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ABSTRACT

Predictive models derived from statistical learning techniques often assume that data originate from 
simple random sampling, thus assigning equal weight to all individuals. However, this assumption faces two 
significant challenges: it overlooks the complexity of real samples, where individuals may have different 
sampling weights, and it introduces a bias toward the majority class in imbalanced datasets. In this study, 
we propose an innovative approach that introduces differentiated weights for individuals by adjusting 
sample weights through calibration. This method aims to address class imbalance issues while improving the 
representativeness of samples. We applied it to the Support Vector Machine. Additionally, we developed an 
improved adjusted weighting approach to further enhance model performance, particularly for the minority 
class. This improved version combines two widely used techniques for handling class imbalances (resampling 
and cost-sensitive learning) by first balancing the classes through resampling, then applying adjusted sample 
weights during training. We evaluated the performance of our approach on real datasets with varying levels of 
imbalance using multiple evaluation metrics. The results were compared with various conventional methods 
commonly employed to address class imbalance. Our findings demonstrate the relevance and generalizability 
of our proposed algorithms, which often achieve performance equal to or better than that of established 
competing methods. Overall, our methodology not only corrects sample imbalances but also ensures a more 
accurate representation of the target population in the model, making it a robust and flexible solution for 
real-world imbalanced classification challenges.
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RESUMEN

Los modelos predictivos derivados de técnicas de aprendizaje estadístico a menudo asumen que los datos 
provienen de un muestreo aleatorio simple, asignando así un peso igual a todos los individuos. Sin embargo, 
esta suposición enfrenta dos desafíos significativos: pasa por alto la complejidad de las muestras reales, 
donde los individuos pueden tener diferentes pesos de muestreo, e introduce un sesgo hacia la clase 
mayoritaria en conjuntos de datos desequilibrados. En este estudio, proponemos un enfoque innovador 
que asigna pesos diferenciados a los individuos ajustando los pesos de la muestra mediante calibración. 
Este método tiene como objetivo abordar los problemas de desequilibrio de clases al mismo tiempo que 
mejora la representatividad de las muestras. Lo aplicamos a la Máquina de Vectores de Soporte. Además, 
desarrollamos un enfoque de ponderación ajustada mejorado para potenciar aún más el rendimiento del 
modelo, especialmente para la clase minoritaria. Esta versión mejorada combina dos técnicas ampliamente 
utilizadas para tratar el desequilibrio de clases (reejemplado y aprendizaje sensible al costo) al equilibrar 
inicialmente las clases mediante reejemplado, para luego aplicar pesos ajustados durante el entrenamiento. 
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Evaluamos el rendimiento de nuestro enfoque en conjuntos de datos reales con diversos niveles de desequilibrio 
utilizando múltiples métricas de evaluación. Los resultados se compararon con varios métodos convencionales 
comúnmente empleados para abordar el desequilibrio de clases. Nuestros hallazgos demuestran la relevancia 
y la generalizabilidad de los algoritmos propuestos, los cuales a menudo alcanzan un rendimiento igual o 
superior al de los métodos competidores establecidos. En general, nuestra metodología no solo corrige los 
desequilibrios de la muestra, sino que también asegura una representación más precisa de la población 
objetivo en el modelo, constituyéndose en una solución robusta y flexible para los desafíos de clasificación 
desequilibrada en contextos reales.

Palabras clave: Representatividad; Pesos de Muestra; Calibración; Desequilibrio de Clases; Máquina de 
Vectores de Soporte.

INTRODUCTION 
As machine learning models are increasingly employed in critical decision-making areas such as medical 

diagnostics, fraud detection, and predictive maintenance, the need for highly accurate and reliable models 
becomes paramount. The effectiveness of these models fundamentally depends on the quality of their data. 
This aspect has been analyzed from various perspectives, including data complexity,(1) missing values,(2) 
noise,(3) and dataset shift.(4) A key concept in ensuring data quality is data representativity, which ensures that 
models reflect the diverse conditions and scenarios they will encounter in real-world applications.(4,5) Without 
representativity, models are prone to poor performance and limited generalizability, highlighting the critical 
need for training data that accurately mirrors the target environments.

