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ABSTRACT

Introduction: motor vehicle theft poses significant challenges in urban areas, particularly in large metropolitan 
cities like Surabaya, Indonesia’s second-largest city. Surabaya’s strategic economic role makes it a hotspot 
for criminal activities, including motor vehicle theft, driven by various socio-economic factors.
Method: this study utilizes the Space-Time Autoregressive Integrated Moving Average (STARIMA) model to 
predict motor vehicle theft cases across five sub-regions in Surabaya, covering the period from January 2019 
to December 2023. The STARIMA model, which incorporates both temporal and spatial dependencies, offers 
a more robust framework for crime prediction compared to traditional models like ARIMA. The results show 
that STARIMA effectively captures the spatio-temporal dynamics of crime, providing valuable insights for law 
enforcement to develop targeted strategies that enhance public safety.
Results: the model’s performance was evaluated using the Root Mean Square Error (RMSE), indicating its 
suitability for accurate and actionable crime forecasting in Surabaya. Based on the RMSE value, the best 
model obtained is STARIMA (1,1,2) with a Uniform Location weighting matrix.
Conclusions: this STARIMA (1,1,2) model, it is used to predict motor vehicle theft incidents in West Surabaya, 
Central Surabaya, South Surabaya, East Surabaya, and North Surabaya. The forecast value carried out is for 
a period of five months into the future. Case predictions for the next five months show fluctuations in each 
region of Surabaya, with the highest regions in succession being North Surabaya, East Surabaya, and South 
Surabaya.

Keywords: Crime; STARIMA; Space-Time Analysis; Spatial; Temporal.

RESUMEN

Introducción: el robo de vehículos de motor plantea importantes problemas en las zonas urbanas, en particular 
en las grandes ciudades metropolitanas como Surabaya, la segunda ciudad más grande de Indonesia. El papel 
económico estratégico de Surabaya la convierte en un foco de actividades delictivas, incluido el robo de 
vehículos de motor, impulsadas por diversos factores socioeconómicos.
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Método: este estudio utiliza el modelo de media móvil integrada autorregresiva espacio-temporal (STARIMA) 
para predecir los casos de robo de vehículos de motor en cinco subregiones de Surabaya, que abarcan el 
período de enero de 2019 a diciembre de 2023. El modelo STARIMA, que incorpora dependencias tanto 
temporales como espaciales, ofrece un marco más sólido para la predicción del delito en comparación con 
los modelos tradicionales como ARIMA. Los resultados muestran que STARIMA captura de manera eficaz la 
dinámica espacio-temporal del delito, lo que proporciona información valiosa para que las fuerzas del orden 
desarrollen estrategias específicas que mejoren la seguridad pública.
Resultados: el rendimiento del modelo se evaluó utilizando el error cuadrático medio (RMSE), lo que indica 
su idoneidad para realizar pronósticos precisos y prácticos de delitos en Surabaya. Según el valor RMSE, el 
mejor modelo obtenido es STARIMA (1,1,2) con una matriz de ponderación de ubicación uniforme.
Conclusiones: este modelo STARIMA (1,1,2) se utiliza para predecir los incidentes de robo de vehículos de 
motor en Surabaya occidental, Surabaya central, Surabaya meridional, Surabaya oriental y Surabaya norte. 
El valor de pronóstico realizado corresponde a un período de cinco meses en el futuro. Las predicciones de 
casos para los próximos cinco meses muestran fluctuaciones en cada región de Surabaya, siendo las regiones 
con mayor incidencia en sucesión Surabaya Norte, Surabaya Este y Surabaya Sur.

Palabras clave: Crimen; STARIMA; Análisis Espacio-Temporal; Espacial; Temporal.

