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ABSTRACT

The important form human communicating is speech, which can also be used as a potential means of human-
computer interaction (HCI) with the use of a microphone sensor. An emerging field of HCI research uses these 
sensors to detect quantifiable emotions from speech signals. This study has implications for human-reboot 
interaction, the experience of virtual reality, actions assessment, Health services, and Customer service 
centres for emergencies, among other areas, to ascertain the speaker’s emotional state as shown by their 
speech. We present significant contributions for; in this work. (i) improving Speech Emotion Recognition 
(SER) accuracy in comparison in the most advanced; and (ii) lowering computationally complicated nature 
of the model SER that is being given. We present a plain nets strategy convolutional neural network (CNN) 
architecture with artificial intelligence support to train prominent and distinguishing characteristics from 
speech signal spectrograms were improved in previous rounds to get better performance. Rather than using 
a pooling layer, convolutional layers are used to learn local hidden patterns, whereas Layers with complete 
connectivity are utilized to understand global discriminative features and Speech emotion categorization 
is done using a soft-max classifier. The suggested method reduces the size of the model by 34,5 MB while 
improving the Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) and Interactive 
Emotional Dyadic Motion Capture (IEMDMC) datasets, respectively, increasing accuracy by 4,5 % and 7,85 %. 
It shows how the proposed SER technique can be applied in real-world scenarios and proves its applicability 
and efficacy.

Keywords: Neural Networks (NN); Artificial Intelligence (AI); Emotion Recognition (ER); Noise Reduction 
(NR). 

RESUMEN

La forma más importante de comunicación humana es el habla, que también puede utilizarse como medio 
potencial de interacción persona-ordenador (HCI) con el uso de un sensor de micrófono. Un campo emergente 
de la investigación en HCI utiliza estos sensores para detectar emociones cuantificables a partir de señales del 
habla. Este estudio tiene implicaciones para la interacción persona-ordenador, la experiencia de la realidad 
virtual, la evaluación de acciones, los servicios sanitarios y los centros de atención al cliente para emergencias, 
entre otros ámbitos, para conocer el estado emocional del hablante a partir de su habla. En este trabajo 
presentamos contribuciones significativas para (i) mejorar la precisión del Reconocimiento de Emociones 
del Habla (SER) en comparación en los más avanzados; y (ii) disminuir la naturaleza computacionalmente 
complicada del modelo SER que se está dando. Presentamos una arquitectura de red neuronal convolucional
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(CNN) de estrategia simple con apoyo de inteligencia artificial para entrenar características prominentes y 
distintivas de los espectrogramas de la señal de voz se mejoraron en rondas anteriores para obtener un mejor 
rendimiento. En lugar de utilizar una capa de agrupación, se emplean capas convolucionales para aprender 
patrones ocultos locales, mientras que las capas con conectividad completa se utilizan para comprender 
características discriminativas globales y la categorización de la emoción del habla se realiza mediante un 
clasificador soft-max. El método sugerido reduce el tamaño del modelo en 34,5 MB al tiempo que mejora 
los conjuntos de datos Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) e Interactive 
Emotional Dyadic Motion Capture (IEMDMC), respectivamente, aumentando la precisión en un 4,5 % y un 7,85 
%. Se muestra cómo la técnica SER propuesta puede aplicarse en escenarios del mundo real y se demuestra 
su aplicabilidad y eficacia.

Palabras clave: Redes Neuronales (NN); Inteligencia Artificial (IA); Reconocimiento de Emociones (RE); 
Reducción de Ruido (RN).

 
INTRODUCTION

The Speech Emotion Recognition (SER) is most efficient natural and biological means about communication in 
addition exchange in between people and computers. It is crucial to real-time applications of HMI. Since speech 
signals include further information than uttered words, researchers are actively studying how to use them to 
identify speakers’ qualitative emotional states utilizing speech signals produced by sensors for SER.(1) A lot of 
Researchers are engaged in this field to create the machine smart enough to decipher a speaker’s emotional 
state from their voice and assess or identify it. Selecting and extracting the prominent and discriminative 
features in SER is a difficult undertaking.(2) To retrieve concealed data and train different Consolation Nural 
Network CNN models to increase performance and reduce the SER’s computational complexity for human 
behaviour evaluation, researchers are currently attempting to identify the reliable and most important 
characteristics for SER by utilizing artificial intelligence and deep learning methods.(3,4,5) Because of the large 
quantity of social media users, inexpensive price, and the quick Internet speed in this period of research, SER 
have encountered numerous difficulties and limitations. Semantic gaps arise because of the usage of social 
media and the inexpensive internet. Researchers and Scholars have attempted to cover and present new ways 
to take out to most noticeable aspects from trained models and voice signals to properly understand an emotion 
of the speaker when speaking in order in order to bridge the conceptual divide in this area, the technology 
is always evolving to give academics new, adaptable platforms on which to introduce novel applications of 
artificial intelligence.