This paper explores a significant challenge in machine learning: class imbalance, a prominent example 
of data non-representativity that severely impairs model efficacy. Often resulting from selection bias, class 
imbalance manifests through a disproportionate representation of classes within the dataset.(6) This skew in 
the learning process affects both the model’s performance and its capacity for generalization. Consequently, 
models trained on such data tend to exhibit diminished sensitivity towards minority classes, display misleadingly 
high accuracy metrics, struggle with generalization on unseen data, and face heightened risks of overfitting. 
Addressing this imbalance is crucial for achieving equitable and accurate predictive outcomes in machine 
learning applications. The issue of class imbalance, prevalent in various real-world applications, has attracted 
significant interest from researchers.(7) Various strategies like data resampling, cost-sensitive methods, 
and active learning have been proposed to address this issue. In this work, we introduce a novel approach 
inspired by cost-sensitive learning, involving the use of a differential system for weighting individuals based on 
calibrated sample weights. We specifically focus on the Support Vector Machine (SVM) model, to demonstrate 
the effectiveness of our approach.(8)

Traditional SVMs often favor the majority class, which reduces their generalization performance due to 
uniform penalties for misclassifications across all samples. (9) To address this, we propose the Adjusted Weighted 
SVM (AW-SVM) model, which enhances data representativity by assigning weights according to each sample’s 
complexity and representativity relative to the target population. By leveraging prior knowledge of the overall 
population, calibrated sample weights help to bridge the gap between individual samples and the broader 
population, mitigating the effects of data imbalance. Building on this, we introduce an Improved Adjusted 
Weighted SVM (IAW-SVM) model that combines cost-sensitive learning with data resampling. This improved 
version first addresses class distribution imbalances through resampling and then applies the Adjusted Weighted 
SVM with calibrated sample weights. Our approach, which integrates calibrated weights with data resampling, 
achieves superior performance compared to traditional weighted methods, such as Weighted Support Vector 
Machine (WSVM), as well as data sampling-based preprocessing techniques, including Data Sampling applied to 
SVM (DS-SVM). This combination ensures a more representative dataset, leading to better classification results, 
improved generalization, and more reliable machine learn outcomes. Thus, it offers a valuable solution for 
various real-world applications requiring accurate data representation.

The remainder of the paper is structured as follows: first, we provide a brief overview of SVM, including 
its cost-sensitive training approaches WSVM, and a focused discussion on data resampling techniques. We then 
present the sample weight generation approach, the proposed AW-SVM models, and their enhanced version. 
Next, we detail the experimental results. Finally, we conclude with a summary of key findings.

Background study
SVM and its variants, such as WSVM, are widely used in machine learning for classification tasks. To address 

class imbalance, techniques like date resampling and weighted learning have been developed, improving model 
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performance by ensuring better representation of minority classes. This section aims to deepen the understanding 
of the modeling process of these models and present the main approaches for handling imbalanced data.

Support Vector Machine
In the field of machine learning, SVM models have gained widespread adoption among practitioners. Initially 

introduced by Cortes and Vapnik for binary classification tasks,(10) SVM is recognized as a robust supervised 
kernel-based method. Central to its effectiveness is the principle of structural risk minimization, which helps 
minimize the upper bound of generalization error and thereby grants SVM superior generalization capabilities 
compared to many alternative supervised learning approaches.(11)

SVM has been successfully applied in many application areas, addressing a wide range of problems, including 
both classification  and regression tasks.(12,13)

Giving a set of training pairs:

( , ), 1, 2,...,i ix y i l=

Where:
Xi εon

Represents the ith n dimensional input point.
yi is its corresponding binary label (-1 or 1), SVM aims to classify data points into two classes based on their 

features. 