INTRODUCTION
Surabaya, Indonesia’s second-largest city, is a major metropolitan hub with extensive infrastructure, making 

it a crucial economic center. However, this also makes it a prime target for various crimes, particularly motor 
vehicle theft. The city’s large population and economic significance attract many people to live and work there, 
but the imbalance between job availability and population growth has led to an increase in criminal activities 
as some residents resort to crime to meet their needs.(1) In 2022, Surabaya experienced a 28,51 % increase in 
criminal cases, with motor vehicle theft being one of the most prevalent, resulting in significant financial losses 
and heightened public insecurity.(2)

Motor vehicle theft is a pervasive issue in urban areas, posing significant challenges for law enforcement agencies 
tasked with ensuring public safety. Traditional time series models like ARIMA (Autoregressive Integrated Moving 
Average) have been widely used for crime forecasting; however, they primarily focus on temporal dependencies 
and often neglect the spatial relationships between different regions.(3) Urban crime exhibits complex spatial and 
temporal patterns, often concentrated in specific areas due to factors such as economic conditions, population 
density, and social interactions.(4,5)

To overcome these limitations, the Space-Time Autoregressive Integrated Moving Average (STARIMA) model 
was developed, which extends the ARIMA model by incorporating spatial dependencies.(6) The STARIMA model is 
particularly well-suited for predicting crimes that exhibit spatial clustering, such as motor vehicle theft, where 
incidents in one area may influence the likelihood of similar crimes occurring in neighboring regions.(3,7,8,9) Recent 
studies have demonstrated the STARIMA model’s superior performance over traditional models in capturing the 
spatio-temporal dynamics of urban crime.(7)

This study aims to apply the STARIMA model to predict motor vehicle theft cases across various regions in 
Surabaya for the upcoming months. By integrating spatial weight matrices that account for the influence of 
neighboring areas, the STARIMA model provides a more accurate and comprehensive approach to crime forecasting, 
making it a valuable tool for law enforcement agencies in cities like Surabaya. The predictions generated by 
the model are expected to offer critical insights for developing targeted crime prevention strategies, thereby 
enhancing public safety and optimizing resource allocation.

METHOD

Data Set
In this study, primary data were obtained from the Surabaya Police Station, covering motor vehicle theft cases 

across five sub-regions—Central Surabaya, East Surabaya, West Surabaya, North Surabaya, and South Surabaya—
from January 2019 to December 2023. The data used in this study are numerical data. Then, to obtain research 
results, several statistical tests are needed to draw conclusions. Thus, this research is the quantitative research.

Space-Time Autoregressive Integrated Moving Average (STARIMA) Model
Before analysis and modeling are carried out, time series data must meet the stationarity test. The 

stationarity test that must be met is stationary in the variance and stationarity in the mean. In this 
research, the Box-Cox plot is used for stationarity of variance. Data needs to be transformed if a value 
of λ≠1 is obtained.(3) Meanwhile, the test used to determine stationarity in the mean is Augmented Dickey-
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Fuller (ADF) test. The assumption test is met if the p-value of each test is less than significance level α.(7)

The STARIMA model was employed for forecasting space-time series data, which is particularly suitable for 
scenarios where both temporal and spatial dependencies exist.(3) STARIMA performs forecasting by incorporating 
these dependencies, where spatial factors play a significant role in the propagation of motor vehicle theft 
cases across different regions in Surabaya. To analyze the STARIMA model, there are three orders that need 
to be determined first: p, which is the temporal autoregressive order identified based on the Space-Time 
Autocorrelation Function (STACF) plot; q, which is the moving average order identified based on the Space-Time 
Partial Autocorrelation Function (STPACF) plot; and d, which is the differencing order.(7) Next, it is determined 
whether the parameters in the model are significant or not. In the space-time model, the best parameter estimate 
to use is maximum likelihood estimation (MLE).(4) To determine the best model, the root mean square error (RMSE) 
was used. The model with the lowest RMSE value is the best model.(5)

As STARIMA models focus on both temporal and spatial forecasting, a spatial weight matrix is utilized to 
incorporate spatial dependencies. Two types of spatial weight matrices were considered in this research: the 
uniform matrix and the inverse matrix. If using the uniform matrix, the weight for each neighboring location is the 
same, while if using the inverse matrix, it uses an inverse comparison with the actual distance so that the weight 
of each location will not be the same.(10) The STARIMA model is expressed as follows:

In this equation, ∇Zi (t) represents the differenced time series for location i at time t, capturing the changes in 
motor vehicle theft rates over time. The parameters p and q denote the orders of the autoregressive and moving 
average components, respectively. The indices k and l represent the time lag and spatial lag, respectively, with 
λk and m¬k indicating the spatial orders for the autoregressive and moving average terms. The parameters ϕkl and 
θkl are the coefficients that quantify the influence of past values and errors, respectively, both in time and across 
space. The spatial weight matrix Wl defines the influence of neighboring regions on the crime rate at location i, 
with ai (t) representing the random error term at time t.

