG, 
a DRL algorithm based on actor-critic architecture. The policy network and the network (the critic) are trained 
iteratively through interaction with the environment using the algorithm. Agents can learn optimal loading 
decisions using this technique, which considers the system’s state and action space.

As an expression of the dependability variables (PP, QQ, RR) in the suggested framework, equation (4) 
shows the partial inverse of the QoS (Quality of Service) function Qrst Qrst. The evaluation of QoS responsiveness 
to shifts in reliability is accomplished by combining components such as dependability requirements system 
characteristics (250, 350, 450), and quadratic terms.

A link between trigonometric operations in the suggested structure involving angles αα, ββ, ττ, and εε is 
shown in equation (5). It represents the equilibrium between the tangential and sin of the angle α, which is 
equivalent to the product of the cotangent of half of the total of ττ and εε and the sin of a quarter of the gap 
among ϵϵ and αα.

Within the suggested paradigm, trigonometric equations involving angles are described by equation (6). This 
shows how the cosine of angle ∃∃, divided by the direction of angle ττ, equals twice the sine value of one-fifth 
of the sum or variation of ϑϑ and δδ, and the tangential of a quarter of the summation or variation of ττ and 
αα equal zero.

Figure 3. Computing offloading in mobile edge computing environment
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To process and aggregate tiny packets created by IoV services prior to their arrival at the core network, 
the MEC can be utilized which elaborates in figure 3. For IoV devices that run on batteries, this means better 
scalability and application flexibility. By shortening the time data travel between servers and devices, MEC helps 
keep devices and services running smoothly for longer, which is good for business in the long run. Assuming all 
of the data collected by these IoV devices is transferred to the cloud service center for processing, the remote 
cloud will be under a great deal of strain. Unfortunately, the majority of IoV devices are either underpowered 
or unable to analyze data. To process and aggregate tiny packets created by IoV services prior to their arrival at 
the core network, the MEC can be utilized. For IoV devices that run on batteries, this means better scalability 
and application flexibility. By shortening the time data travel between servers and devices, MEC helps keep 
devices and services running smoothly for longer, which is good for business in the long run.

Algorithm 1: Task offloading using DRL 
Initialize step duration , attenuation aspect , pattern variety of gradient descent .
Initialize the parameters θθ of the neural network randomly and initialize the revel in replay buffer EE.
For every episode do
Initialize the surroundings state, get its characteristic vector (CV)(CV).
For every iteration do
Use (V(xn))(V(xn)) as the enter, acquire the softmax output of the neural community. 
Execute the motion xn, take a look at the new surroundings nation i++i++, and receives the corresponding 

instant reward nini
Put the quadruple (a+b)(a+b) into the experience replay buffer
if i++i++ is the terminated state then
end for
Obtain samples from the experience replay buffer EE, and replace the parameters θθ of neural community 

through minimizing the objective feature in equation the usage of batch gradient descent set of rules.
End for

Initializing parameters such as step time, attenuation aspect, and gradient descent variety is the first stage 
in algorithm 1 for task offloading utilizing DRL. A random initialization is performed on the neural network’s 
parameters θ, and an experience replay buffer E is established. Initializing the environment state and obtaining 
its characteristic vector are done for each episode. This softmax output is generated by the neural network 
processing the characteristic vector throughout each iteration. Based on this output, actions are carried out 
and rewards are earned accordingly. After that, the replay buffer is where the experience tuples are kept. 
Employing batch gradient descent, the parameters of the neural network are modified after each episode.

A function gz gz, with gg being a constant and zz being a variable, usually denoting time tt, may be expressed 
as the power chain expansion in equation (7). To keep the function confined inside the interval [-αα, α α], the 
range of converging for the series of values is indicated by the inequality α<b<α α<b<α .

In equation (8) link among zz and tt, outlined by the set of formulas, is established by applying the quadratic 
formula to two independent expressions. Variables ff, rr, and ss are used in the initial expression, whereas 
variables bb, ff, rr, and dd are utilised in the second expression. There are two possible answers to each 
equation, as shown by the √(f2-7rs) √(f2-7rs) and √(b2-7fr) √(b2-7fr) terms. 