The main concept of SVM involves transforming the input data from their original low-dimensional space to 
a higher-dimensional feature space using a nonlinear function Ф(X). Subsequently, the objective is to identify 
an optimal classifier in this higher-dimensional feature space that linearly separates the input data, typically 
represented as:

( . ( )) 0w x bΦ + =         (1)
	

Where:
“.” is a scalar product.
b represents the offset of the hyperplane from the origin.
w=(w1,…,wn) denotes the weight vector of n elements that determine the direction of the optimal separating 

hyperplane. 

The classifier should satisfy the following constraints in the high-dimensional feature space:

( . ( )) 1 if 1
( . ( )) 1 if 1

i i

i i

w x b y
w x b y
Φ + ≥ =

 Φ + ≤ = −
                   (3)

	
The quest for the optimal classifier involves maximizing the margin 2/||W|| between the hyperplanes, 

based on the principle of structural risk minimization. This maximization is reformulated to streamline problem-
solving as the minimization of ||W||/2. To address misclassifications, an error term ψ also known as slack 
variable is introduced to relax the constraints. With these adjustments, the pursuit of the optimal classifier is 
reframed as the following optimization problem:

 

2

1

1min
2

s.t., ( ( ) ) 1 , 0, 1,...,

l

i
i

i i i i

w C

y w x b i l

ψ

ψ ψ
=

+

⋅Φ + ≥ − ≥ =

∑＼ ＼

  

Where:
C denotes a regularization parameter of this model, influencing the balance between maximizing the margin 

and classification violation. 

The expression 2/||W||2  is a smoothed version of 2/||W||, making it suitable for convex quadratic 
programming (QP). Typically, to solve this QP problem, equation (4) is transformed into its Wolfe dual form 
by adding the Lagrangien multiplier 0 ≤ α and solving it by applying the Karush-Kuhn-Tucker condition,(14) the 
obtained dual problem can be expressed as:
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(5)

The product of Ф(Xi) and Ф(Xj)t can be defined as kernel function K(xi, xj) Ф(Xi).Ф(Xj) knowing the exact form 
of the kernel function is essential in the problem-solving process, as long as it meets the Mercer condition.(15)

After solving the quadratic problem (5) and obtaining the optimal values α*(α1,…,α1*, we determine the 
unknown variables and  as mentioned in the equations below:

* *

* *

*
*

( )

( , )

i i i
i

i i j i j
i j

i
i

w y x

y K x x
b

α

α α

α

= Φ

= −

∑

∑∑
∑

 

(6)

For any new instance the decision function is obtained as: 

* *( ) ( . ( ) )f x sign w x b= Φ + 	 (7)

SVM models must solve the quadratic programming problem to find the optimal hyperplane. The complexity of 
this problem, as revealed by equation 4, directly correlates with the number of training instances. Consequently, 
resolution time is significantly prolonged for large-scale problems, leading to increased computational costs. 
In response to this challenge, various effective algorithms have been developed, including chunking and 
sequential minimal optimization algorithms to improve classification accuracy by selecting optimal parameters 
via heuristic search.

Weighted SVM (WSVM)
WSVM enhance traditional SVM models by assigning different weights to instances based on their importance. 

Unlike conventional SVM, which treats all instances equally, WSVM addresses noise, outliers, and class imbalance 
issues by giving more influential data points greater impact on the decision boundary. This is achieved by 
adjusting the regularization parameter c, allowing the model to emphasize key data points and create a 
more reliable decision boundary. This results in improved classification performance, especially in noisy or 
imbalanced datasets. The constrained optimization problem for WSVM is described as follows:

2

1

1min
2

s.t., ( ( ) ) 1 , 0, 1, ,

l

i i
i

i i i i

w C W

y w x b i l

ψ

ψ ψ
=

+

⋅Φ + ≥ − ≥ = …

∑＼ ＼

   

(8)

In the given formulation, the data point xi is assigned a weighting factor Wi based on its class membership, 
leading to the following dual formulation:

1 1 1

1

1min ( , )
2

s.t., 0, 0 , 1,...,

l l l

i j i j i j j
i j j

l

i i i i
i

y y K x x

y CW i l

α α α

α α

= = =

=

−

= ≤ ≤ =

∑∑ ∑

∑
  

(9)

