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ABSTRACT

Automated image analysis using deep learning techniques helped diagnose epithelial dysplasia in normal 
tissues. This study examined a hybrid approach that combined traditional image processing methods with 
deep learning for accurate tissue classification. A diverse, annotated dataset of epithelial dysplasia histology 
images was created and processed. To mitigate overfitting, a pre-trained convolutional neural network 
(CNN) model was finetuned with optimized hyperparameters. Performance metrics, including accuracy 
and precision, were assessed using an independent test dataset. The Structural Similarity Index (SSIM) 
was applied to enhance image contrast. The optimized deep learning model outperformed conventional 
methods in diagnostic accuracy. The hybrid approach demonstrated significant effectiveness in distinguishing 
epithelial dysplasia in medical images. The results highlighted the potential of integrating deep learning 
algorithms with traditional image processing techniques for automated medical diagnostics. This method 
showed promise for future applications in enhancing diagnostic accuracy and efficiency.

Keywords: Evolutionary Optimization; Metaheuristic; Engineering Design; Leadership.

RESUMEN

El análisis automatizado de imágenes mediante técnicas de aprendizaje profundo ayudó a diagnosticar la 
displasia epitelial en tejidos normales. Este estudio examinó un enfoque híbrido que combinó métodos 
tradicionales de procesamiento de imágenes con aprendizaje profundo para una clasificación precisa de 
los tejidos. Se creó y procesó un conjunto de datos diverso y anotado de imágenes histológicas de displasia 
epitelial. Para mitigar el sobreajuste, se ajustó un modelo de red neuronal convolucional (CNN) preentrenado 
con hiperparámetros optimizados. Se evaluaron métricas de rendimiento, incluidas la precisión y la exactitud, 
utilizando un conjunto de datos de prueba independiente. Se aplicó el Índice de Similitud Estructural (SSIM) 
para mejorar el contraste de las imágenes. El modelo optimizado de aprendizaje profundo superó a los 
métodos convencionales en precisión diagnóstica. El enfoque híbrido demostró una eficacia significativa en 
la diferenciación de la displasia epitelial en imágenes médicas. Los resultados resaltaron el potencial de 
integrar algoritmos de aprendizaje profundo con técnicas tradicionales de procesamiento de imágenes para 
el diagnóstico médico automatizado. Este método mostró potencial para futuras aplicaciones en la mejora 
de la precisión y eficiencia diagnóstica.

Palabras clave: Optimización Evolutiva; Metaheurística; Diseño de Ingeniería; Liderazgo.
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INTRODUCTION
RECENTLY, medical imaging manifested a prominent effort to develop automated systems for detecting 

and analysing microscopic histology images. This field has traditionally relied on the discerning expertise 
of pathologists, who diagnose diseases qualitatively. Digital image processing has enabled the possibility of 
computer-aided diagnosis.(1) The formulation of efficient, reliable algorithmic, and automated methods 
significantly enhances data collection, facilitates research, and aids in diagnosing abnormal tissue changes, 
notably in cancer and epithelial dysplasia. Histopathological tests are important for diagnosing Infectious, 
Inflammatory, and Cancer diseases. Epithelial tissues, which form the linings of internal and external body 
surfaces, frequently manifest pathological abnormalities. Microscopic imaging of these tissues yields critical 
insights into cellular and tissue morphologies, providing valuable information on disease presence, progression, 
and potential prognoses.(2) Central to this endeavor is the accurate analysis of cell morphology, a task greatly 
augmented by image processing techniques. Image processing, an integral part of the broader field of signal 
processing, focuses on manipulating digital images. Cancer is the designation employed for a vast array 
of illnesses with a shared characteristic forming irregular cells that impact existing cells and disseminate 
throughout the organism, as shown in figure 1. In simple terms,(3) the human physique continues to generate 
fresh cells. Occasionally, the proliferation is so rapid that these fresh cells develop in regions where the former 
cells have not yet perished, and this phenomenon is identified as cancer.

Figure 1. The expansion of unusual cells that affect preexisting cells

The primary goals encompass improving visual characteristics, extracting relevant data, and interpreting 
these characteristics for various purposes, from healthcare to surveillance. Image processing is a powerful 
tool for converting unprocessed visual information into an easier format to understand, analyze, or utilize 
through mathematical and computational algorithms.(4) The 21st century has witnessed notable progress in 
imaging technologies and computational techniques. These advancements have resulted in adopting image-
processing methods, especially in histopathological assessments. Histopathological images play a vital role in 
medical analysis, necessitating advanced tools for accurate interpretation.(5) Image segmentation techniques 
are particularly important for processing these images, enabling individual cell analysis to distinguish healthy 
from pathological cells.(6) Features extraction, such as cell shape, size, and texture, is crucial for understanding 
cellular abnormalities. Automation in medical imaging, driven by Deep Learning (DL), is gaining traction to 
improve scalability and reduce human error in diagnosing diseases like cancer with early cellular indicators.(7) 
The internal and external surfaces of the Epithelial cell line of the body are often linked to epithelial cancers, 
characterized by uncontrolled cell growth and the ability to spread to other tissues. The development of 
epithelial cancers usually starts with a precursor condition called dysplasia. However, current methods face 
challenges in detecting and diagnosing various forms of dysplasia. Present screening methods mostly involve 
visually examining suspicious tissues, followed by more invasive procedures like biopsies. Biopsy samples 
are then analyzed histopathologically to identify markers of dysplasia and cancer.(8) These markers include 
metabolic activity, cell thickness, architectural features (depth and density), and nuclear characteristics (size, 
density, and shape). Detecting abnormal tissue changes, like epithelial dysplasia, through histology image 
analysis presents challenges. Visual detection methods have limitations: Dysplasia is not always visible, leading 
to unnecessary biopsies, and diagnosing it can be complex. Hence, image processing techniques are needed to 
assess the disease state in tissue samples accurately. These techniques can achieve higher accuracy in dysplasia 
detection, reducing the need for invasive procedures and improving diagnostic precision.