The improvement of Human Computer Interaction (HCI), including acknowledgment of an emotions of 
sense depends heavily on technological advancements, skill development, and the application of artificial 
intelligence as well as deep learning methods. SER is an effective field in Human Computer Interaction (HCI) 
with numerous applications in real time. For example, it is usable in make a call centres to measure customer 
satisfaction; in human-reboot interactions to measure Human feelings; in emergencies contact centres to 
determine a user’s emotional state so that a suitable response can be given; and in virtual reality. Fiore et 
al.(6) SER were implemented for the car panel system to identify drivers’ emotional or emotional states to 
properly action could be taken to protect the passengers. Additionally, SER contributes to automatic translation 
systems and the knowledge of crowd dynamics that could lead to aggressive or destructive behaviour that is 
difficult to accomplish manually.(7) To illustrate the efficacy of the SER healthcare care centres, Badshah et 
al.(8) used the quantified SER services and resources to explain approaches using with CNN method structures 
that incorporate rectangle-shaped filters. To ensure raise the importance of HCI, Mao et al.(9) enhanced the 
efficiency of SER for instantaneous application analysis and feature extraction. To estimate emotion intensities 
multi type as metatype in a hierarchical manner, Min et al.(10) applied the SER for explaining emotion in movies 
utilizing content analysis of arousal and violence discriminative elements. Miguel et al.(11) used SER for concerns 
of privacy reasons to identify the speaker using paralinguistic indications and a privacy-preserving hashing 
technique.

Numerous researchers have offered a range of approaches in the rapidly developing field of SER research. 
To accurately identify a speaker’s emotion, most researchers are trying to determine which ones are effective, 
prominent and biased characteristics speech signals for categorization. Deep learning methodologies possess 
recently been used by researchers to identify the key and discriminative characteristics for SER. Convolutional 
Neural Networks (CNN) are employed to recognize and comprehend lines., dots, curves, and forms by constructing 
high-level features on top of low-level data. To obtain greater accuracy than low-level handmade features, 
algorithms for Deep Learning like CNN, LSTM, DNN, DBN, and others aim at recognizing the conspicuous features 
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at highest level. The model gets more computationally complex when deep neural networks are used. 
1.	 The voice recognition industry has many challenges. One of them is the absence of considerable 

improvement in precision and cost complexity of current CNN designs in speech signal processing. 
2.	 While Long Short-Term Memory (LSTM) and RNN able to be accustomed to sequential training 

information, we are harder to work out efficiently and have increased computational aspects complexity. 
3.	 Most of the research have employed concatenation and Encoding at the frame level techniques 

regarding feature fusion, we are not appropriate for SER at the utterance level. 
4.	  Lack of data makes it difficult to determine the precise word border and causes a huge concatenation 

feature fusion.

Owing to the problems and difficulties, we suggested a unique CNN architecture with unique steps in place 
a pooling strategy to extract vital higher-level characteristics after speech spectrograms of data. We recognize 
vocal signals. hidden patterns within convolutional layers by employing specific steps to bring down sample, 
the maps with attributes, in order to determine, The significance and efficiency of suggested model relative 
to other cutting-edge techniques, comprehensive experiments were carried out on two metrics that were 
measured Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS)(13) and Interactive Emotional 
Dyadic Motion Capture (IEMDMC)(12) datasets. The test component of this study includes the comprehensive 
tests and examination of the suggested approach in comparison with additional baseline techniques.

The key contributions of this article are reframed are outlined as follows:
•	 Pre-Processing: to guarantee a precise forecast of emotional outcomes, SER feeds in data that has 

been refined, which constantly requires detailed speech signals. Preprocessing stages, which efficiently 
improve the data and contribute to improving the final classifier’s accuracy, are not given enough 
attention in the SER literature’s methodology. Our preprocessing approach in this paper involves first 
removing silent sections from audio data using the Novell adaptive thresholding technique. Hence, a 
major part of the entire SER system is our preprocessing approach. 

•	 CNN (Convolutional Neural Network) Model: we used convolutional neural network technique(14) 
and suggested a novel CNN architecture, the DSCNN for SER, to teach the convolutional layers salient 
and discriminative features. Rather than using pooling layers, the convolutional layer’s unique strides are 
used for down sampling the feature maps. Spectrophotograms are specifically used in the DSCNN model 
to solve the SER problem.

•	 Computational Complexity: CNN architectures that we have suggested have modest respective 
fields. employ minimum convolutional layers to obtain discriminative, crucial, and deep characteristics 
from speech spectrograms. This reduces computational complexity and increases accuracy because the 
proposed CNN model has a simple structure, as demonstrated by the experiments.

Related work
Investigating digital signal processing (DSP) is broad. Researchers have developed some effective methods 

for SER currently that use digital audio signals from the voice to ascertain the affective condition regarding the 
speaker. In this domain, robust feature selection which accurately detects a speaker’s emotions is a difficult 
assignment.(15) The feature selection procedure, which extracts high-level characteristics derived from audio 
data, and the classifier procedure for selecting, which chooses which classifiers to use to accurately identify 
emotions from speech, make up a typical SER. While some studies have trained CNN, DNN, and NN models 
using low-level hand-crafted features to raise the accuracy of SER, several researchers have recently revealed 
methods for SER employing deep learning approaches for enhancing accuracy of recognition using audio speech 
data.