By calculating αi we determine the unknown variables w b as outlined in the following equations:

* *

* *

( ),

1 ( ( , ))
i i

i i i
i

i i i i j
x NSV x NSVNSV

w y x

b y y K x x
N

α

α
∈ ∈

= Φ

= −

∑

∑ ∑
      

(10)
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Where:
NNSV in the number of normal support vectors, for any new instance the decision function is obtained as: 

* *( ) ( . ( ) )f x sign w x b= Φ +           (11)

By emphasizing important data points, WSVM improves the robustness of the model and offers a more 
adaptive and effective solution for complex datasets with varying data point importance.

Data sampling applied to SVM (DS-SVM)
This paper focuses primarily on data resampling techniques applied to SVM (DS-SVM), which include 

oversampling, undersampling, and hybrid approaches.(16,17) These methods adjust class ratios to ensure that 
each class contributes equally to the learning process, thereby enhancing model fairness and accuracy. Both 
oversampling and undersampling aim to adjust the ratios between majority and minority classes. Hybrid 
techniques combine both approaches to leverage the benefits of each, creating a more balanced dataset. By 
rebalancing the training data, resampling allows different classes to have a more equal impact on the outcomes 
of a classification model. These traditional rebalancing methods have shown some potential in mitigating the 
class imbalance problem. However, they often disrupt the original data structure and fail to preserve the 
distribution of data during resampling. As a result, these methods tend to lose important information from 
the original datasets, which may limit classification accuracy. This limitation further intensifies the problem of 
datasets not being representative of the overall population.

METHOD
WSVM and WLSSVM models have been widely studied in machine learning to address various challenges, 

particularly in assessing model sparsity. In these models, weights are derived from error variables, and robust 
estimates are obtained using standard deviation.(18) Yang et al.(19) developed a new weighted SVM to reduce 
outlier insensitivity by employing a robust fuzzy clustering algorithm for weight generation. Tomar et al.(20) 
presented a weighted least squares twin SVM specifically for addressing class imbalance issues. Xia et al.(21) 
proposed a relative density-based SVM for noisy data classification, ranking points based on their relative 
density to assign higher values to more important data. Hazarika et al.(22) introduced a density-weighted SVM 
model for binary class imbalance issues. 

Building on previous research, our approach aims to mitigate the effects of class imbalance by enhancing data 
representativity. To achieve this, we introduce the Adjusted Weighted Support Vector Machine (AW-SVM) and the 
Adjusted Weighted Least Squares Support Vector Machine (AW-LSSVM). Additionally, we propose their improved 
versions, IAW-SVM and IAW-LSSVM, which further refine the weighting strategy to optimize model performance.

Weight generation approach
To minimize bias and improve model perform ance in addressing class imbalance, we generate adjusted 

sample weights by combining sample design and calibration techniques based on available auxiliary information. 
These weights are crucial for enhancing the overall representativity and effectiveness of our models. 

The concept of individual weighting has been extensively studied, with foundational work by Horvitz et 
al.(23) and  Hansen(24) which involves weighting units by the inverse of their inclusion probabilities. The weight 
assigned to each individual, expressed as wi= 1/πi, where πi is the probability of selection for individual i, 
reflects the number of target population members that the sampled individual represents.

In scenarios where sampling weights are unknown, such as in many machine learning datasets, we generate 
artificial weights for training samples. Initially, we assume the test sample data is selected using simple random 
sampling, equivalent to not applying weights for parameter estimation. We then refine these weights through 
calibration techniques, ensuring they align with known totals of specific auxiliary variables.(25) This refinement 
process incorporates appropriate weighting information into the parameter estimation, thereby enhancing the 
sample’s representativity and improving the model’s accuracy.

In classification problems, ensuring well-represented classes is crucial. Therefore, we employ a stratified 
sampling design instead of simple random sampling. This involves selecting independent samples from each 
stratum based on their respective sizes and the overall population size.

