
Modelo híbrido de detección de intrusiones basado en agrupación por densidad y
aprendizaje profundo para la detección de tráfico malicioso en la red

Data and Metadata. 2025; 4:739
doi: 10.56294/dm2025739

ORIGINAL

Hybrid Intrusion detection model-based density clustering approach and deep
learning for detection of malicious traffic over network

Ola Ali Obead1
 , Hakem Beitollahi2 

ABSTRACT

Intrusion detection in modern network environments poses significant challenges due to the increasing volume
and complexity of cyber-attacks. This study proposes a hybrid approach integrating density-based clustering
with deep learning to identify malicious traffic over the network. The proposed framework consists of two
steps: clustering and classifying data. in clustering, the proposed model uses density clustering techniques
to pre-process and segment network traffic into coherent clusters, thereby reducing data noise within
clusters. The deep learning model analyses these clusters, accurately distinguishing between benign and
malicious activities. The proposed model was tested over the benchmark dataset CIRA-CIC-DoHBrw-2020.
The performance of the proposed model compared with standard machine learning models and the number
of states of the artworks. The experiment result demonstrates that our hybrid model significantly improves
detection accuracy and reduces false-positive rates compared to existing methods.

Keywords: Clustering; Density Clustering; Domain Name System; Deep Learning; Malicious Traffic.

RESUMEN

La detección de intrusiones en entornos de redes modernas plantea desafíos significativos debido al
creciente volumen y complejidad de los ciberataques. Este estudio propone un enfoque híbrido que integra
la agrupación basada en densidad con aprendizaje profundo para identificar tráfico malicioso en la red. El
marco propuesto consta de dos etapas: agrupación y clasificación de datos. En la fase de agrupación, el
modelo utiliza técnicas de agrupación por densidad para preprocesar y segmentar el tráfico de red en grupos
coherentes, reduciendo así el ruido de los datos dentro de los grupos. Luego, el modelo de aprendizaje
profundo analiza estos grupos, distinguiendo con precisión entre actividades benignas y maliciosas. El modelo
propuesto fue evaluado utilizando el conjunto de datos de referencia CIRA-CIC-DoHBrw-2020. Su rendimiento
se comparó con modelos de aprendizaje automático estándar y con los métodos más avanzados en el estado
del arte. Los resultados experimentales demuestran que nuestro modelo híbrido mejora significativamente
la precisión de detección y reduce las tasas de falsos positivos en comparación con los métodos existentes.

Palabras clave: Agrupación; Agrupación por Densidad; Domain Name System; Aprendizaje Profundo; Tráfico
Malicioso.

© 2025; Los autores. Este es un artículo en acceso abierto, distribuido bajo los términos de una licencia Creative Commons (https://
creativecommons.org/licenses/by/4.0) que permite el uso, distribución y reproducción en cualquier medio siempre que la obra original
sea correctamente citada

1Department of Information Networks, College of Information Technology, University of Babylon. Iraq.
2School of Computer Engineering, Iran University of Science and Technology. Tehran, Iran.

Cite as: G Ali Obead O, Beitollahi H. Hybrid Intrusion detection model-based density clustering approach and deep learning for detection
of malicious traffic over network. Data and Metadata. 2025; 4:739. https://doi.org/10.56294/dm2025739

Submitted: 28-04-2024 Revised: 25-08-2024 Accepted: 22-03-2025 Published: 23-03-2025

Editor: Dr. Adrián Alejandro Vitón Castillo

Corresponding Author: Ola Ali Obead 

https://doi.org/10.56294/dm2025739
https://orcid.org/0000-0002-5674-0951
mailto:Ola334805@gmail.com?subject=
https://orcid.org/0000-0002-8420-6545
mailto:Beitollahi@iust.ac.ir?subject=
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.56294/dm2025739
https://orcid.org/0000-0002-7811-2470
mailto:Ola334805@gmail.com?subject=

https://doi.org/10.56294/dm2025739

INTRODUCTION
The Internet has become essential to our lives, underpinning critical infrastructure, communication,

education, commerce, and many online services.(1) Life in the current era has significantly depended on the
means of service available using the Internet, as the Internet was used to transfer important information,
financial transactions, correspondence, and essential documents. However, there has been a significant
increase in Internet users, as shown on the site (https://www.statista.com). The number of Internet users in
2024 increased by 66 %. Figure 1 shows the Worldwide internet user penetration from 2014 to January 2024.

Figure 1. Worldwide internet user penetration from 2014 to January 2024, according to https://www.statista.com

Due to the importance of information transmitted via the Internet and the reliance on companies that
provide online services, these companies and information are exposed to many attacks of theft and sabotage.(2)
However, this reliance also attracts malicious actors who seek to disrupt or exploit vulnerabilities.