The main aim of this study is to investigate the approaches utilized in examining the morphological features 
of cells in microscopic histopathological images. This investigation seeks to advance significantly in the medical 
and computer vision domains by introducing an automated image-processing method for detecting epithelial 
dysplasia using Artificial Intelligence and Deep Learning.(9) This research utilizes medical images from the 
Pathology Department at the Jordan University Hospital. This paper proposes a novel approach for computer-
aided medical diagnostics, leveraging DL with image processing to automatically diagnose epithelial dysplasia in 
histopathological images.(10) The methodology integrates traditional techniques with deep learning algorithms 
for image analysis. While the paper acknowledges the role of laboratory preparation and image preprocessing, 
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the core focus shifts to applying a deep learning model for accurate tissue classification. This reduces the 
weakness of the adaptive thresholding and mathematical calculations based on pixel intensity. 

The research explores the optimization of the deep learning model’s hyperparameters to achieve superior 
diagnostic accuracy compared to conventional methods.(11) To achieve the objectives of this study, a series 
of systematic steps and procedures should be considered. Firstly, the initial phase involved a comprehensive 
examination of existing literature and studies in microscopic histology image analysis. This evaluation aimed 
to pinpoint deficiencies in current methodologies that necessitate further exploration and investigation.
(12) Secondly, the collection of data and sample preparation involves gathering data from archived patient 
records. Five hundred digital tissue images representing both normal and cases of epithelial dysplasia were 
obtained from the Jordan Hospital Pathology Department. These images encompass a range of diagnosed cases 
of epithelial dysplasia, such as tubular adenoma polyps with various grades of dysplasia, tubular adenomatous 
dysplasia, and serrated adenoma with low-grade dysplasia. Thirdly, A novel algorithm based on AI DL was 
created to process and automatically diagnose microscopic histology images of epithelial dysplasia.(13) Fourthly, 
the image processing tool available in MATLAB was utilized to apply the analysis and processing. Finally, testing 
the proposed approach reveals the efficiency and accuracy of the selected data sample.

The structure of this paper is organized into sections: The section “LITERATURE REVIEW” discusses a 
comprehensive literature review and critical analysis of previous techniques used in analyzing and automating 
microscopic histology image diagnostics. Section “CLASSIFICATION TECHNIQUES FOR HISTOPATHOLOGICAL 
IMAGES” explores novel methods to automate the diagnosis of histopathological images depicting epithelial 
dysplasia, detailing their development and theoretical underpinnings. Sections “METHOD” and “RESULTS” 
present the proposed approach and the results for diagnosing epithelial dysplasia based on efficiency and 
accuracy. The final section proposes areas for future research in the automated diagnosis of histopathological 
images.

Literature Review
This section gives a comprehensive overview of image processing tools and medical concepts essential for 

the automated diagnosis of histopathological images. It covers digital image processing principles, fuzzy and 
shock filters, histogram equalization, and adaptive threshold techniques. It also discusses pathology, histology, 
and epithelial dysplasia in the context of medical diagnosis. In(14), the Deep Learning model for oral epithelial 
dysplasia grading using ResNet50 achieved 85,30 % accuracy in training but showed low generalization (60 
% accuracy) on independent testing, indicating potential limitations. Also, in(15), Deep learning, specifically 
EMODplus, claimed the automation of oral epithelial dysplasia detection and grading in histopathology images 
with high accuracy, aiding pathologists in clinical practice, where they used Deep learning with convolutional 
neural networks and EMODplus system combining feature detection and logistic model. The literature also 
covers the techniques in Histopathological Image Analysis, including a survey of research methodologies and 
technological approaches used to analyse microscopic histopathological images. Also, the section reviews 
current literature and significant studies, emphasizing key contributions and identifying areas requiring further 
research. The aim is to place the novel methodology introduced in the paper within the existing research 
and technological landscape of histopathological image analysis. This section establishes a strong framework 
for the paper, offering a detailed understanding of the technical tools and medical background necessary for 
comprehending the complexities of automated diagnostic processes in histopathological images.

Image Processing
Digital image processing manipulates images using computers. As indicated in(16), it involves detecting, 

sensing, and analyzing digital images, building on prior. In(1), it was explained that digital image processing uses 
pixels with values representing image parts. The process begins with image acquisition and enhancement to 
improve relevant details. The work introduced in(17) shows that object classification and segmentation can be 
applied to get finer details. 

This paper discusses specific image processing methods in research, explaining their application and 
importance. As described in(18), the concept of fuzzy filters is based on representing elements visually as a 
cluster of points without clear borders. Fuzzy logic grades each element between 0 and 1. Fuzzy filters can be 
used to handle images with unclear details and borders. Fuzzy filters are effective at preserving borders where 
traditional filters have difficulty. They handle blurred edges and variations in image data at the pixel level, 
making them well-suited for complex tasks requiring high accuracy and detailed information extraction. 

The research presented in(19) showed that Shock filters can be utilized to apply morphological operations 
like dilation or erosion on individual pixels based on their location in minimum or maximum intensity regions 
identified using the sign function and Laplacian operator. The effects of these filters create sharp transitions 
between regions but may struggle with specific noise types like Gaussian noise. Research suggests improvements 
like using a “soft” Laplacian to enhance performance against such noise. As a type of morphological image 
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enhancement technique, shock filters can modify flow patterns, correct image artefacts, and improve overall 
clarity, making them a valuable tool in digital image processing.