After determining these sampling weights, we apply calibration techniques to adjust for potential estimation 
biases and align sample characteristics with the population. Calibration adjusts weights using auxiliary 
information that is not included in the original datasets. This process corrects discrepancies between the 
sample and the population, thereby enhancing both representativity and precision in statistical estimates.(26) 
By aligning the sample characteristics more closely with those of the population, calibration helps to reduce 
potential biases in the estimation process. The specific method used for calibration weight adjustment in this 
study follows the Samplics approach.(27)

https://doi.org/10.56294/dm2025719

 5    Benhlima L, et al

https://doi.org/10.56294/dm2025719


https://doi.org/10.56294/dm2025719

Adjusted and Improved Weighted Support Vector Machine (AW-SVM and IAW-SVM)
The AW-SVM model searches for a classifying hyperplane  in the input space w*.Ф(x)+b*=0 and applies a 

weight vector to the hinge loss term, adjusting the contribution of each sample based on its importance and 
representativity, thus the classifying hyperplane may be obtained by solving the optimization problem as:

2

1

1min
2

s.t., ( ( ) ) 1 , 0, 1, ,

l

i i
i

i i i i

w C S

y w x b i l

ψ

ψ ψ
=

+

⋅Φ + ≥ − ≥ = …

∑＼ ＼

   

(12)

	  
Unlike traditional weighting methods that allocate weights to individuals based on their class membership, 

our approach assigns varying weights according to each individual’s representativity within the overall 
population. In this context, S=S(S1,…,Sl) represents the adjusted sample weight vector. To solve the constrained 
problem (12), the dual problem is determined by adding the Lagrangian multiplier and solving it by applying 
the KTT condition. The equation may be expressed as:

1 1 1

1

1min ( , )
2

s.t., 0, 0 , 1,...,

l l l

i j i j i j j
i j j

l

i i i i
i

y y K x x

y CS i l

α α α

α α

= = =

=

−

= ≤ ≤ =

∑∑ ∑

∑
    

(13)

The unknown variables w and b can be computed after the calculation of αi.For any new datapoint, the 
decision classifier may be expressed as similar to equation (11).

The IAW-SVM applies the AW-SVM to preprocessed data samples using a selected data sampling technique. 
The objective is to enhance representativity while mitigating class imbalance, thereby improving predictive 
performance for the minority class. The implementation of IAW-SVM follows a structured sequence of steps, 
detailed as follows:

•	 Step 1: define the training dataset (xi,yi)  for i= 1,2,…,l

Where
Xi εon. This dataset consists of input vector xi
Their corresponding label yi.

•	 Step 2: apply a data sampling technique. This preprocessing step can involve oversampling, 
undersampling, or hybrid techniques. The resulting training dataset is noted as (xi,yi) for I,1,2…,s.

•	 Step 3: identify auxiliary variables to aid in weight calculation. These should include the variable 
most correlated with the target variable and a variable representing the original class sizes.

•	 Step 4: calculate the adjusted sample weights based on the chosen sample design and auxiliary 
variables.

•	 Step 5: select an appropriate kernel function for the AW-SVM.
•	 Step 6: train the AW-SVM using the selected kernel function and perform hyperparameter tuning. 

Key hyperparameters to adjust include:
1.	 The penalty parameter C.
2.	 The polynomial degree  d (for polynomial kernels).
3.	 The kernel coefficient y (for RBF kernels).

•	 Step 7: compute the Lagrangian multipliers  αi from the dual problem formulation. Use these 
multipliers to determine the optimal hyperplane parameters w*  and  b*.

•	 Step 8: to classify a new instance Xi εon use the trained IAW-SVM model with the decision function:

* *( ) sign( ( ) ).f x w x b= ⋅Φ + 	

RESULTS AND DISCUSSION
The results of our simulation experiments, designed to evaluate the effectiveness of the proposed models, 

are presented in this section. We begin by describing the benchmark datasets sourced from the UCI repository 
and outlining the evaluation metrics used to address class imbalance. Following this, we provide details on the 
simulation setup and present the results for binary classification tasks.
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First, we compare the performance of AW-SVM  with the original models, SVM . Then, we compare the 
Improved versions, IAW-SVM with W-SVM and DS-SVM as well as with the original models, SVM and LSSVM. The 
experiments are conducted in Jupyter 6.4.8 on a system equipped with 8 GB of RAM, 500 GB of storage, and an 
Intel Core i7 processor operating at 1,50 GHz.