Feature-Based Speech Emotion Recognition (SER) Produced by Hand
For researchers, choosing the strong features for SERI is a difficult task. SER’s handcrafted features have been 

utilized by a few researchers. So, instead of using supplementary low-level characteristics like volume, linear 
productivity code (LPC),(16) formant, etc. Dave et al.(17) analysed several characteristics of speech emotions 
and shown frequency intended for optimal Mel frequency cepstral coefficient (MFCC)(18) characteristics of SER. 
By utilizing extra speech features including jitter and shimmer, Liu and colleagues(19) calculated the cepstral 
coefficient of gammatone frequency. The unweighted accuracy of SER can be increased by up to 3,6 % compared 
to MFCCs using (GFCC) characteristics. For classification, Liu et al. employed a decision tree based on an 
extreme learning machine (ELM).(20) suggested SER technique, which employed a Chinese voice dataset and 
applied correlation to find hidden emotional features (CASIA).(21) The technique in the direction of choose 
characteristics for DNN based on models for SER training based on glottal and MFCCs was reported by Fahad et 
al.(22) Wei et al.(2) used the autoencoder and sparse classifier suggested the SER approach to produced positive 
outcomes on a dataset of Chinese speaking emotions. To identify all type of the emotions in voice signals, the 
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large-scale hidden properties are retrieved via the autoencoder, and sparse network is utilized to trace the 
attributes with tiny dimensions to a support vector machine (SVM) classification system.

Convolutional Neural Network (CNN)-Based on Speech Emotion Recognition (SER)
For SER, researchers have recently utilized CNN features. Zhang et al.(23) created the DCNN-based approach 

for the SER by training an SVM, a conventional classifier, to identify the speaker’s emotional state and utilizing 
CNN’s pre-trained Alex Net model to discover deep learning features. George et al.(24) provided a method for 
SERs that are spontaneous and grounded in CNN and LSM utilizing the Remote Collaboration feature with the 
Natural Emotion Database Active RECOLA. The writer trained a CNN model to extract the speech’s overall 
discriminatory element, which was input to an LSTM for sequence learning to ascertain the emotions of the 
speaker. The random deep belief network was utilized for SER by Wen et al.(25). Using deep belief networks 
(DBNs) high-level characteristics that discriminate are retrieved from speech signals by feeding the low-level 
features, which were first extracted using LLD. The SVM classifier, which is linked to each DB, receives these 
high-level features. It then predicts the speaker’s weaker sensations and makes choices. by the vast majority 
vote. Lian et al.(26) employed a complex model in which an SVM classifier was used to predict emotions and 
a DBN was used to learn hidden features from speech to use the Chinese CASIA dataset to attain high-level 
accuracy in SER. According to Hajar et al.(27) a technique for SER that divided the discourse inputs into frames 
as well also retrieved the characteristics of the MFCCs as transformed them into spectrograms, which serve as 
a representation of the keyframe when chosen as a full audio the act of speaking. The 3D CNN model is trained 
to forecast the emotions in speech using the key spectrograms that are selected using the K-mean clustering 
approach. A method for SER employing advance long short-term memory (A-LSTM) to become familiar with the 
sequences using a pooling recurrent neural network (RNN) scheme was described by Fei et al.(28) This method 
outperforms simple LSTM. Saurabh et al.(29) assessed the autoencoder’s performance in SER using state-of-the-
art GAN.(30) after employing it for voice recognition on the IEMDMC dataset. Numerous techniques have been 
reported in the literature to extract discriminatory features from voice signals using the CNN model for SER 
with several kinds of input.(9) Deep learning techniques for SER were used in (26,27,28,29,30,31) to raise the ratio of 
recognition for real-time spontaneous SER Making use of a range of speech datasets, including IEMDMC, SAVEE, 
RAVDESS, CAISE TITMIT, and others. The use of massive pre-trained CNN architectures increases accuracy but 
significantly increases the model’s cost computations, using spectrograms as an input, several researchers have 
built techniques to identify the emotions expressed in speech. Utilizing CNN models to extract features, and 
separate classifiers for classification will increase the computational difficulty of the entire model.(32) Using a 
simple network, For SER, we presented a brand-new CNN architecture. in this research. To down sample the 
input feature map, strides were employed in the pooling layer in place of the convolutional layers. It lowers the 
total computational expense. of the CNN model and improves SER accuracy by utilizing the publicly accessible 
benchmark datasets, IEMDMC and RAVDES. The suggested approach is fully explained in following segment, and 
the challenge part examines the system’s efficacy and evaluation.

METHOD
We introduce a Convolutional Neural Network (CNN) based framework for SER in this area. The suggested 

architecture uses spectrograms and a discriminative Convolutional Neural Network (CNN) for the feature 
learning to identify the speaker’s contentious status. The input layers, convolutional layers, and fully 
connected the layers of the suggested stride CNN architecture are followed by a SoftMax classifier. When it 
comes to identifying a speaker’s emotions, a speech spectrum analysis signals is two-dimensional depiction 
More information is provided by the frequencies in relation to time than by the words used in text transcription. 
When we transform the audio speech signal into phonemes or text., we are unable to extract and apply the rich 
information contained in spectrograms. This skill makes spectrograms more effective at recognizing emotions 
expressed verbally.