Diagnostic tests were performed to ensure the validity of the STARIMA model. The Ljung-Box test was used 
to assess whether the residuals exhibited white noise, satisfied when the p-value exceeded the significance 
level α.(11) The Shapiro-Wilk test was conducted to verify the normality of the residuals, also satisfied when the 
p-value was greater than α.(12) The model’s performance was evaluated by comparing the Root Mean Square Error 
(RMSE) of the predictions against actual out-of-sample data, determining whether the inclusion of spatial factors 
improved the accuracy of predicting motor vehicle theft cases across Surabaya’s regions.(13)

RESULTS AND DISCUSSION

Exploratory Data Analysis

Figure 1. Time series plot of monthly motor vehicle theft cases across five regions in Surabaya (2019–2023)
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As illustrated in figure 1, the temporal patterns of theft incidents exhibit notable variations, with distinct 
spikes that highlight periods of increased criminal activity. East Surabaya emerges as the region with the 
most significant fluctuations, particularly around early 2021, where theft cases surged dramatically. This spike 
coincides with the relaxation of COVID-19 restrictions, likely leading to increased mobility and opportunities 
for criminal activities.(14) As a major hub for commerce and trade, East Surabaya’s economic activity may 
have contributed to higher theft incidents, further emphasizing the correlation between economic factors and 
crime rates. Similarly, South Surabaya also experienced a notable rise in cases, underscoring the vulnerability 
of densely populated and economically active regions to such crimes. In contrast, West, Central, and North 
Surabaya displayed more stable trends with fewer fluctuations, suggesting either fewer opportunities for theft 
or more effective crime prevention measures. Additionally, the periodic spikes in theft cases, especially during 
holiday seasons, further emphasize the need for region-specific crime prevention strategies and continuous 
monitoring throughout the year.(15)

Spatial Weighting Matrix
The weights used in this study are uniform location weights and inverse distance location weights. These 

two weights are used to obtain significant Moran Index results and the best STARIMA model with the appropriate 
location weights. The uniform location weight matrix is WA, which shows the uniform value among the regions. 
Meanwhile, the inverse distance location weight uses the actual distance between locations which is then 
normalized. This weight is obtained from the inverse of the actual distance, with the latitude and longitude 
position of each region used as the center or centroid. The inverse distance location weight matrix is WB, which 
gives smaller coefficient values for longer distances and vice versa. These two matrices are used to assess the 
spatial relationship between areas in Surabaya in the context of this study.

Spatial Autocorrelation 

Table 1. Moran’s I result test

I E (I) Var (I) P-Value

-0,1027 -0,2500 0,0065 0,0342

Based on table 1, it can be seen that there is spatial autocorrelation in motor vehicle theft cases in each 
region of Surabaya with a p-value (0,0342) < α (0,05), which means that the level of motor vehicle theft cases 
in an area is influenced by the level of motor vehicle theft cases in other areas.

Stationary Test
Data is considered stationary if it has a constant mean and variance over time, so that the situation in the 

past remains relevant to the situation in the present and future. To achieve stationarity, several transformations 
and tests are performed. One of the first steps is to perform logarithmic transformation, especially to handle 
zero or non-positive values in the data of motor vehicle theft cases in Surabaya, as recommended by Atkinson 
et al.(16) This transformation helps in stabilizing the variance and facilitates further analysis.