In(20), the histogram equalization technique was described by adjusting pixel intensities to create a more 
even distribution. They claimed that this nonparametric procedure is particularly effective for medical digital 
images with brightness variations, improving the visibility of bone structures in X-ray images, for example. 
It can enhance various image types, making it useful for detailed analysis of microscopic or thermal images. 
However, histogram equalization can disproportionately increase contrast, especially in images with subtle 
variations. While it efficiently emphasizes high-contrast regions, it may not be ideal for all situations. However, 
histogram equalization remains a powerful tool in digital image processing, improving image interpretability 
and diagnostic utility in many applications. 

In(21), adaptive thresholding was discussed to convert grayscale images to binary by assigning foreground 
or background values based on pixel intensity. In(22), smaller image windows were employed for uniform 
illumination, dividing the image into sub-images to establish optimal thresholds. The mean of local intensity 
values is commonly used as the threshold. In(23), it was confirmed that the adaptive thresholding adjusts the 
threshold dynamically for each pixel, making it effective for images with varying lighting conditions. It can be 
applied to color and grayscale images, producing a binary image that outlines divisions. Adaptive thresholding 
requires consideration of appropriate foreground and background pixels. Fast mechanisms like the means of 
regional focus and distribution play a crucial role in this process, emphasizing the importance of selecting the 
right neighborhood size for successful adaptive thresholding in digital image processing.

Medical Applications
The research presented in(24) highlighted that digital image processing involves a broad spectrum of 

applications, which was briefly explained in various disciplines, such as radiology, astronomy, and biology. 
These applications are categorised depending on the sources of the images being processed. Digital image 
sources, including electronic, ultrasonic, and other types, serve as the fundamental origins of the images and 
are utilized across a diverse range of applications. The work of(25) pointed out that medical image processing 
is a notable area. Digital image processing was employed in various diagnostic and therapeutic contexts in the 
medical domain. For instance, bone scans use gamma rays to detect pathological bone changes. This application 
of gamma rays exemplifies the critical role of digital image processing in medical diagnostics. In(26), a further 
illustration of using X-rays in medical diagnoses under the umbrella of digital image processing applications 
was introduced. X-ray imaging is a prominent example of using digital image processing to visualize, analyze, 
and interpret medical data, thereby aiding accurate disease diagnosis and patient management. In(27), cancer 
diagnosis can be achieved by applying digital image processing to analyze histological images. Enabling detailed 
analysis of cellular structures improves diagnostic efficiency and accuracy. Integrating image processing 
techniques in histology is essential for accurate disease detection, effective treatment planning, and improved 
patient care. In(26), pathology was defined as the study and diagnosis of diseases, focusing on causative factors 
and disease progression. Pathologists regularly distinguish between normal and abnormal tissues. Histology, 
a subset of pathology, includes studying microscopic tissue and cell structure. Histological diagnosis is based 
on analyzing tissue slides under a microscope to determine appropriate treatments for illnesses by assessing 
cellular abnormality. Several cellular samples from biological sources may lack adequate contrast under 
normal lighting conditions for effective microscopic examination. To address this, staining techniques enhance 
contrast, aiding in observing specific cellular components like organelles, cell membranes, and nuclei. In(28), 
indicating that the hematoxylin and Eosin (HE) staining is the most widely used in pathology. This preference is 
attributed to its cost-effectiveness. HE staining imparts distinctive colors to various tissue components, aiding 
their identification and analysis. The basic dye hematoxylin colors cell nuclei blue, starkly contrasting the acidic 
eosin, which stains the cytoplasm and other cell components in shades of pink. Consequently, pathologists can 
better differentiate, observe, and evaluate the intricate details of cellular structures, significantly contributing 
to accurate disease diagnosis and understanding.
 
Epithelial Dysplasia

In(29), epithelial dysplasia is characterized as a disorder in the differentiation of epithelial cells, which carries 
the potential to progress into invasive carcinoma. In pathology, dysplasia is a term used to describe an anomaly 
in cellular development, typically marked by abnormal alterations in immature cells. Frequently, dysplasia 
indicates an early neoplastic process, signaling the onset of potential malignant transformation. In(30), it was 
noted that aggressive esophageal squamous cell carcinomas developed through dysplasia or intraepithelial 
neoplasia. The transformation from normal epithelial tissues to potentially malignant states is converted 
gradually. Squamous cell carcinomas, often representing a later stage in this progression, are usually preceded 
by a phase of epithelial dysplasia. In(31), epithelial dysplasia was categorized into distinct stages based on the 
severity of cellular abnormalities, classifying these stages as low-grade, moderate, and severe, as shown in 
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figure 2. This classification categorizes epithelial tissue based on the severity of abnormal cell changes and 
tissue structure. By identifying the stage of dysplasia, doctors can better assess and manage these changes. 
The classification framework helps predict the potential for the condition to progress and guides the selection 
of suitable treatment options.

Figure 2. A gradation in the extent of cellular atypia and architectural disorganization within the epithelial tissue

As reported in(24), a diverse stream of epithelial dysplasia types was meticulously examined. These include 
a tubular adenomatous polyp with maximum stage dysplasia, two tubular adenomas with moderate stage 
dysplasia, tubular adenomatous dysplasia, one tubular adenomatous polyp with minimum stage dysplasia, three 
tubular adenoma polyps with minimum stage dysplasia, tubular villous with mitigated stage dysplasia, tubular 
adenoma with minimum stage dysplasia, tubular adenoma with mitigated dysplasia, two serrated adenomas 
with minimum stage dysplasia, and villous adenoma with minimum stage dysplasia. In(32), various epithelial 
dysplasia manifestations presented abnormalities in epithelial cells, different from normal mucosa. Normal 
tissue and dysplastic changes should be distinguishable for accurate diagnosis. Investigating stages and types 
of dysplasia provides insights into lesion progression and potential for malignancy. An overview of techniques 
used in analyzing histopathological images, focusing on automation of diagnosis and quantitative analysis, was 
also illustrated.
 