The fundamental goal is to extract highest level of voice signal discrimination characteristics. To this end, 
used a Convolutional Neural Network (CNN) architecture, as well as the spectrogram works well for this kind of 
work. In (8), SER and classification are achieved by combining spectrogram and MFCC data with a Convolutional 
Neural Network (CNN). The spectrogram characteristics are employed in (32) to attain high SER performance. 
The following sections outline the main component of the suggested framework.

Pre-Processing
Preparing data for preprocessing is crucial to achieving model efficiency and accuracy. Using an adaptive 

threshold-based method of preprocessing, we purify the sound signals. in this step for the purpose of get 
rid of background noise, silent portions, and other unnecessary the speech signal’s information.(33) Using a 
direct relation policy, we could ascertain the connection among amplitude and energy in a voice signal using 
this way. The magnitude of a wave and its amount of vitality it travels through are related, according to the 
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energy amplitude connection. A high energy wave is indicated by a high amplitude, whereas A low energy is 
indicated by a low amplitude wave. An element’s extreme displacement from its position of rest is indicated by 
the amplitude of a wave. The energy-amplitude relationship makes sense in the following way to exclude the 
extraneous and silent particle from voice signals This process includes three steps: 

Start by gradually listening to the audio file at 20 000 sample rates. The following stage involves determining 
the relationship between energy and amplitude between waves, calculating the maximum amplitude using 
equation (1) in each frame. Passing the data through an appropriate threshold to eliminate noise and highlight 
the important portions and saving the results in an array. The final stage is creating a new audio file from 
scratch with identical sampling rates, as well as silent, noiseless transmissions. 

In equation (1), stands for the particle displacements, f signifies frequency in connection to time t., and A 
for the signal peak or amplitude. Figure 1 displays the preprocessing block diagram.

D = A0 × sin (2 × π × t × f)

Figure 1. A pre-processing block diagram that uses an adaptive threshold setting to improve speech signals

Production of Spectrograms 

Figure 2. Two-dimension spectrograms of different emotions with visual representations of speech signals
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Among the challenging problems in SER using 2D Convolutional Neural Network (CNN) is voice signal’s 
dimension. The main objective of this study is to use the High-level characteristics are extracted from audio 
signals with a CNN model. Therefore, we must transform the speech signal’s one-dimensional representation 
into a suitable two-dimensional depiction for 2D Convolutional Neural Network (CNN). The most appropriate 
and optimal two-dimensional representation of audio speech signals that illustrate speech signal strength 
across a range of frequencies is a spectrogram.(8)

Speech signals are subjected to Short-Term Fourier Transform (STFT) in order to visually display frequencies 
over various time intervals. Using Quick Fourier Transform (FFT) on a frame to calculate its Fourier spectrum after 
Converting a Longer Speech Stream using STFT into a shorter, equal length segment or frame. In spectrograms, 
the frequencies f of each brief interval is symbolized by the y-axis, and the x-axis represents the time t. The 
comparable the Signal for Speech S (t, f) in Spectrogram S has several type frequencies f across distinct times 
t. Spectrophotoms with dark colours depict frequencies at low magnitudes whereas those with light hues depict 
frequencies at greater magnitudes. For several types of speech analysis, including SER, spectrograms are ideal.
(34) Figure 2 displays an example of each audio file’s extracted spectrograms using STFT.

Convolutional Neural Network -CNN
The most advanced models available today are CNNs, which are used for extracting high-level characteristics 

from raw pixel data at a low level. Convolutional Neural Network (CNN) extracts high-level characteristics 
from pictures using several kernels and then uses these features to train a CNN model to carry out important 
classification tasks.(34) Three parts make up the Convolutional Neural Network (CNN) architecture: convolutional 
layers, which have several filters that can be applied to input. Every filter generates the number of feature 
mappings in a single convolutional layer by scanning the input through the submit process utilizing the dot 
product. Layer pooling, that are accustomed to down sample or reduce the number of dimensions of feature 
maps, make up the second component. Several strategies, such as maximum and minimum pooling, mean and 
median pooling that are supplied to etc., are employed to reduce dimensionality. The final element consists 
of CNN’s fully connected layers (FC), which are primarily utilized to extract global characteristics that are 
fed into a SoftMax classification to determine the likelihood for each class. These layers are arranged in a 
hierarchical structure by a Convolutional Neural Network (CNN): FC first, followed by the SoftMax classifier, 
Convolutional Layers (CL), and Pooling Layers (PL). The upcoming section provides an explanation of the 
suggested architectures.

Proposed Deep Stride Convolutional Neural Network Architecture (DSCNN)
Figure 3 displays the suggested Deep Stride Convolutional Neural Network (DSCNN) model for SER. The concept 

of plain nets,(14) that is specifically created for computer problems with vision including image categorization, 
identification, tracking, and localization to ensure high-level accuracy(35) largely inspires our deep stride 
Convolutional Neural Network (CNN) model. From image classification to speak emotion identification and 
categorization, we investigate the basics network, we present the stride deep Convolutional Neural Network 
(CNN) architecture, which learns deep features using a little same field in convolutional layers by utilizing a 
similar and small filter size (3 × 3). It is based on straightforward principles: if the size of the feature maps is 
cut in half, the number of filters needs to be doubled to preserve the complexity of time for each layer. The 
same number of kernels produces the same output feature maps. 