After logarithmic transformation, a Box-Cox Test was conducted to test for stationarity of variance. The test 
results show that some regions require additional transformation to achieve stationarity of variance and mean.
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Table 2. Lambda result of Box-Cox test and transformation

Region
Transformation Box-Cox 1 (Zt

***) Transformation Box-Cox 2 (Zt
***)

λ Transformation λ Transformation λ

West Surabaya 1 Zt
* 1 Zt

* 1

Central Surabaya 1 Zt
* 1 Zt

* 1

South Surabaya 0,5  √Zt
* 0,5 √(Zt

*) 1

East Surabaya -3 Z*
t
-3 1 Zt

* 1

North Surabaya 0,5  √Zt
* 1 Zt

* 1

Table 3. Augmented Dickey-Fuller test results

Region
Before Differencing After Differencing

τ p-value τ p-value

West Surabaya -2,1225 0,5253 -4,1502 0,0100

Central Surabaya -2,1783 0,5027 -4,2672 0,0100

South Surabaya -2,2615 0,4691 -3,8460 0,0225

East Surabaya -2,0700 0,5465 -4,3023 0,0100

North Surabaya -2,6310 0,3197 -5,3352 0,0100

Based on the results presented in table 2 and table 3, it is evident that three regions in Surabaya—Central 
Surabaya, South Surabaya, and North Surabaya—had lambda (λ) values that were not equal to 1 during the 
initial Box-Cox transformation test. As a result, these regions required further transformations to stabilize 
the variance. Specifically, since the initial transformation did not achieve stationarity in all regions, a second 
Box-Cox transformation was applied, resulting in the data being transformed until it reached the appropriate 
stationary form, denoted as Zt

***. This second transformation ensured that all regions, including those with 
initial λ values different from 1, achieved the required stationarity in variance. Following this, the Augmented 
Dickey-Fuller (ADF) test was applied to assess stationarity in mean. Initially, the data were non-stationary in 
mean, as indicated by p-values greater than 0,05. However, after differencing, the p-values for all regions 
dropped below 0,05, confirming that the data had become stationary in mean. This combined process of 
multiple transformations and differencing was essential to ensure that the motor vehicle theft data from all 
regions in Surabaya were suitable for reliable time series analysis.
 
STARIMA Model Identification

Figure 2. STACF & STPACF plot with uniform location weight matrix

Figure 3. STACF & STPACF plot with inverse distance weight matrix
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The STARIMA model has two orders, namely time order and spatial order. Generally, the spatial order is limited 
to one because each region in Surabaya is neighboring in one city, so that shifts between locations remain in the 
same region, as well as to facilitate interpretation.(17) The STARIMA model was identified using two types of weight 
matrices, namely inverse distance weights and uniform location weights. Model identification is done by analyzing 
the STACF and STPACF plots of the differenced data, looking at the first 10 lags.

Based on the STACF and STPACF plots using inverse distance and uniform location weighting, we observed 
an exponential decay in STACF values over the first 10 lags, indicating reduced autocorrelation as lag increases, 
consistent with STARMA model characteristics. The STPACF plots show a consistent decline at spatial lags 0 and 
1, followed by cutoffs at time lags, suggesting appropriate model order. Therefore, the recommended STARIMA 
models for this data are STARIMA (1,1,1), STARIMA (2,1,1), STARIMA (1,1,2), and STARIMA (2,1,2), with AR and MA 
orders up to 2 based on significant decreases in STACF and STPACF values. STACF and STPACF plot with uniform 
location weight matrix and with inverse distance weight matrix are given in figure 2 and figure 3, respectively.

Parameter Estimation
Utilizing the previously constructed spatial weighting matrices, parameter estimation for each STARIMA model 

combination was conducted using the Maximum Likelihood Estimation (MLE) method. To determine the significance 
of the estimated parameters, a t-test was performed. The results of the parameter estimation and t-tests for 
each model combination are presented in table 4 through table 9.