Intrusion Detection Systems (IDSs) is a digital security tool for computer networks.(3,4) They watch over the
network traffic and sound an alarm if they spot anything suspicious. The IDSs depend on specific patterns and
struggle to keep up with the ever-changing DDoS attacks. These attacks sneak in using normal rules and team
up with other computers to cause even more trouble.(5)

Various types of Artificial intelligence (AI) models have been used in IDS. Whether they are algorithms based
on deep learning or based on data mining algorithms, Support vector machine (SVM), Decision tree (DT), and
Naïve Bayes (NB), among other algorithms, in determining the intrusion attacks. When artificial intelligence
algorithms are applied to assess intrusion attacks, they suffer from two problems: the overlap of the attack data
with natural data and the high dimensions of the data.(6) Moreover, due to their dynamic and evolving nature,
Traditional, signature-based intrusion detection systems (IDSs) are often ineffective against DDoS attacks.(7,8,9)
The intrusion detection model-based machine learning can learn from historical data and adapt to new attack
patterns, offering greater flexibility and resilience than traditional methods.(10)

Ahmed et al.(11) proposed a method for detecting Distributed Denial-of-Service (DDoS) attacks on the
application layer. Relevant features indicative of potential DDoS attacks is extracted from the preprocessed
data. The proposed model classified the intrusion attacks based on the employed Multi-Layer Perceptron (MLP).
The attack data is significantly less than normal traffic data, so the model might learn to favor the majority
class and struggle to detect attacks accurately.

In (12), the authors proposed a proactive feature selection model for DRDoS detection using DNS responses.
The model employs enhanced optimization algorithms to select relevant features and reduce dimensionality.
It utilizes machine learning algorithms (k-NN, random forest, SVM) for classification based on features chosen.
The authors used re-randomization when the algorithm reached stagnation.

The authors in (13) proposed a clustering method for classifying the DNS traffic to intrusion and normal. The
proposed model reduces the number of producing clustering from the first stage based on frequent Euclidean
distance and threshold. The limitation of this work is that the authors reused the same metrics across distributed
data on clusters and, in an evolving process, made the clustering algorithm rely heavily on the threshold.
Moreover, the reduced number of clustering in this manner increased overlap in final clusters and reduced the

Data and Metadata. 2025; 4:739 2

https://doi.org/10.56294/dm2025739
https://www.statista.com
https://www.statista.com

effect of the IDS model in distinguishing intrusion attacks.
A deep learning framework for DDoS attack detection was proposed in (14), utilizing a contractive auto coder

to effectively represent average traffic data. The model employs a stochastic threshold technique based on
reconstruction error to identify anomalies within the dataset. However, directly applying machine learning
algorithms without data preprocessing introduces a bias towards majority classes, reducing the system’s
effectiveness. This constitutes a weakness of the proposed model.

The study in (6) introduced a model to detect Distributed Reflection Denial-of-Service (DRDoS) attacks on DNS
infrastructure based on comping three steps: feature selection, clustering, and classification. The proposed
model selected the optimal features based on the wrapper model and adaptive threshold. In the second step,
the distributed data on clusters based on frequent Euclidean distance utile the final clusters achieve a value less
than the threshold that has been determined. The proposed model used machine learning to classify and detect
intrusion attacks. The proposed model selected features based on standard optimization algorithms without
enhancing the central problem of these algorithms, which is stagnation at the local optimum. Therefore,
the algorithms essentially suffer from a lack of exportation, and the adaptive threshold has no significant
enhancement search engine of the algorithm. Moreover, using thresholds in each stage of the proposed model
makes the proposed model depend heavily on thresholds. In addition, the clustering grouped data with the
same behavior, making segregating them difficult. Therefore, machine learning algorithms in this model suffer
from a low positive rate.

Empowering Clustering with Machine Learning
Clustering is central to improving the detection and prevention of intrusion attacks by reducing data

complexity, improving segmentation, and increasing detection accuracy.(15,16) The mathematical foundations
of clustering algorithms provide robust tools for data analysis and model training, which are central to this
approach.(17) These techniques enable the development of more efficient and accurate intrusion detection
systems that protect network infrastructures from evolving cyber threats. In addition, clustering enhances deep
learning models by improving feature learning, addressing data imbalances, and enabling multi-layered analysis
— all of which contribute to more effective and efficient DRDoS detection. Training the model on the augmented
data X’ enhances its ability to extract relevant features and improves overall performance because augmenting
the input features X with clustering features C increases the mutual information between the inputs and the
target labels Y. Mathematically, this is demonstrated by the inequality I(X’;Y)=I((X,C);Y)=I(X;Y)+I(C;Y∣X)≥ I(X;Y),
where I(C;Y∣X)≥0 due to the non-negativity of conditional mutual information. This means that the clustering
features C, derived from X, provide additional information about Y that X alone may not capture. Consequently,
adding C cannot decrease the mutual information and can potentially increase it if I(C;Y∣X)>0, thereby providing
mathematical evidence that training on X’ enhances feature extraction and overall model performance in IDS
detection. Figure 2 illustrates the comparative mutual information before and after feature selection applied
to the intrusion detection dataset.