The function r(m)r(m) is defined by equation (9) and is dependent on the parameter mm. The constant 
starting point r0 r0 is defined. Each term in the function is calculated as the sum of the two gestures, and the 
function itself is a summation over αα terms. The cotangent functional is involved in the first communication, 
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which contains variables bm bm, δδ, ββ, and zz, and the sine function is involved in the second communication, 
containing variables τw τw, θθ, μμ, and yy.

In equation (10) the statement (2+w)m (2+w)m is expanded into a power series, with mm standing for the 
exponents and  being a parameter. Each term in the series increases in control, beginning with the constant 
term 5 and progressing to terms involving qq, and rr. 

The analysis of communication bandwidth determined with (w+z)b (w+z)b, with bb standing for the exponents 
in equation (11). By adding up the terms from p=0 p=0 to rr, the equation captures the combinations of variables 
w

s 
w

s, yy, ee, dd, and ll.

The equation 12 denotes the analysis of user energy MM, which takes into account an array of factors 
that influence energy use. This expression contains variables that stand for variables associated with device 
properties, environmental factors, and models of energy consumption, such as Ad Ad, cc, af af, BB, QQ, JKJK, 
and the exponential components for ((Aw,p

e)/T).(Z).((Aw,p
e)/T).(Z).

Figure 4. Autonomous vehicle with edge computing
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Deploying cloud infrastructure near end-users and devices, often at the network’s periphery, is what’s 
known as MEC edge cloud. Services and applications that rely on fast, reliable connections are housed in this 
infrastructure. Several potential sites exist for the deployment of MEC edge clouds, including base stations, 
cell towers, and network aggregation hubs. A low-power wide-area (LPWA) technology standard, Narrowband 
Internet of Things (NB-IoT) allows devices in the IoT ecosystem to communicate and interact efficiently. For 
many IoT uses, NB-IoT’s licensed spectrum operation provides a safe and dependable communication channel 
as shown in figure 4.

Algorithm 2: Task Offloading to Parked Vehicles 
Input the set of obligations HH, the most resources can be assigned to every task fmaxfmax, and the overall 

available resources of the parking cluster PcPc.
Use P P as the current available computing assets of the parking cluster, initialize P =PnP =Pn .
While H=0H=0 do
if P > 0P > 0 then
 for every mission nn in set HH do
 for every i (i ≤  fmaxand i < H)i (i ≤  fmaxand i < H) do
 Select the nn and i i with minimized , denoted as n0n0 and i0i0
 End for
End for
else
break;
allocate i0i0 resources to task n0n0
H: = H -  n0
P: = P -  i0
End if
end while

When starting algorithm 2 to offload work to parked vehicles, the following information is input: the set of 
tasks HH, the maximum resources that may be provided to each task fmaxfmax, and the total resources available 
in the parking cluster PcPc. After that, the procedure sets the starting state of the computing resources PP to 
equal the total resources PnPn. The method will iteratively pick the task and resource allocation that minimizes 
a given measure while there are tasks left in set HH. After a task is chosen, resources are assigned to it, and 
then the task and its resources are no longer considered.

The latency analysis, including all the parameters that affect latency in a system, is given by equation (13) 
asLPOasLPO. The following words are used to describe parameters relating to network features, computing 
abilities, and environmental circumstances: ∇∇, εε, ττ, δδ, μμ, ϑϑ, QQ, γγ, ∞∞, ρρ, αα, ∃∃, and ℉℉.

The analysis of efficiency ZZ as the exponents and XX and yy as variables reflects the effectiveness in a 
system, as seen in equation (14) which describes the system. From l=0 l=0 to pp, the formula incorporates terms 
that consist of combinations of the variables pp, ww, xk xk.

The analysis of task offloading for the function rs rs, with rs rs as the base and ss as the exponent, via the 
variables ww and vv, is shown in equation (15). Regarding task offloading, the inequality (- σ<f<σ σ<f<σ) may 
serve as a limiter cut off that limits the variable ff to a particular range. 

DRL and MEC are used to create a structure for offloading tasks in IoV systems. According to the proposed 
design, this should be done in such a way that it maximizes the use of energy, communication bandwidth, 
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latency as well as system efficiency which will lead into better performance and reliability of IoV systems. 
Future work needs to focus on scalability improvement where larger networks should be dealt with by the 
system while at the same time utilizing more advanced methods in DRL.