Table 4. Estimation parameter model STARI(1,1)

Weight Matrix Parameter Estimation ttest ttable Description

Uniform Location ɸ10 -0,4519 -7,9883 1,9690 Significant

ɸ11 0,1170 1,1724 1,9690 Not Significant

Inverse Distance ɸ10 -0,4450 -7,6828 1,9690 Significant

ɸ11 0,1637 1,7079 1,9690 Not Significant

Table 5. Estimation parameter model STIMA(1,1)

Weight Matrix Parameter Estimation ttest ttable Description

Uniform Location θ10 -0,5900 -9,0811 1,9690 Significant

θ11 0,2595 2,3630 1,9690 Significant

Inverse Distance θ10 -0,5950 -9,1493 1,9690 Significant

θ11 0,2615 2,5285 1,9690 Significant

Table 6. Estimation parameter model STARIMA(1,1,1)

Weight Matrix Parameter Estimation ttest ttable Description

Uniform Location ɸ10 -0,1695 -1,5793 1,9690 Not Significant

ɸ11 -0,0007 -0,0032 1,9690 Not Significant

θ10 -0,4128 -3,1933 1,9690 Not Significant

θ11 0,2002 0,8310 1,9690 Not Significant

Inverse Distance θ10 -0,1543 -1,2417 1,9690 Not Significant

θ11 0,1272 0,5202 1,9690 Not Significant

θ10 -0,4188 -2,8537 1,9690 Not Significant

θ11 0,1132 0,4077 1,9690 Not Significant

Table 7. Estimation parameter model STARIMA(2,1,1)

Weight Matrix Parameter Estimation ttest ttable Description

Uniform Location ɸ10 -0,5196 -3,3658 1,9690 Significant

ɸ11 -0,1706 -0,5662 1,9690 Not Significant

ɸ20 -0,2332 -2,4343 1,9690 Significant

ɸ21 -0,1080 -0,6556 1,9690 Not Significant
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θ10 -0,1092 -0,6412 1,9690 Not Significant

θ11 0,4630 1,3953 1,9690 Not Significant

Inverse Distance ɸ10 -0,5360 -2,7526 1,9690 Significant

ɸ11 -0,0938 -0,2832 1,9690 Not Significant

ɸ20 -0,2468 -2,0984 1,9690 Significant

ɸ21 -0,1079 -0,6460 1,9690 Not Significant

θ10 -0,0830 -0,3837 1,9690 Not Significant

θ11 0,3968 1,0683 1,9690 Not Significant

Table 8. Estimation parameter model STARIMA(1,1,2)

Weight 
Matrix Parameter Estimation ttest ttable Description

Uniform 
Location

ɸ10 -0,4388 -1,9890 1,9690 Significant

ɸ11 -0,3447 -1,0286 1,9690 Not Significant

θ10 -0,1694 -0,7136 1,9690 Not Significant

θ11 0,6713 1,8059 1,9690 Not Significant

θ20 -0,1513 -0,8874 1,9690 Not Significant

θ21 -0,1890 -0,8290 1,9690 Not Significant

Inverse 
Distance

ɸ10 -0,5242 -2,4897 1,9690 Significant

ɸ11 -0,3011 -0,9721 1,9690 Not Significant

θ10 -0,0588 -0,2538 1,9690 Not Significant

θ11 0,6886 1,9281 1,9690 Not Significant

θ20 -0,2129 -1,2924 1,9690 Not Significant

θ21 -0,1497 -0,7282 1,9690 Not Significant

Table 9. Estimation parameter model STARIMA(2,1,2)