Quantitative Histopathological Image Analysis

The analysis of histopathological quantitative images is important to provide a well-structured overview 
of the research and techniques applied to histology tissue images from the disease diagnosis and grading 
perspective. In(33), the work revealed several techniques to analyze the histopathological images that help 
analyze tissue images to diagnose or grade diseases. This complexity and variability require sophisticated 
analysis methods to accurately interpret the cellular and tissue structures in the histopathological images. In(34), 
image analysis can enhance the quality control of histological sections, aiding in accurate interpretation and 
reducing recuts. For specific diagnoses like Invasive Ductal Carcinoma (IDC) in breast cancer, spatial recurrence 
analysis methodologies leveraging machine learning techniques have shown promising results, achieving high 
detection performances. 

The research of(35) shows that the key aspect of histopathological image analysis is color normalization, 
particularly vital for images with uneven histopathological staining. Color discrepancies in stained images 
offer challenges in histopathological image analysis. This requires further discussion of the methods employed 
to standardize the color in images, addressing the challenges posed by variability in staining processes. Color 
normalization ensures consistency across images, enhancing subsequent analyses’ reliability. Several methods 
indicated in(36), such as stain normalization, aim to standardize colour appearance for accurate analysis. 
Different stain normalization techniques like Macenko and Vahadane methods were proposed to enhance model 
performance in classifying metastatic tissue slides. Additionally, it was confirmed in(37) that utilizing multiple 
slides to construct a representative reference for color normalization has shown promising results in improving 
computational pathology robustness and integrity. Color stain normalization plays a crucial role in tasks like 
image retrieval, where differences in colorization can impact the accuracy of analysis. In summary, color 
normalization techniques are vital for enhancing the reliability and effectiveness of histopathological image 
analysis.

Methods for Analyzing Microscopic Histopathology Images
Image preprocessing, segmentation, and morphological analysis are traditional image processing techniques 

that can be replaced/integrated with the DL approaches in terms of complexity for a cancer diagnosis. DL is 
rapidly becoming the leading method for analyzing microscopic histopathology images due to its high accuracy 
and ability to handle complex tasks.(38) However, traditional techniques still have a place, especially for 
situations with limited data or a need for interpretable results. Noise reduction, contrast enhancement, and 
stain normalization are the initial steps to prepare the image for analysis. Segmentation isolates objects of 
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interest such as cytoplasm, nuclei, or specific tissue structures) from the background. Classification and/or 
diagnosis can be achieved using thresholding, edge detection, and watershed.(39) DL architecture is particularly 
well suited for image analysis. CNNs can learn complex patterns directly from the image data, eliminating the 
need for manual feature extraction. They excel at tasks like tissue classification for normal or abnormal. Also, 
the disease prognosis can be identified to predict the types of cells.(40) 

In summary, DL is the leading method for analyzing microscopic histopathology images to guarantee 
accuracy in medical image diagnosis due to its ability to handle complex tasks, as shown in table 1. However, 
traditional techniques still have a place, especially for situations with limited data or a need for interpretable 
results. Extracting meaningful data from the images can be achieved by quantitative analysis.(41) This involves 
the assessment of tissue, the measurement of cellular features, and the quantification of staining patterns. 
The integration of these quantitative measures into the diagnostic process aids in the development of more 
standardized and reproducible diagnostic criteria.

Classification techniques for histopathological images
Histopathological image analysis can handle large-scale, high-density images and extensive databases. To 

address this, many researchers have turned to machine learning algorithms, which can be broadly categorized 
into supervised and unsupervised learning methods. These approaches are crucial in managing and interpreting 
the vast amounts of data generated in histopathological studies.

Traditional methods combine depth with efficient computation and result interpretation from feature 
contributions analysis. The approach requires extensive manual feature development work but struggles to 
identify advanced image changes properly. At present, deep learning methods deliver precise results and 
enhance the management of image complexities, and they automatically extract features during end-to-end 
learning processes, starting from raw image inputs and continuing to diagnosis outputs. Implementing these 
methods faces limitations because they both require extensive datasets and expensive computational resources.

In(42), SVM was used in histopathological image analysis. This technique involves manual labelling of the 
images to train the classifier, which then applies this learned knowledge to new labels and unseen tissue 
regions in slide images. On the other hand, unsupervised learning, such as clustering algorithms, does not 
require prelabeled data and instead identifies patterns and structures within the data independently. In(43), 
unsupervised classification was illustrated, and the K-means clustering algorithm was employed, followed 
by a dimensionality reduction technique, to extract texture features in renal histopathological samples. 
SVM methods have been extensively evaluated in the processing of digital histopathological images. SVM is 
a popular supervised classifier algorithm in this field. Researchers such as the work introduced in(44) and(45) 
employed SVM classifiers to distinguish between normal and abnormal histology tissue cells. SVMs’ ability 
to handle high-dimensional data makes them particularly suitable for analyzing complex histopathological 
images. In(46), the SVM was used to diagnose specific conditions, such as differentiating adenocarcinoma 
from benign carcinoma in histopathological images. SVM provided accurate and reliable diagnostic results on 
various histopathological concepts. In summary, supervised and unsupervised machine learning algorithms are 
prominent in histopathological image analysis. Their ability to process and analyze large datasets accurately 
makes them indispensable tools in modern pathology, enhancing the diagnosis and understanding of various 
diseases at the tissue and cellular levels.