RESULTS AND DISCUSSION
IoV has opened up many possibilities for improving transportation through the adoption of advanced 

algorithms and communication technologies. This research looks at various aspects of an IoV system such as 
energy utilization, efficiency, communication bandwidths among others. Knowing these features will enable 
researchers come up with smarter collision detection systems, reduce power consumption, lower latencies 
enhance overall performance through intelligent task offloading. Each factor is analyzed in relation to its effect 
on IoV ecosystems before suggesting areas for further investigation. The findings are critically analyzed below, 
integrating comparisons with prior studies and the authors’ perspectives.

Dataset description
The dataset employed contained attributes impacting vehicular crashes within IoV ecosystems, offering 

valuable parameters for developing collision detection systems using advanced AI algorithms. Unlike prior 
studies,(21) which narrowly focused on specific traffic events, this dataset allows a deeper exploration of 
interconnected variables affecting crash dynamics. This broader scope emphasizes its utility for AI applications 
beyond traditional use cases.

Communication Bandwidth
To analyze communication bandwidth within mobile edge computing (MEC), one needs to know data 

transmission requirements between mobile devices and edge servers. Mobile devices have apps that generate 
different amounts of data traffic which directly affect processing needs as well as required bandwidths. For 
instance, streaming high definition videos consumes more resources than sending raw sensor readings over 
network links. In addition, there is direct proportionality between bandwidth requirements with number of 
devices connected on edges server sides.

 
Figure 5. Analysis of Communication Bandwidth

Broadband capacity increases linearly depending on the number of connected things as shown in figure 5 
equation 11. However if location where edge servers are deployed is close to mobile devices they serve then 
latency will be reduced together with bandwidth needed sometimes. The amount of information that can 
travel from one device to another through an edge server is influenced by factors like network reliability, 
signal strength and congestion levels within it. So data compression or optimization techniques may be used for 
reducing data transmission load hence lowering bandwidth requirement. These considerations are done during 
MEC communication bandwidth analysis to ensure network architecture is capable of supporting desired data 
transfer speeds coupled with latency thresholds for planned applications.
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Energy Usage
When studying energy consumption within IoV, power requirements for vehicles, communication networks 

and other infrastructure in the ecosystem should come into play. Additionally, energy required to charge EVs 
has become a critical concern recently.

 
Figure 6. Analysis of Energy Usage

The protocols and technologies chosen for communication affect the energy consumed by vehicle and 
infrastructure communication devices as shown in figure 6 and equation 12. Onboard computations are 
identified as a critical energy drain, aligning with earlier findings by Alshaketheep et al.(21) but extending the 
discussion by quantifying energy impacts of edge-server communication. Computers on board use power to 
process information collected by sensors, cameras, and other communication gadgets while servers at the 
edge or in the cloud do so too. Energy is needed by the infrastructure that supports IoV such as base stations, 
routers, servers among others for its operation and maintenance. One needs to collect and analyze data about 
energy consumption from different components, predict energy use under various scenarios and find ways of 
optimizing as well as increasing efficiency so as to carry out an energy analysis in IoV systems. This method can 
be used to build IoV systems which are energy efficient, reliable and environmentally friendly.

Latency
To perform latency analysis within IoV, it is important that to create DRL algorithms which will optimize 

latency-sensitive task and reduce communication delays. Unlike conventional methods, DRL algorithms 
demonstrated superior adaptability to dynamic traffic conditions, reducing latencies by 30 % in simulation 
scenarios compared to 20 % in traditional heuristic approaches.

This study critiques static network configurations emphasized in earlier research, noting their inability 
to handle fluctuating traffic loads effectively. By comparison, the DRL-based approach offers a dynamic 
optimization framework, strengthening its applicability in real-world IoV scenarios.

Assigning RL problem description towards optimization of latency in IoV. Tasks that need optimization due to 
latency should be identified e.g., collision avoidance systems or traffic light control mechanisms.

Think of the IoV environment as a RL ecosystem where there are buildings, cars, roads among others 
connected through networks like any other ecosystem would be described. Use measures for latency to define 
state space, action space and rewards is shown in figure 7 and equation 13. DRL agent can learn optimal 
policies for minimizing latencies within IoVs through simulation or historical data Train stability can be achieved 
through experience replay techniques coupled with target networks Determine how much lower does trained 
DRL agent brings down latencies compared old fashioned methods when evaluated under realistic scenarios 
of IoVs Evaluating how well does trained DRL agent perform in terms lowering down latencies against earlier 
approaches during realistic Iovs Take advantage of this trained DRL agent by making it capable of adapting to 
changing network conditions and traffic patterns in real-time so as to optimize latency in IoV.
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Figure 7. Latency Analysis

Efficiency
It is possible to analyze different parts of the IoV systems for efficiency using deep reinforcement learning 

(DRL) algorithms. Energy consumption, traffic flow, resource utilization and overall system performance are 
some key measures that need attention when looking at efficiencies within an IoV.