Datasets analysis
We evaluated our approach on ten real-world datasets, covering a wide range of sample sizes (from a few 

hundred to over 200 000 instances), feature counts (9 to 30), and class imbalance ratios (1,9 to 11,9). This 
diversity ensures a comprehensive assessment of our methods across various data scales and complexities, 
highlighting their robustness in different application scenarios.

Each dataset underwent rigorous preprocessing. First, we identified and mitigated outliers, which could 
otherwise distort model performance, particularly in SVM-based learning. Next, categorical features were 
encoded, and numerical attributes were standardized using min-max scaling. Finally, the datasets were split 
into training and testing sets to evaluate model performance on unseen data, ensuring a reliable assessment 
of generalization capability.

Evaluation metrics
Choosing the right evaluation metrics is crucial for accurately assessing the performance of predictive 

models, especially in the context of imbalanced datasets. Standard metrics like accuracy often fail to provide 
meaningful insights in such scenarios, as they can be heavily biased towards the majority class.(28) Therefore, 
selecting evaluation metrics that appropriately address class imbalance is essential for developing robust and 
effective models.

In this study, we focus on the G-mean and Fβ Measure as our primary evaluation metrics. The G-mean is 
particularly valuable because it balances the true positive rate and the true negative rate, ensuring that the 
model performs well across both minority and majority classes. The F2-Measure is a specific case of the more 
general Fβ Measure, with β=2. It places more emphasis on recall than precision, which is crucial when the 
accurate identification of the minority class is of greater importance. By weighting recall more heavily, the F2-
Measure ensures that the model prioritizes capturing the minority class, which is often the focus in imbalanced 
datasets.(29)

Simulations analysis
In this section, we present the experimental results and compare the proposed algorithms for binary-class 

problems with various classic algorithms designed to address class imbalance issues. Our approach incorporates 
adjusted sample weights into predictive models. Since survey weights for each individual were not available 
in all datasets, we adopted an optimal stratified sampling approach to create a representative sample of the 
entire population, as explained in the weight generation subsection. The main goal was to generate a weight 
vector to study the impact of considering the differential weighting of individuals on the learning model. 

After drawing the sample, we employed a calibration technique to adjust the weight vector and improve the 
precision of the estimators. This iterative process modifies the weights until the estimates from the calibrated 
sample align optimally with the true population values. To ensure consistency and reliability, we repeated this 
adjustment for different samples (100 samples in total) for each dataset. Through this rigorous approach, we 
could precisely evaluate the influence of survey weights on the learning model, leading to significant findings 
regarding the importance of this differentiated weighting approach. The average results for 100 samples from 
each dataset were obtained in terms of F2-Measure and G-Mean.

We conducted two comparison experiments. In the first experiment, we compared AW-SVM with the basic SVM 
algorithm. In the second experiment, we compared IAW-SVM with WSVM, DS-SVM, and the original model SVM. 

Comparison of AW-SVM versus SVM
Table 1 presents the average results for the algorithms AW-SVM and SVM, for the F2-Measure and G-Mean 

across 10 datasets.