Weight 
Matrix Parameter Estimation ttest ttable Description

Uniform 
Location

ɸ10 -0,8132 -3,9583 1,9690 Significant

ɸ11 -0,0010 -0,0027 1,9690 Not Significant

ɸ20 -0,2211 -1,7443 1,9690 Not Significant

ɸ21 -0,0743 -0,2942 1,9690 Not Significant

θ10 0,2199 0,9575 1,9690 Not Significant

θ11 0,2866 0,7231 1,9690 Not Significant

θ20 -0,2957 -1,6441 1,9690 Not Significant

θ21 0,1852 0,6128 1,9690 Not Significant

Inverse 
Distance

ɸ10 -0,7040 -2,6420 1,9690 Significant

ɸ11 0,1473 0,3753 1,9690 Not Significant

ɸ20 -0,2458 -1,5282 1,9690 Not Significant

ɸ21 -0,1747 -0,5448 1,9690 Not Significant

θ10 0,0886 0,2957 1,9690 Not Significant

θ11 0,1614 0,3511 1,9690 Not Significant

θ20 -0,1955 -0,8416 1,9690 Not Significant

θ21 0,3408 0,8116 1,9690 Not Significant

Using the t-table to determine parameter significance, it was found that the STIMA (1,1) model with the 
specified weighting matrix yielded significant results. Although some parameters in other models were also 
significant, lower-order models demonstrated better stability. In this study, non-significant parameters were 
retained in the model as the primary focus was on model adequacy, assessed through RMSE values to ensure 
accurate forecasting. Therefore, the significance testing of parameters can be disregarded.(18)
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Diagnostic Check
Assumption of Residual White Noise

Table 10. Test of residual white noise assumptions

Model Weight p-value Decision

STARI (1,1) Uniform Location 0,3940 White Noise

Inverse Distance 0,4187 White Noise

STIMA (1,1) Uniform Location 0,5656 White Noise

Inverse Distance 0,5727 White Noise

STARIMA (1,1,1) Uniform Location 0,6001 White Noise

Inverse Distance 0,5979 White Noise

STARIMA (2,1,1) Uniform Location 0,5922 White Noise

Inverse Distance 0,7007 White Noise

STARIMA (1,1,2) Uniform Location 0,4282 White Noise

Inverse Distance 0,5382 White Noise

STARIMA (2,1,2) Uniform Location 0,4282 White Noise

Inverse Distance 0,5382 White Noise

Table 10 demonstrates that all model combinations, using both uniform location and inverse distance 
weighting matrices, have p-value > α (0,05). This indicates that there is no autocorrelation between residuals, 
meaning the residuals satisfy the white noise assumption.

Multivariate Normal Residual Assumption

Table 11. Multivariate normal residual assumption test
Model Weight p-value Decision
STARI (1,1) Uniform Location 0,5051 Normal Multivariate

Inverse Distance 0,5024 Normal Multivariate
STIMA (1,1) Uniform Location 0,5242 Normal Multivariate

Inverse Distance 0,5089 Normal Multivariate
STARIMA (1,1,1) Uniform Location 0,5270 Normal Multivariate

Inverse Distance 0,5104 Normal Multivariate
STARIMA (2,1,1) Uniform Location 0,5209 Normal Multivariate

Inverse Distance 0,5081 Normal Multivariate
STARIMA (1,1,2) Uniform Location 0,5207 Normal Multivariate

Inverse Distance 0,5047 Normal Multivariate
STARIMA (2,1,2) Uniform Location 0,5207 Normal Multivariate

Inverse Distance 0,5047 Normal Multivariate

Table 11 shows that all model combinations, using both uniform location and inverse distance weighting 
matrices, have p-values > α (0,05). This indicates that the residuals meet the assumption of normal distribution.

The Best Model Selection

Table 12. RMSE values of all models

Model Weight RMSE

STARI (1,1) Uniform Location 73,4610

Inverse Distance 16,8320

STIMA (1,1) Uniform Location 19,7030

Inverse Distance 40,4990

STARIMA (1,1,1) Uniform Location 20,5680

Inverse Distance 18,1570
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STARIMA (2,1,1) Uniform Location 18,4330

Inverse Distance 21,1980

STARIMA (1,1,2) Uniform Location 11,7510

Inverse Distance 203,0640

STARIMA (2,1,2) Uniform Location 6 708,2560

Inverse Distance 4,58873E+26

Forecasting Out-Sample
Before carrying out forecasting, information is provided regarding the transformations applied to this 

research data. Information is given in table 13.

Table 13. Tranformation form and inverse transformation

Region Transformation Form Inverse Transformation

West Surabaya Zt
* Zt= Zt

*-4

Center Surabaya Zt
* Zt= Zt

*-4

South Surabaya √Zt
* Zt= (Zt

***)2 -4

East Surabaya Z*
t
-3 Zt= (Zt

**)-1/3 -4

North Surabaya √Zt
* Zt= (Zt

**)2 -4

The STARIMA (1,1,2) model, applied with uniform location weighting, was used to forecast motor vehicle 
theft cases across five regions in Surabaya, using out-of-sample data from March 2023 to December 2023. Since 
the data utilized for modeling were transformed to achieve stationarity, the forecasted results required inverse 
transformations to return the data to their original scale, as outlined in the table above.