Figure 3. The general Block Diagram of the proposed Deep Stride Convolutional Neural Network (DSCNN) for voice feeling 
identification is displayed
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To implement this approach, we created the DSCNN model for SER, which down-samples feature map sizes 
straight into convolutional layers instead of the pooling layer using the stride (2 x 2) scheme. (9) layers make up 
the DSCNN; (2) completely connected layers and (7) convolutional layers are sent into SoftMax to produce the 
speech emotion probabilities. Convolutional filters are applied to the resulting spectrograms as input to derive 
maps of features from a certain voice spectrogram.

We set up CL, in the suggested design in a sequential manner. 16 squire-shaped kernels with a size of 7 × 
7 are applied to the first convolutional layer’s input spectrogram (C1)., the same (2 × 2) pixel padding and 
stride setting. Likewise, Features of the second convolutional layer (C2) 32 filters with a stride the size of 5 
× 5 and the setting of 2 × 2, the same amount is used by the C3 layer of padding, striding and filtering the C2 
layer; however, the filters are 3 × 3. The 64 (3 × 3) kernels in the C4 and C5 layers have a stride setting of 2 × 
2 pixels. Similarly, the C6 and C7 layers feature 128 (3 × 3) kernels with the same padding and stride. The final 
convolutional layer is followed by a flattening layer, which feeds the features to FC after transforming the data 
shape into vector form. There are 512 neurons in the first FC layer, and the final FC layer has as many neurons 
as there are classes. The suggested DSCNN uses batch normalization and the rectified linear unit activation 
function to regularize the model after each convolutional layer. Following the initial FC, a 25 % dropout ratio 
is used to mitigate the model’s overfitting.(35) To determine the likelihood of each class, the final FC layer was 
sent to the SoftMax classifier. Spectrograms are used in the design of the DSCNN for SER. Convolutional and FC 
layers are present in the DSCNN, which also uses a small filter size and unique steps and removes the pooling 
layer from the entire network. To extract discriminative features from spectrograms, CL first uses a large kernel 
size to learn local characteristics. It then gradually increases the number of kernels while maintaining the 
same filter size and shape. Employing the identical filter size and shape across the network to discover deep 
features, restricting the quantity of FC levels to prevent duplication, and down sampling while removing the 
pooling layer are the essential elements of this architecture, the robust prominent features using spectrograms 
are captured by the proposed DSCNN method because of the qualities.

Model Organization and Computational Setup
Python is used to implement the suggested DSCNN model layout, with additional resources including the 

machine learning software scikit-learn. The 128 × 128 spectrograms are produced from every file. To train and 
test, the entire set of produced spectrograms is split into two halves, 20 % and 80 %, respectively. Regarding 
the suggested DSCNN prototype for SER, the model training procedure was evaluated on a single 12-GB on-
board graphics card NVIDIA GeForce GTX 1070. With decaying every 15 epochs utilizing a 0,001 learning rate, 
the model was trained over 50 epochs. The maximum accuracy was attained after 50 epochs, with 0,3225 lost 
during training and 0,5472 lost during validation. The batch size for the whole training phase is 128, using 34,10 
MB model size that is smaller, the model trains quickly, demonstrating its simplicity of computation.

RESULTS
Within this section, we are used spectrograms that assess our SER model on the RAVDESS and IEMDMC 

datasets. Using spectrograms, the suggested Convolutional Neural Network (CNN)models’ performance is 
compared to modern CNN architectures for SER. Several experiments were carried out for SER; the specifics 
and findings are covered in the section that follows.

Data sets
Interactive Emotional and Dyadic Motion Capture (IEMDMC)

Ten actors are used in the acted English and multilingual language speech emotion dataset known as IEMDMC(12) 
to record a range various feelings, such as fear, rage, happiness, disgust, sadness, neutrality, and excitement. 
Twelve hours of audiovisual data total from five sessions make up the IEMDMC dataset. Two performers record 
a screenplay in a range of emotions during each session. Only 4 emotions angry, joyful, neutral, and sad were 
used in our work to compare experimental evaluations with cutting-edge methods.

Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS)
One English and Multilingual language emotional dataset that is frequently utilized for emotional songs and 

voices detection is the Ryerson audio-visual library of emotional speech and song.(13) Twelve male and twelve 
female performers make up the dataset, which is used to record 8 different feelings, encompassing angry, calm, 
joyful, sad, surprised, disgusted, neutral, afraid etc. There are 1450 wav files overall with a 50 000 Hz sample 
frequency of utterances.