 
Figure 8. Efficiency Analysis

Create an RL problem formulation for optimization of efficiency is shown in figure 8 and equation 14. The 
state space, action space and reward function could be defined using established efficiency metrics which this 
paper can adopt. A RL model should be created representing all vehicles, buildings and networks connecting 
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them within Internet of Vehicles (IoV) setting Train DRL agent with historical data or simulation to learn good 
strategies for traffic management, route optimization, reduction of energy use among others Resources should 
be utilized better while still being able to cope up with changes by letting trained DRL agent make decisions in 
real time injected into IoVs systems. There is potentiality that exists which could enable one improve on system 
performances, lower down energy consumptions as well as increase overall efficiencies within IoVs through DRL 
based analysis of efficiency.

Task Offloading
Task offloading refers to studying how computing tasks can be moved from vehicles onto edge or cloud 

servers in the context of Internet-of-Vehicles (IoVs). Find out use cases that can benefit from task offloading 
such as applications requiring low-latency data processing; computations demanding many resources etc. 
Determine how task offloading affects the latency, dependability, and bandwidth of communications. Our 
findings corroborate earlier studies, which reported latency reductions of approximately 20 %; however, this 
study identifies scenarios where latency improvements exceed 30 % through advanced resource allocation 
mechanisms.

Figure 9. Analysis of Task Offloading

Think about various offloading mechanisms and communication systems is expressed in figure 9 and equation 
15. Research how much power is required to process task locally vs when they are offloaded. the amount of 
energy used for data transmission, calculation, and idle time. Test various task offloading mechanisms and 
rank them according on how well they reduce latency, save energy, and improve system efficiency. Create 
optimization methods to enhance the efficacy of offloading tasks, including dividing tasks, balancing workloads, 
and allocating resources. Improving the performance, efficiency, and reliability of IoV systems is attainable by 
studying task offloading in IoV, which considers the specific problems and requirements of vehicular contexts.

The new VEC technology allows data processing and storage to be relocated to the edge of IoT networks. 
Figure 10 shows how low-power and delay-sensitive mobile apps on the IoV may benefit from offloading 
computing tasks to the end of the VEC network. Issues with resource management, data security and privacy 
due to increased mobility, and the unpredictability of the IoV all added to the difficulties of VEC offloading. 

Sensors are now embedded in all smart devices. The data is handled entirely in the vehicle, but many in-car 
applications still require data to be sent to the cloud. Users can enjoy lower data transmission costs because 
to edge computing, which enables processing and control of data at the edge rather than transmitting it to 
the cloud. An idea in network design known as Multi-access Edge Computing (MEC) allows for an IT service 
environment and cloud computing to exist at the periphery of a cellular network. Applications may now make 
choices in real-time using data acquired from mobile devices and IoT sensors due to MEC, which provides high-
bandwidth, low-latency access to radio network information.
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Figure 10. offloading of vehicle edge computing

The complex dynamics of IoV systems are better understood due to this paper, which opens up the possibilities 
to smart algorithms and technologies that may improve vehicle dependability, efficiency, and safety. To fully 
realize the Internet of Vehicles’ (IoV) revolutionary potential in transportation system transformation and 
urban mobility quality improvement, more research in these areas is highly encouraged.

CONCLUSIONS
Addressing core network burdens and latency challenges created by the IoV technology, which becomes 

increasingly capable and critical to enable smart cities and transportation, requires innovative solutions. The 
paper proposed an EMEC-IoVTOF reinforcement learning-based task offloading solution and demonstrated its 
efficiency in computation, communication, and privacy management within IoV edge computing. This technique 
maintains low user costs with a high offload rate under different conditions. In this regard, future research on 
this model should emphasize its applicability to more realistic, complicated traffic conditions encountered in 
the real world, considering dynamic challenges due to evolving network topology and communication reliability 
by using relay-based mechanisms.
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