METHOD
The proposed method focuses on automating epithelial dysplasia diagnosis based on histopathology images 

using a combination of image processing techniques and machine learning algorithms. Key techniques include 
image restoration, feature extraction, and deep learning (DL). Image segmentation isolates regions of interest 
(ROIs) within tissue samples, such as individual cells or cell clusters. Feature extraction quantifies various 
aspects of these regions, including shape, size, texture, and color. Convolutional Neural Networks (CNNs) are 
then employed to analyze these features and identify potential pathological changes, classifying them into 
diagnostic categories such as benign or cancerous.

The methodology is structured into distinct phases, each contributing to the accurate detection and 
analysis of tissue images, as illustrated in figure 3. The main stages of the proposed technique include image 
segmentation, feature extraction, DL based analysis, and classification, ensuring a comprehensive and precise 
diagnostic process. Quantitative analysis involves statistical and computational tools to extract data from 
images, measure cellular features, assess tissue architecture, and quantify staining patterns, thereby enhancing 
the diagnostic criteria.

Data Acquisition and Preprocessing
A large collection of high-quality histopathological images encompassing normal and dysplastic epithelial 

tissues was collected from the Pathology Department at the Jordan University Hospital. This dataset comprises 
representatives of various severities and types of dysplasia. The dataset includes 500 digital images classified 
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into 300 normal and 200 with dysplastic epithelial tissues of various levels, as samples shown in figure 4. The 
levels are classified into adenomatous polyps with high-grade dysplasia, adenomatous polyps with moderate-
grade dysplasia, and adenomatous polyps with low-grade dysplasia. The data is annotated with manual label 
regions of interest (ROIs) within the images, specifying areas with normal and dysplastic epithelium that are 
considered crucial for training the deep learning model. Also, to ensure consistency within the dataset, color 
normalization, sharpening filter, and noise reduction, shown in figure 5, are applied using a fuzzy filter. After 
applying this step, the result is shown in figure 6, which illustrates the clear difference between the input 
and output images. In microscopic histology images, the fuzzy filter is very helpful for removing noise based 
on our experiments. By considering the nearest data to remove the noise, the fuzzy filter was employed 
because of its ability to perform edge preservation. It distinguishes between local variations of noise and image 
structures. The result of the previous step is then converted into a grayscale mode to reduce the computational 
requirements and to prepare for the segmentation step. This step is important as a preprocess for the next 
phase, which applies an adaptive threshold represented in equation (1).

Figure 3. The flow chart of the proposed methodology

𝑇𝑇(𝑥𝑥, 𝑣𝑣) = {  1       𝑖𝑖𝑖𝑖 𝐼𝐼(𝑥𝑥, 𝑦𝑦) > 𝑇𝑇(𝑥𝑥, 𝑦𝑦) 0        𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒     (1) 
 
𝐹𝐹(𝐼𝐼 ∗ 𝐾𝐾, 𝑥𝑥, 𝑦𝑦) = ∑ ∑ 𝐼𝐼(𝑚𝑚 − 𝑥𝑥, 𝑛𝑛 − 𝑦𝑦)𝐾𝐾(𝑚𝑚, 𝑛𝑛)      (2) 
 
𝐹𝐹 (𝑥𝑥, 𝑦𝑦)  =  𝑀𝑀𝑀𝑀𝑀𝑀(0, 𝑥𝑥)     (3) 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = (𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇)/𝑇𝑇𝑇𝑇    (4) 
 
𝐹𝐹1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  2 ∗  (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)/(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)    (5) 
 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹)    (6) 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹) 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥, 𝑦𝑦)  =  [𝑙𝑙(𝑥𝑥, 𝑦𝑦)  ∗  𝑐𝑐(𝑥𝑥, 𝑦𝑦)  ∗  𝑠𝑠(𝑥𝑥, 𝑦𝑦)] / [𝐿𝐿 ∗  𝐶𝐶 ∗  𝑆𝑆]     (7) 

Where T (x, y) is the threshold value at pixel (x, y).

 
Figure 4. Microscopic images of (a) normal, and (b) dysplastic epithelial tissue samples

Almost all cameras produce soft images, as though digital images of microscopic tissue images are considered 
soft as well.(1) There is a need to sharpen the image. This can be applied using the shock filter, as shown in figure 
7. It was selected because it is ideal for applying it locally in either the dilation or erosion process, depending 
on whether the pixel belongs to the influence zone of a maximum or a minimum. This is the case in epithelial 
dysplasia images where there is variation in the image structure. As indicated in(47), applying the Shock filter 
enhanced the image and produced a sharp discontinuity called shock at the borderline between the objects 
and the background. Microscopic specimens can be hard to see clearly due to low contrast. This is because 
they don’t absorb light well, leading to blurry differences between the object and background. Histogram 
equalization(48) adjusts image brightness for better contrast.
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Figure 5. Preprocessing stage

  
(a) Poor quality image of normal mucosal glands, (b) Image restoration after applying noise reduction, color 

transformation, and image scaling
Figure 6. The results (a) before and (b) after the preprocessing

Figure 7. The performance of the shock filter

Deep Learning Model
Convolutional Neural Networks (CNNs) are particularly well-suited for this task. As indicated in(49), CNNs offer 

several advantages over traditional methods for analyzing microscopic histopathological images, particularly 
in detecting and classifying epithelial dysplasia. Popular choices include VGG16, ResNet, or even custom 
architectures designed for medical image analysis. Convolution is the essential operation of CNNs in which 
a kernel (filter) is applied to the input image to produce the output feature map. Mathematically, it can be 
written as shown in equation (2):
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𝑇𝑇(𝑥𝑥, 𝑣𝑣) = {  1       𝑖𝑖𝑖𝑖 𝐼𝐼(𝑥𝑥, 𝑦𝑦) > 𝑇𝑇(𝑥𝑥, 𝑦𝑦) 0        𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒     (1) 
 