Experimental Evaluations
In this part, we tested our suggested method using the IEMDMC and RAVDESS benchmark datasets. Two types 

of spectrograms were used in our experiments: raw spectrograms and spectrograms created directly from 
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audio recordings. Second, the audio signals are treated to eliminate the silence and noise component before 
being turned into spectrograms on the clean spectrogram. Our research on SER involved utterance-based tests 
using a five-fold cross-validation method. 85 percentage of the information were utilized for training and 20 
percent were used for testing the model. We ran 2 sets of experiments. In the first, we used raw spectrograms 
to train a DSCNN model and evaluated the model’s accuracy and efficiency in making predictions. We assessed 
the model’s performance in the second set after training it on clean spectrograms. Evaluate the model utilizing 
the subsequent metrics: precision, recall, f1 score, weighted (class-specific accurately forecasted samples of 
emotion divided by class-specific motion samples) and unweighted accuracy (total samples correctly predicted 
divided by total samples in the dataset). The suggested model’s training results are presented in Tables 1-3, 
and the discussion sections include the in-depth analysis and comparisons.

Table 1 made it evident how the two data sets’ raw and clean spectrograms differed. For this reason, rather 
than using pooling layers to reduce the feature maps’ sample size, the suggested The DSCNN model made use 
of convolutional layers.(14) When utilizing spectrograms to identify emotions from speech data, the performance 
is superior to the pooling approach.

Table 1. A contrasting it suggested model with both clean and raw spectrograms

Input Data-set Weighted- acc % Unweighted- acc% F1 -score%
RAW- SPEC

CLEAN- SPEC

RAWS- PEC

CLEAN -SPEC

IEMDMC

IEMDMC

RAVDESS

RAVDESS

77

85

69

82

73

78

83

63

80

85

71

85

Results and Performance of Deep Stride Convolutional Neural Network (DSCNN) Model
Utilizing the Convolutional Neural Network (CNN) architecture of simple nets,(14) we created the DSCNN 

method for SER and conducted studies on speech spectrograms obtained from utterances. Applying a dividing 
approach of 80 %/20 %, the DSCNN method was taught using these produced spectrograms. The two common 
benchmark datasets utilized for instruction and testing the algorithms prediction outcomes were IEMDMC and 
RAVDESS, respectively. Using the IEMDMC dataset, table 2 displays the performance of the system training on 
clean and unprocessed spectrograms, comprising weighted and unweighted accuracy, f1 score, recall, and 
precision at the class level. The total performance utilizing the RAVDESS dataset is shown in table 3, which 
includes weighted and unweighted accuracy, recall, precision and accuracy at the class level, and f1 score for 
both raw and clean spectrograms.

Table 2. Shows how well the suggested DSCNN method trained on clean and raw spectrograms made 
with IEMDMC

Nature emotion
Result on raw spectrograms Result on clean spectrograms

Precision Recall F1score Precision Recall F1score

ANGER 0,97 0,88 0,90 0,88 0,97 0,92

HAPPY 0,59 0,86 0,70 0,98 0,68 0,79

NEUTRAL 1,10 0,78 0,88 0,78 0,89 0,85

SAD 0,70 0,90 0,80 0,84 0,93 0,85

WEIGHTED AVG 0,79 0,76 0,77 0,87 0,86 0,86

UNWEIGHTED AVG 0,76 0,74 0,74 0,87 0,85 0,84

ACCURACY  --- --- 0,79 --- --- 0,86

Table 3. Shows suggested DSCNN method trained in raw cleaning and raw utilizing RAVDESS to create 
spectrograms

Nature emotion
Result on raw spectrograms Result on clean spectrograms

Precision Recall F1score Precision Recall F1score

Anger 0,45 1,10 0,58 0,80 0,92 0,85

Happy 0,93 0,30 0,45 0,80 0,91 0,85

Neutral 0,92 0,43 0,58 0,72 1,10 0,84

Sad 0,99 0,99 0,99 0,99 0,97 0,94
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Clam 0,83 0,76 0,79 0,73 0,95 0,82

Fearful 0,00 0,00 0,00 1,10 0,55 0,68

Surprised 0,92 0,47 0,60 0,90 0,88 0,89

Disgust 0,93 0,87 0,90 1,10 0,39 0,56

Weighted avg 0,80 0,72 0,69 0,86 0,82 0,82

Unweighted avg 0,74 0,60 0,62 0,86 0,82 0,80

Accuracy --- --- 0,72 --- --- 0,83

Prediction Performance of Proposed Deep Stride Convolutional Neural Network (DSCNN)
To demonstrate an effectiveness of system, the prediction performance of suggested DSCNN method is 

assessed using the RAVCDESS and IEMDMC datasets. Table 3 displays the methods prediction performance 
IEMDMC dataset in terms of confusion matrix. The method’s confusion matrix for the Table 4 displays the 
RAVDESS dataset. The suggested Convolutional Neural Network (CNN) model’s prediction performance increases 
overall prediction accuracy, demonstrating the model’s relevance and resilience.

Table 4 shows confusion matrix for forecasting emotions of IEMOCAM. Then average recall value for this 
matrix is 82,75 %, and each row shows how each emotion is confused between the predictions and the ground 
truth.