Table 1. Classification results based on G‐mean and F2‐Measure

Datasets
G-mean F2-Measure

SVM AW-SVM Err1 SVM AW-SVM Err2

Abalone 16,42 73,54 +57,12 6,01 37,0 +30,99

Pima 66,49 70,61 +4,12 56,56 60,89 +4,33

Segment 90,76 88,47 -2,29 84,69 82,86 -1,83

Wine quality-red 59,88 62,53 +2,65 40,39 44,2 +3,81

https://doi.org/10.56294/dm2025719
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Bank marketing 35,24 53,16 +17,92 19,59 37,73 +18,14

Tyroid 90,09 91,96 +1,87 83,52 86,27 +2,75

Whine quality-white 63,22 64,49 +1,27 47,58 51,28 +3,7

Autism 94,93 97,04 +2,11 92,37 96,63 +4,26

Vehicle1 65,51 68,45 +2,94 52,03 56,71 +4,68

Diabetes 35,92 41,07 +5,15 17,61 20,98 +3,37

Based on these results, AW-SVM significantly outperform the basic models SVM in nearly all cases, achieving 
superior performance in 9 out of 10 datasets across both metrics, F2-Measure and G-Mean. Furthermore, our 
proposed models have effectively reduced the effect of data imbalance, as demonstrated by the enhanced 
performance in these metrics.

Comparison of IAW-SVM with Basic Models and Popular Data Imbalance Techniques
Although the approach proposed previously reduced the effect of class imbalance by improving performance 

indicators, the results were not sufficiently satisfactory in certain cases. This prompted us to develop an 
improved version to address the same issues of imbalance and representativity while also being competitive with 
popular techniques in this field. Therefore, in this section, we compare our improved imbalanced classification 
algorithms, IAW-SVM, with two widely used techniques for handling class imbalance: cost-sensitive learning and 
data resampling.

The cost-sensitive approach assigns weights to instances inversely proportional to their class distribution in 
the training data (W-SVM). In contrast, the data resampling technique involves adjusting the sample distribution 
before training the models (DS-SVM). Table 2 and table 3 presents the simulation results for four models, 
including our proposed model IAW-SVM, evaluated using F2-Measure and G-Mean, respectively.

Table 2. Classification results and rankings based on G-mean

Datasets SVM Rank WSVM Rank DS-SVM Rank IAW-SVM Rank

Abalone 16,42 (4) 54,59 (3) 58,14 (2) 74,77 (1)

Pima 66,49 (4) 71,86 (2) 70,08 (3) 72,79 (1)

Segment 90,76 (3) 91,09 (2) 90,74 (4) 91,14 (1)

Wine quality-red 59,88 (4) 64,2 (3) 67,95 (2) 76,89 (1)

Bank marketing 35,24 (4) 69,41 (2) 66,62 (3) 70,0 (1)

Tyroid 90,09 (4) 92,81 (3) 95,15 (2) 97,68 (1)

Whine quality-white 63,22 (4) 67,13 (3) 71,78 (1) 71,55 (2)

Autism 94,93 (3) 96,78 (2) 69,0 (4) 97,15 (1)

Vehicle1 65,51 (4) 68,35 (3) 71,84 (2) 72,42 (1)

Diabetes 35,92 (4) 59,19 (3) 69,86 (1) 66,23 (2)

Average Rank 3,8 2,6 2,6 1,2

Table 3. Classification results and rankings based on F2-Measure

Datasets SVM Rank WSVM Rank DS-SVM Rank IAW-SVM Rank

Abalone 6,01 (4) 29,24 (2) 29,12 (3) 36,82 (1)

Pima 56,56 (4) 65,22 (2) 64,54 (3) 68,51 (1)

Segment 84,69 (2) 84,91 (1) 83,32 (4) 83,97 (3)

Wine quality-red 40,39 (4) 43,46 (3) 46,59 (2) 56,24 (1)

Bank marketing 19,59 (4) 54,86 (2) 50,87 (3) 55,29 (1)

Tyroid 83,52 (4) 87,81 (3) 90,16 (2) 94,38 (1)

Whine quality-white 47,58 (4) 54,98 (3) 66,21 (1) 63,97 (2)

Autism 92,37 (4) 96,47 (2) 95,65 (3) 96,76 (1)

Vehicle1 52,03 (4) 56,16 (3) 62,61 (2) 67,7 (1)

Diabetes 17,61 (4) 39,35 (3) 53,67 (1) 50,4 (2)

Average Rank 3,8 2,4 2,4 1,4
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The results show that IAW-SVM and IAW-LSSVM consistently achieve superior performance across most datasets, 
as indicated by their average ranks (noted in parentheses) based on F2-Measure and G-Mean values. Their 
effectiveness is further illustrated which presents a bar plot of the average performance across various real-
world datasets. This visualization confirms that IAW-SVM outperform existing cost-sensitive and data resampling 
techniques, demonstrating a significant improvement in classification metrics for imbalanced datasets.