𝐹𝐹(𝐼𝐼 ∗ 𝐾𝐾, 𝑥𝑥, 𝑦𝑦) = ∑ ∑ 𝐼𝐼(𝑚𝑚 − 𝑥𝑥, 𝑛𝑛 − 𝑦𝑦)𝐾𝐾(𝑚𝑚, 𝑛𝑛)      (2) 
 
𝐹𝐹 (𝑥𝑥, 𝑦𝑦)  =  𝑀𝑀𝑀𝑀𝑀𝑀(0, 𝑥𝑥)     (3) 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = (𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇)/𝑇𝑇𝑇𝑇    (4) 
 
𝐹𝐹1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  2 ∗  (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)/(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)    (5) 
 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹)    (6) 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹) 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥, 𝑦𝑦)  =  [𝑙𝑙(𝑥𝑥, 𝑦𝑦)  ∗  𝑐𝑐(𝑥𝑥, 𝑦𝑦)  ∗  𝑠𝑠(𝑥𝑥, 𝑦𝑦)] / [𝐿𝐿 ∗  𝐶𝐶 ∗  𝑆𝑆]     (7) 

Where I is the input image, K is the kernel, m and n are the width and height of the input image, respectively, 
and (x,y) is the coordinate of the feature map. 

This operation helps the network learn small local patterns of the image, such as edges, textures, and many 
more spatial hierarchies within the image. After this operation, an activation function is applied to impose 
nonlinearity in the model so that complex, higher-level patterns may be learned. The ReLU activation is one of 
the most commonly used activation functions in CNNs, which can be written in equation (3):

𝑇𝑇(𝑥𝑥, 𝑣𝑣) = {  1       𝑖𝑖𝑖𝑖 𝐼𝐼(𝑥𝑥, 𝑦𝑦) > 𝑇𝑇(𝑥𝑥, 𝑦𝑦) 0        𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒     (1) 
 
𝐹𝐹(𝐼𝐼 ∗ 𝐾𝐾, 𝑥𝑥, 𝑦𝑦) = ∑ ∑ 𝐼𝐼(𝑚𝑚 − 𝑥𝑥, 𝑛𝑛 − 𝑦𝑦)𝐾𝐾(𝑚𝑚, 𝑛𝑛)      (2) 
 
𝐹𝐹 (𝑥𝑥, 𝑦𝑦)  =  𝑀𝑀𝑀𝑀𝑀𝑀(0, 𝑥𝑥)     (3) 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = (𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇)/𝑇𝑇𝑇𝑇    (4) 
 
𝐹𝐹1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  2 ∗  (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)/(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)    (5) 
 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹)    (6) 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹) 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥, 𝑦𝑦)  =  [𝑙𝑙(𝑥𝑥, 𝑦𝑦)  ∗  𝑐𝑐(𝑥𝑥, 𝑦𝑦)  ∗  𝑠𝑠(𝑥𝑥, 𝑦𝑦)] / [𝐿𝐿 ∗  𝐶𝐶 ∗  𝑆𝑆]     (7) 

ReLU activation helps address the vanishing gradient problem and allows the model to converge faster by 
only passing positive values through the network.

The labeled datasets are divided into training, validation, and testing sets. The training set is used to 
train the model, the validation set helps finetune hyperparameters to prevent overfitting, and the testing set 
evaluates the final model performance. These represent abstract concepts or objects within the image and are 
learned by the later convolutional layers. They are often task-specific and depend on the training data. The 
CNN model is then trained based on the training set using the labeled ROIs. This involves feeding the images 
into the network and adjusting its internal parameters (weights and biases) to accurately differentiate between 
normal and dysplastic tissues based on the provided labels. The hyperparameters are finetuned using learning 
rate, optimizer settings, and number of training epochs to optimize the model’s performance and prevent 
overfitting (learning patterns specific to the training data that don’t generalize well to unseen images).

Model Evaluation
The model’s performance was assessed based on the testing set using metrics like accuracy and F1Score. 

The accuracy metric measures how well the model can correctly identify normal and dysplastic tissues using 
equation (4). True Positives (TP) represent correctly classified dysplastic images, True Negatives (TN) represent 
correctly classified normal images, and Total Images is the total number of images in the testing set. While high 
accuracy is desirable, it might not be the most informative metric in imbalanced datasets (unequal numbers 
of normal and dysplastic images).

Where: TP: True Positives TN: True Negatives FP: False Positives FN: False Negatives.

𝑇𝑇(𝑥𝑥, 𝑣𝑣) = {  1       𝑖𝑖𝑖𝑖 𝐼𝐼(𝑥𝑥, 𝑦𝑦) > 𝑇𝑇(𝑥𝑥, 𝑦𝑦) 0        𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒     (1) 
 
𝐹𝐹(𝐼𝐼 ∗ 𝐾𝐾, 𝑥𝑥, 𝑦𝑦) = ∑ ∑ 𝐼𝐼(𝑚𝑚 − 𝑥𝑥, 𝑛𝑛 − 𝑦𝑦)𝐾𝐾(𝑚𝑚, 𝑛𝑛)      (2) 
 
𝐹𝐹 (𝑥𝑥, 𝑦𝑦)  =  𝑀𝑀𝑀𝑀𝑀𝑀(0, 𝑥𝑥)     (3) 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = (𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇)/𝑇𝑇𝑇𝑇    (4) 
 
𝐹𝐹1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  2 ∗  (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)/(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)    (5) 
 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹)    (6) 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹) 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥, 𝑦𝑦)  =  [𝑙𝑙(𝑥𝑥, 𝑦𝑦)  ∗  𝑐𝑐(𝑥𝑥, 𝑦𝑦)  ∗  𝑠𝑠(𝑥𝑥, 𝑦𝑦)] / [𝐿𝐿 ∗  𝐶𝐶 ∗  𝑆𝑆]     (7) 

Where: TI is the total images (TP + TN + FP + FN) 
The F1-Score metric provides a balanced view of precision and recall, combining them into a single score, 

as shown in equation (5), considering the False Positives (FP).