Table 4. Confusion matrix for forecasting emotions of 
IEMOCAM

Emotion class Anger Happy Neutral Sad

Anger 0,93 0,064 0,014 0,033

Happy 0,093 0,745 0,084 0,093

Neutral 0,00 0,073 0,905 0,024

Sad 0,00 0,025 0,253 0,733

Overall accuracy 82,75 %

An IEMDMC dataset’s total prediction performance for each of the four emotion files is displayed in Table 
4. Even Nevertheless, the model’s overall performance (82,75 %) is good for the IEMDMC dataset, with happy 
and sorrow receiving significantly less prediction accuracy than angry and neutral. In a similar vein, table 5 
shows the RAVDESS dataset’s prediction performance for eight classes. Although fear and disgust are partly 
intermingled with clam and rage emotions, the model obtains superior prediction for all classes in the RAVDESS 
dataset, and its overall prediction accuracy of 80,5 percent is good. Table 6 lists the training and testing 
accuracy of the suggested DSCNN model for each of the two datasets.

Table 5 confusion matrix for RAVDESS emotion prediction; each row shows how each emotion is confused 
between the ground truth and the forecasts, with an average recall value of 80,5 %.

Table 5. Confusion matrix for RAVDESS emotion prediction

Emo class Anger Clam Disgust Fear Happy Neutral Sad Surprised

Anger 0,84 0,00 0,00 0,00 0,16 0,00 0,00 0,04

Clam 0,00 0,84 0,00 0,00 0,00 0,16 0,00 0,00

Disgust 0,19 0,17 0,53 0,00 0,00 0,06 0,00 0,10

Fear 0,22 0,15 0,00 0,44 0,09 0,12 0,00 0,05

Happy 0,05 0,00 0,00 0,00 0,88 0,03 0,03 0,05

Neutral 0,00 0,04 0,00 0,00 0,00 0,96 0,00 0,02

Sad 0,00 0,00 0,00 0,00 0,03 0,05 0,95 0,00

Surprised 0,00 0,02 0,00 0,00 0,00 0,00 0,00 0,99

Overall accuracy 80,5 %

Table 6. shows the suggested DSCNN model’s accuracy in testing and training

Data set Training Accuracy Testing Accuracy

IEMDMC 84 % 82,75 %

RAVDESS 81 % 80,50 %
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Experiment using Cross Datasets
These days, many researchers have created sufficient method for SER utilizing one corpus has produced 

good recognition accuracy in tests. Many obstacles, such as diverse linguistic and cultural backgrounds and 
drastically changing speaker populations, affect the model’s performance when it is used in a natural setting 
for SER. We assess the efficacy of our model by comparing its performance across four different emotions in 
the RAVDESS and IEMDMC datasets.(36) We use an IEMDMC dataset for model training, and the RAVDESS dataset 
is used for model testing. Table 7 displays the cross-dataset confusion matrix.

Table 7. Confusion matrix for predicting emotions on 
a cross-corpus between IEMDMC and RAVDESS

Emotion class Anger Happy Neutral Sad

Anger 0,78 0,09 0,06 0,10

Happy 0,13 0,45 0,02 0,45

Neutral 0,02 0,14 0,58 0,34

Sad 0,00 0,53 0,00 0,50

Overall accuracy 57,5 %

Table 7 displays proposed model’s outcomes across multiple datasets, demonstrating its efficacy in identifying 
the 4 emotions with an average identification rate of 57,5 %. The recognition rates of the emotions of anger (78 
%), sadness (50 %), neutral (57 %), and happiness (45 %), in a cross-corpus analysis, are as follows. The cross-
dataset experiments demonstrate the model’s importance and resilience.

DISCUSSION
The primary contributions of this work are the architecture of the DSCNN method and utilizing threshold-

based speech signal preprocessing to eliminate noisy and unimportant parts of speech. The concept of plain 
nets, which are specifically made Our deep stride CNN (model) acknowledgement is greatly motivated to achieve 
a high degree of precision for computer vision problems such as image classification, localization, tracking, 
and other related tasks.(37) We define the stride deep Convolutional Neural Network-(DCCNN) architecture and 
investigate the plain network for SER. It has usually followed straightforward guidelines and employed a small 
(3 × 3) filter size since there are now more kernels in CL. The resulting feature maps are identical due to the 
same number of kernels. To keep the time complexity per layer constant, the number of filters needs to be 
doubled if the size of the feature maps is cut in half. Instead of using the pooling layer, we have directly down 
sampled the size of feature maps in convolutional layers using the stride (2 × 2). Nine (9) layers make up the 
DSCNN; the SoftMax layer receives input from seven (7) CL and two (2) FC layers to forecast the likelihood 
of speech emotions. Our model’s value lies in its smaller kernel size and fewer convolutional layers, which 
enable it to learn deep salient features with a small corresponding field. lower complexity compared to other 
cutting-edge deep learning techniques and produces excellent SER accuracy. The pooling approach is not more 
robust in signal processing, but it performs well in computer vision tasks including image recognition, tracking, 
and retrieval. As a result, the stride Convolutional Neural Network (CNN) model performed better than other 
cutting-edge techniques.