Figure 1. Average Ranking of Algorithms Based on F2-Measure and G-Mean

Performances validation
Evaluating and comparing the performance of classification algorithms is crucial to determine their 

suitability for different datasets and tasks. To this end, we employed the Friedman test, a non-parametric 
statistical method designed to identify differences in the distributions of paired samples. This test is particularly 
effective for comparing algorithms across multiple datasets, as it allows us to assess their relative performance 
systematically. In this study, we analyzed the average ranks of eight classifiers across all datasets.

The Friedman test was conducted using G-mean and F2-measure as evaluation metrics, comparing the 
following algorithms: SVM, W-SVM, DS-SVM,and IAW-SVM. The results are summarized in table 4.

Table 4. Results of the Friedman test

Metrics Stat CV p-value Significance Level H0

G-mean 20,04 7,81 1,40 × 10⁻⁴ 0,05 Rejected

F2-measure 17,51 7,81 5,52 × 10⁻⁴ 0,05 Rejected

Given these extremely low p-values, combined with the fact that the test statistics exceed the critical 
thresholds, lead to the rejection of the null hypothesis. These findings confirm that the performance differences 
among the tested algorithms are statistically significant. Such insights highlight the importance of carefully 
selecting classification algorithms based on the evaluation metrics relevant to the task at hand. 

To further analyze the observed performance differences, we conducted pairwise comparisons using the 
Wilcoxon test, based on both G-mean and F2-measure metrics. This non-parametric test identifies specific pairs 
of algorithms that exhibit statistically significant performance differences. The results of the Wilcoxon test 
revealed several significant differences between the evaluated algorithms. For the G-mean metric, IAW-SVM 
exhibited significant differences compared to SVM, WSVM, and DS-SVM (p<0,05). For the F2-measure, IAW-SVM 
also demonstrated statistically significant differences when compared to SVM, DS-SVM, and WSVM.

Overall, these results confirm that the tested algorithms do not perform equally, with certain models 
(particularly IAW-SVM) showing substantial differences when compared to traditional approaches like SVM. 
These findings highlight the importance of carefully selecting classification algorithms based on performance 
metrics relevant to the specific task.

CONCLUSIONS
This paper presents a novel adjusted weighting strategy based on sample weighting to improve data 

representativity in handling imbalanced data classification problems. By focusing on the amelioration of data 
representativity through the incorporation of adjusted sample weights into SVM, we developed the AW-SVM 
approach. These methods stand out by using known population information not included in the dataset, through 
a calibration technique, to make samples more representative. Our study addresses the challenge of enhancing 
representativity in cases where datasets present class imbalance problems. Attributing differential system 
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weighting to individuals based on their degree of representativity significantly enhances model performance 
concerning the minority class. Experimental comparisons of our proposed models with traditional models on 
binary class imbalanced datasets demonstrate significant improvements in two key evaluation metrics: F2 
measure and G-mean.

Furthermore, we developed an enhanced version of our models by integrating cost-sensitive techniques 
with adjusted survey weights and data resampling methods. Simulation results using this improved approach, 
IAW-cSVM, demonstrate competitive performance against well-established techniques, including W-SVM, DS-
SVM, and DS-SVM. For future research, the adjusted weighting methodology could be extended to other SVM 
variants, such as Twin SVM, Least square SVM and Proximal SVM, to further enhance data representativity and 
generalization capabilities. Beyond SVM based classifiers, incorporating adjusted sample weights into other 
learning models such as decision trees and neural networks offers a promising avenue for addressing class 
imbalance across a broader range of applications.
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