𝑇𝑇(𝑥𝑥, 𝑣𝑣) = {  1       𝑖𝑖𝑖𝑖 𝐼𝐼(𝑥𝑥, 𝑦𝑦) > 𝑇𝑇(𝑥𝑥, 𝑦𝑦) 0        𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒     (1) 
 
𝐹𝐹(𝐼𝐼 ∗ 𝐾𝐾, 𝑥𝑥, 𝑦𝑦) = ∑ ∑ 𝐼𝐼(𝑚𝑚 − 𝑥𝑥, 𝑛𝑛 − 𝑦𝑦)𝐾𝐾(𝑚𝑚, 𝑛𝑛)      (2) 
 
𝐹𝐹 (𝑥𝑥, 𝑦𝑦)  =  𝑀𝑀𝑀𝑀𝑀𝑀(0, 𝑥𝑥)     (3) 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = (𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇)/𝑇𝑇𝑇𝑇    (4) 
 
𝐹𝐹1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  2 ∗  (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)/(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)    (5) 
 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹)    (6) 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹) 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥, 𝑦𝑦)  =  [𝑙𝑙(𝑥𝑥, 𝑦𝑦)  ∗  𝑐𝑐(𝑥𝑥, 𝑦𝑦)  ∗  𝑠𝑠(𝑥𝑥, 𝑦𝑦)] / [𝐿𝐿 ∗  𝐶𝐶 ∗  𝑆𝑆]     (7) 

                        
Where:

𝑇𝑇(𝑥𝑥, 𝑣𝑣) = {  1       𝑖𝑖𝑖𝑖 𝐼𝐼(𝑥𝑥, 𝑦𝑦) > 𝑇𝑇(𝑥𝑥, 𝑦𝑦) 0        𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒     (1) 
 
𝐹𝐹(𝐼𝐼 ∗ 𝐾𝐾, 𝑥𝑥, 𝑦𝑦) = ∑ ∑ 𝐼𝐼(𝑚𝑚 − 𝑥𝑥, 𝑛𝑛 − 𝑦𝑦)𝐾𝐾(𝑚𝑚, 𝑛𝑛)      (2) 
 
𝐹𝐹 (𝑥𝑥, 𝑦𝑦)  =  𝑀𝑀𝑀𝑀𝑀𝑀(0, 𝑥𝑥)     (3) 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = (𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇)/𝑇𝑇𝑇𝑇    (4) 
 
𝐹𝐹1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  2 ∗  (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)/(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)    (5) 
 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹)    (6) 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹) 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥, 𝑦𝑦)  =  [𝑙𝑙(𝑥𝑥, 𝑦𝑦)  ∗  𝑐𝑐(𝑥𝑥, 𝑦𝑦)  ∗  𝑠𝑠(𝑥𝑥, 𝑦𝑦)] / [𝐿𝐿 ∗  𝐶𝐶 ∗  𝑆𝑆]     (7) 
Data augmentation is applied to enhance the performance of the proposed method. The trained dataset 

is normalized based on the best matches of the structure similarity index (SSIM) used in(50) among the related 
group dataset by applying the equation (7). Normalization is applied based on the similarity of two images by 
integrating image contrast, structural difference, and brightness. The SSIM index combines three comparisons 
into a value between 0 (no similarity) and 1 (perfect similarity). Nested loops were applied to get the best 
match for each image.

𝑇𝑇(𝑥𝑥, 𝑣𝑣) = {  1       𝑖𝑖𝑖𝑖 𝐼𝐼(𝑥𝑥, 𝑦𝑦) > 𝑇𝑇(𝑥𝑥, 𝑦𝑦) 0        𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒     (1) 
 
𝐹𝐹(𝐼𝐼 ∗ 𝐾𝐾, 𝑥𝑥, 𝑦𝑦) = ∑ ∑ 𝐼𝐼(𝑚𝑚 − 𝑥𝑥, 𝑛𝑛 − 𝑦𝑦)𝐾𝐾(𝑚𝑚, 𝑛𝑛)      (2) 
 
𝐹𝐹 (𝑥𝑥, 𝑦𝑦)  =  𝑀𝑀𝑀𝑀𝑀𝑀(0, 𝑥𝑥)     (3) 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = (𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇)/𝑇𝑇𝑇𝑇    (4) 
 
𝐹𝐹1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  2 ∗  (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)/(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)    (5) 
 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹)    (6) 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹) 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥, 𝑦𝑦)  =  [𝑙𝑙(𝑥𝑥, 𝑦𝑦)  ∗  𝑐𝑐(𝑥𝑥, 𝑦𝑦)  ∗  𝑠𝑠(𝑥𝑥, 𝑦𝑦)] / [𝐿𝐿 ∗  𝐶𝐶 ∗  𝑆𝑆]     (7) 

Where: L,C, and S are stabilization factors to avoid division by 0.
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Postprocessing and Analysis
Morphological operation improves the accuracy of ROI segmentation within the images. A saliency map 

visualizes which image regions contribute most to the model’s predictions. This step is crucial to identifying the 
proposed method’s drawbacks and future work.

Deployment and Integration
The trained and validated model is integrated with the software system that was implemented using 

MATLAB. This involves creating a user interface for pathologists to upload images and receive automated 
results. Consequently, a robust deep learning-based system was developed and tested to automate detecting 
and analysing epithelial dysplasia in histopathological images. This can improve efficiency, accuracy, and 
consistency in diagnosing normal and dysplastic images.