Table 8. Using the IEMDMC dataset, compare the suggested strategy with the baseline approach

Method Input Weighted accuracy Unweighted accuracy Accuracy

Fayek et al.(38) Spectrograms 65,78 % 60,99 % ---

Luo et al.(39) Spectrograms 61,35 % 62,98 % ---

Tripathi et al.(40) Spectrograms 72,3 % 61,7 % ---

Yenigalla et al.(41) Spectrograms 73,00 % 68,05 % ---

Chen et al.(42) Spectrograms --- --- 64,74 %

Proposed method Raw_spectrograms 76 % 72 % 74,8 %

Proposed method Clean_spectrograms 85 % 83 % 82,75 %

The performance of suggested approach is shown in table 8 in contrast to other cutting-edge methods. It 
performs better than the current findings when employing utterance level speech spectrograms on the IEMDMC 
dataset. An approach based on RNNs, and neural networks of SER was described by Haytham et al.(38) The 
method uses using frame spectrograms to train DNN, which is computationally expensive and does not produce 
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very accurate results. Transcript and phoneme were used by Tripathi et al.(43) to define the deep learning 
methods for SER. The accuracy was increased to 71 % by training many models with different features, but we 
all employed the same architecture utilized for computer vision related tasks. To improve SER accuracy, Chen 
et al.(42) created a system for SER utilizing a trained model and 3D CNN architecture, but he also employed the 
pooling strategy to build the network. Because of this restriction, we looked at the basic Convolutional Neural 
Network (CNN) architecture and came up with a novel model for SER that performs better than state-of-the-art 
findings. On the RAVDESS speech emotion dataset, table 9 compares the suggested framework with the baseline 
technique. It illustrates the importance and effectiveness of the suggested DSCNN model on the RAVDESS 
dataset, outperforming the SER findings. A spectrogram-based Convolutional Neural Network (CNN) model was 
published by Yuni et al.(43) for multi-class audio classification. By combining two models, the model achieved 
an accuracy of 64,48 % in multitasking. SER. Using the log spectrogram and spectral feature, Jalal et al.(44) and 
Anjali et al.(45) were able to identify the emotion in voice data with 68 % and 75 % accuracy, respectively. Using 
the IEMDMC dataset for SER, table 10 compares the computational simplicity of the proposed DSCNN model with 
various baseline Convolutional Neural Network (CNN) models. 

Table 9. Using the RAVDESS dataset, compare the suggested strategy with the baseline approach

Method Input Weighted accuracy Unweighted accuracy Accuracy

Zengetal.(43) Spectrograms -- -- 64,50 %

Jalaletal.(44) Log-spectrogram -- 70,4 % 68,15 %

Bhavanetal.(45) Spectral features -- -- 75,70 %

Proposed model Raw_ Spectrograms 68 % 62 % 70,10 %

Proposed model Clean_ Spectrograms 80 % 80 % 80,5 %

Table 10. A computational comparison between the proposed DSCNN model and existing 
baseline Convolutional Neural Network (CNN) algorithms presented

Method Training Time Model Size Accuracy

Alex-Net (transfer Learning)(46) 38min 201MB 70,54 %

Vgg16(transfer Learning)(37) 55min 420MB 73,00 %

ResNet50(transfer Learning)(14) 30min 75MB 75,50 %

Proposed DSCNN model 14min 34,5MB 82,75 %

On the Interactive Emotional Dyadic Motion Capture (IEMDMC) and RAVDESS datasets for SER, the suggested 
DSCNN model was also contrasted with cutting-edge CNN models in terms of training time, model size, and 
accuracy. Table 10 presents the efficacy and importance of the suggested model in comparison to baseline 
techniques. It illustrates how the suggested model is computationally simple in terms of training time, model 
size, and accuracy on speech signal spectrograms that are generated. utilizing the IEMDMC dataset, we train 
the Convolutional Neural Network (CNN) models Alex-Net, Vgg-16,(47) and Resnet-50(48) utilizing transfer learning 
approaches. The effectiveness and relevance of the proposed Convolutional Neural Network (CNN) model for 
SER were demonstrated by the proposed DSCNN model, which outperformed findings.

CONCLUSIONS
There are too many obstacles in the way of the SER literature’s attempts to reduce the overall model’s 

computing complexity and increase recognition accuracy. In response to these difficulties, we suggested a 
Convolutional Neural Network (CNN) design that includes a few key features extraction mechanisms to reduce 
computational complexity and increase accuracy of the SER model. In this research, we extracted speech 
signals from noise and silence data using a dynamic adaptive threshold approach. Then, to improve the 
accuracy and reduce the computational complexity of the suggested model, the improved speech signals are 
transformed into spectrograms. As an alternative to pooling layers, we employed stride Convolutional Neural 
Network (CNN) architectures for SER using spectrograms to learn most salient and discriminative features in 
a convolutional layer using some unique strides set to down-sample feature maps. Two common benchmark 
datasets, IEMDMC and RAVDESS, are used to assess the efficacy of the suggested model. The findings hold up 
well and can identify different moods in voice patterns. Our approach produces a computationally-friendly 
output system with accuracy up to 80,5 % when used to Ryerson Audio Visual Database of Emotional Speech and 
Song (RAVDESS) and 82,75 % when applied to an Interactive Emotional Dyadic Motion Capture (IEMDMC) dataset 
with less parameters in the model. This shows how important and successful the suggested system for SER using 
voice signal spectrograms.
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