The inverse transformations vary across the regions, depending on the specific transformation applied during 
the modeling phase. For instance, South Surabaya, which initially underwent a square root transformation, 
required squaring after adjustment to restore the original data scale, while Central Surabaya, which had a 
straightforward transformation, simply added a constant value post-modeling.

The forecasting results, shown in figure 4, demonstrate that the STARIMA (1,1,2) model effectively captures 
the temporal and spatial patterns of historical motor vehicle theft data across the regions. The model performed 
well in areas like East and Central Surabaya, where theft patterns are more pronounced and variable, whereas 
regions with more stable or less variable data, such as West and North Surabaya, showed slightly less precision. 
These findings underscore the model’s robustness in predicting crime trends and highlight its potential utility 
for assisting law enforcement agencies in Surabaya with resource allocation and strategic planning.

Figure 4. Time series plot prediction
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Figure 4 shows the forecasting results using the STARIMA (1,1,2) model with uniform location weighting. The 
model successfully captures the temporal patterns of historical data across the five regions of Surabaya: West, 
Central, South, East, and North. The plots indicate that the model is fairly accurate in predicting motor vehicle 
theft cases in Surabaya. The best or closest predictions to the actual data are observed in South Surabaya and 
East Surabaya, where the model closely follows the actual data trends. However, some data points still do not 
fully match or deviate slightly from the actual data, possibly due to the model estimating higher or lower values 
compared to the actual trends. This may be due to sudden spikes or drops in the historical patterns that the 
model did not fully anticipate. Overall, the model provides a good prediction of the temporal patterns in each 
region of Surabaya, effectively capturing the major trends in motor vehicle theft cases across the city.

Forecasting the Next 5 Months

Table 14. Predicted results for the next 5 months

Month and Year West Surabaya Center Surabaya South Surabaya East Surabaya North Surabaya

January 2024 3 3 1 4 2

February 2024 3 4 1 3 7

March 2024 4 2 3 3 4

April 2024 6 6 17 1 15

May 2024 4 2 1 10 2

Table 14 presents the 5-month forecast of motor vehicle theft cases across five regions in Surabaya using 
the STARIMA (1,1,2) model with uniform location weighting. The predictions indicate varying trends across 
the regions. West Surabaya is expected to see a significant rise in cases, peaking at 6 in April 2024, suggesting 
the need for increased security measures. South Surabaya shows the most substantial spike with 17 cases in 
April 2024, highlighting a serious security concern that demands special attention. Central and East Surabaya 
exhibit notable fluctuations, with Central Surabaya peaking at 6 cases in April 2024 and East Surabaya reaching 
10 cases in May 2024, indicating the necessity for flexible security strategies. North Surabaya shows consistent 
increases, particularly in February and April 2024, with 7 and 15 cases respectively, requiring intensified 
preventive measures. Overall, these predictions provide critical insights into the regions that require heightened 
surveillance and preventive efforts, supporting the refinement of future security policies and strategies. This 
research has contributed to time-series data modeling by considering location effects. With the addition of 
location effects, the model can be made more accurate. The limitation of the research is that when adding 
spatial effects, only two weighting matrices are used, namely uniform and inverse. In further research, other 
spatial weighting matrices can be used.

CONCLUSIONS
The STARIMA (1,1,2) model with uniform location weights was selected as the best model based on the results 

of the model performance evaluation with an RMSE value of 11,751. The estimated Autoregressive (AR) and 
Moving Average (MA) parameters indicate that this model is able to capture good time autocorrelation patterns. 
The results of the diagnostic test indicate that this model has also met the assumptions of white noise and 
multivariate normal. Case predictions for the next five months show fluctuations in each region of Surabaya, 
with the highest regions in succession being North Surabaya, East Surabaya, and South Surabaya. These results 
can be a reference for law enforcement and crime prevention strategies in each region of Surabaya, especially 
areas with the highest predictions.
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