RESULTS

 
Figure 8. Mucosal gland low-quality image (HEstain, 400X)

Figure 9. A low-grade dysplasia image

This study evaluated a deep learning model integrated with traditional image processing for detecting 
epithelial dysplasia in histopathological images. The model achieved many true positives (451 out of 500), 
correctly identifying many dysplastic images. However, there were also 30 false positives, where normal images 
were incorrectly classified as dysplastic. While the number of true negatives (19) indicates the model effectively 
identified some normal images, the low number suggests room for improvement in correctly classifying all normal 
tissues and the false positives (30). To gain a more comprehensive understanding of the model’s performance, 
the F1Score was calculated, which considers both precision and recall. After substituting the values shown in 
equation (3), the Precision= 451 / (451 + 30) = 0,938. Recall metric measures the proportion of actual positive 
cases (dysplasia) that the model correctly identifies, and if it equals 451 / (451 + 50) = 0,902, then the F1-score 
will be equal to 2* (0,938 * 0,902) / (0,938 + 0,902) = 0,920. The high precision (0,938) indicates that the model 
is good at identifying true dysplasia cases, with only a small number of false positives (30). This suggests that 
the model effectively avoids misclassifying normal tissues as dysplastic, which is crucial to prevent unnecessary 
biopsies or procedures. The F1Score of 0,920 further reinforces this positive evaluation. It demonstrates a 
good balance between precision and recall, meaning the model performs well in identifying true positives and 
minimizing false positives and negatives (assuming a moderate number of False Negatives). While some samples 
appear low quality and inconspicuous, as seen in figure 8, the automated technique successfully diagnosed 
them. This is attributed to the preprocessing phase, which effectively enhanced these images. The proposed 
automated technique misdiagnosed three samples, all of which were cases of low-grade tubular dysplasia. Low-
grade dysplasia exhibits subtle tissue changes compared to high-grade or moderate dysplasia, making it more 
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challenging for the algorithm to detect. Figure 9 illustrates an example of a low-grade dysplasia image that 
resulted in a false positive diagnosis. 

Evaluation
The results of the proposed approach were compared with the competitive methods shown table 1. 

Traditional image processing and machine learning methods offer interpretable results and require less 
computational power. However, they often require manual feature engineering and may struggle with complex 
image variations, leading to lower accuracy in detecting epithelial dysplasia compared to deep learning 
approaches. Convolutional Neural Networks (CNNs) excel in this task, achieving superior accuracy and handling 
image complexity effectively. However, they necessitate large datasets for training and can be computationally 
expensive. Additionally, CNNs are often considered “black boxes” making it challenging to understand their 
decision-making process.

Table 1. Comparison table summarizing the characteristics of various methods for detecting epithelial 
dysplasia in histopathological images

Method Advantages Disadvantages
Traditional Image Processing + 
Machine Learning

Interpretable results
Computationally efficient

Lower accuracy compared to deep 
learning.
Requires feature engineering 
expertise

Support Vector Machines (SVM) Good performance for some 
datasets

May struggle with complex image 
variations

Convolutional Neural Networks 
(CNNs)

High accuracy Requires large datasets for training

The Proposed Method High accuracy
Handles image complexity

Requires large datasets for training

Ensemble learning approaches can improve accuracy by combining multiple models, but they introduce 
additional complexity and require careful selection and training of individual models. As explained in table 
2, the results reveal that the proposed approach has outperformed the related works in Precision, Recall, 
and F1Score, respectively. The table demonstrates a clear trend: Deep learning-based methods outperform 
traditional image processing and machine learning approaches in epithelial dysplasia detection.

Table 2. Comparison table summarizing the performance of various 
methods for detecting epithelial dysplasia in histopathological images

Method Precision Recall F1Score

Traditional Image Processing 0,750 0,770 0,791

Support Vector Machines 0,830 0,820 0,850

CNNs 0,910 0,891 0,912

Ensemble Learning 0,920 0,895 0,918

The Proposed Approach 0,938 0,902 0,920

The traditional image processing method achieves a moderate F1Score of 0,791. While it offers interpretable 
results, it might struggle with complex image variations, leading to lower accuracy than deep learning 
approaches. SVMs show improvement over traditional methods with an F1Score of 0,850. However, they may 
struggle with highly diverse image data. CNNs significantly outperform previous methods, achieving an F1Score 
of 0,912. Their ability to learn complex features from data makes them well-suited for this task. Ensemble 
Learning combines multiple models (potentially including CNNs) and yields an F1Score of 0,918, comparable 
to CNNs alone. However, this approach can be more complex and computationally expensive. The proposed 
method achieves the highest F1Score of 0,920 and has a slightly higher recall (0,902) compared to other 
methods; it maintains a high precision (0,938), indicating a good balance between identifying true positives 
(dysplasia) and minimizing false positives (normal tissues misclassified as dysplastic).

CONCLUSIONS
DL and image processing techniques were integrated to have highly accurate rates in detecting epithelial 

dysplasia images. The proposed model reveals promising results with a high F1Score, suggesting a good balance 
between precision and recall. However, further analysis with a larger dataset and investigation into false 
negatives can provide future work research to identify potential areas for improvement. The results confirm 

https://doi.org/10.56294/dm2025679

 11    Zraqou J, et al

https://doi.org/10.56294/dm2025679


https://doi.org/10.56294/dm2025679

the benefits of the DL method, particularly CNNs, in its accuracy in the detection of epithelial dysplasia. The 
proposed method demonstrates promising results, achieving the best overall Precision, Recall, and F1Score. 
Future work requires additional datasets to improve the model’s ability to differentiate between normal and 
abnormal dysplastic tissues. Also, analysing the types of images causing false positives and negatives can help 
identify areas for improvement in the model or data preprocessing techniques. Also, Adapting the proposed 
method for broader cancer detection.
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