Figure 2. Comparative Mutual Information Before and After Feature Selection on the Intrusion Detection Dataset

Training the model on the augmented data enhances its ability to extract relevant features and improves
overall performance due to the following reasons:

•	 Improving Context: clustering features provide information about the data’s structure.
•	 Improved Separability: augmented features make classes more distinguishable in the feature

space.
•	 Better Generalization: the model is guided toward meaningful patterns, reducing overfitting.
•	 Enhanced Minority Detection: emphasizes rare but important patterns crucial for detecting attacks.

https://doi.org/10.56294/dm2025739

 3 Ali Obead O, et al

https://doi.org/10.56294/dm2025739

https://doi.org/10.56294/dm2025739

Empower Cluster of the Train Data
Dynamic  clustering is a novel and practical method for filtering data, and it is an ongoing process.(18) Via this

dynamic  approach, the (computer) models get training data, and data analysis is improved via data density
and homogeneity. This method of data analysis, mainly through clustering algorithms, can dynamically enable
a model to identify which features should be extracted(19,20) and thus allow the learning and prediction phases
to be more accurate.

This strategy intertwines with data density and homogeneity, which dictate the refining process  and assist in
expediting user-friendly data. Dynamic clustering is a form of evolutionary methodology  that helps in iterative
sample improvement, enabling the model to discover increasingly complex patterns and relationships within
the dataset.(21) This iterative process continues until the data is sufficiently manipulated to make it consistent
with the underlying structures, giving the algorithm  a better data set for recognizability and precision.

However, there are further complications, such as defining appropriate data density and homogeneity
metrics. Training data should be diverse, balanced, optimized, and measurable to prevent bias within the
model and for the model to generalize. A careful combination of this stage and its avoidance significantly boosts
model success; therefore, popular balancing techniques for producing accurate and reliable results like SMOTE
or cost-effective learning have been applied against data imbalance, mainly in the fields of cyber defense
and network flow analysis, but recent studies show weaknesses in these solutions.(19) For example, SMOTE
can artificially increase the size of the minority class (malicious traffic), potentially causing overfitting and
generating synthetic examples that may not accurately capture the patterns of real-world attacks, ultimately
reducing the generalizability of the model to real-world use cases.

Datasets (CIRA-CIC-DoHBrw-2020)
The CIRA-CIC-DoHBrw-2020 dataset to test the validity of the proposed model for the following objects:

•	 Testing and validity of the proposed clustering algorithm in the split data into homogeneity groups.
•	 Test and validate the proposed balance algorithm when balancing data in each cluster.
•	 Testing and validity of the integration deepening with the above algorithm in detecting malicious

traffic over the Network.

METHOD

Figure 3. The basic architecture of the proposed model

The process starts with data preparation, which involves collecting, cleaning, and formatting the data.
Next, preprocessing steps include normalizing, extracting features, and splitting data. These steps are essential

Data and Metadata. 2025; 4:739 4

https://doi.org/10.56294/dm2025739

to ensure the data is in the correct format and structure for the rest of the process. Figure 3 shows the basic
steps of the proposed model.

Preprocessing
This step consists of four basic steps that result in preparing the data to be worked on using artificial

intelligence algorithms.

Step 1 Remove redundancy
Identifying and removing duplicate or near-duplicate records within the dataset is essential. Redundant

entries can distort the model’s understanding of the data by overemphasizing specific patterns, leading to
skewed or biased results. When duplicates remain, the model may appear to perform better than it does because
it effectively “learns” the same information multiple times. By systematically eliminating these redundancies,
we ensure that each observation carries equal weight, thus providing a cleaner, more representative dataset
and supporting a fairer, more accurate model.

Step 2 Fill Missing value
Addressing missing values is crucial for maintaining the integrity of the dataset. Depending on the nature

and extent of the missing data, you may either remove records with large portions of missing information or
impute (estimate) those values. A standard and straightforward imputation method is mean-based imputation.
Suppose a feature has valid (non-missing) observations: x1, x2,…, xn. The mean x‾ of these valid observations
is computed as shown in equation 1:

𝑥𝑥‾ = 1
𝑛𝑛 ∑  𝑛𝑛

𝑖𝑖=1 𝑥𝑥𝑖𝑖 (1)

𝑥𝑥𝑚𝑚 = 𝑥𝑥‾ (2)

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑥𝑥 − 𝜇𝜇
𝜎𝜎 (3)

|{𝑥𝑥𝑗𝑗 ∣ 𝑑𝑑(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) ≤ 𝜖𝜖}| ≥ minSamples (4)

𝐷𝐷(𝐶𝐶𝑘𝑘) = 1
𝑚𝑚×𝑛𝑛 (∑ ∑ (∥∥𝑥𝑥𝑗𝑗 − 𝜇𝜇𝑗𝑗∥∥𝑚𝑚

𝑖𝑖=1) − ∥∥𝑥𝑥𝑗𝑗 − 𝜇𝜇𝑖𝑖∥∥)𝑛𝑛
𝑗𝑗=1 (5)

𝜇𝜇𝑘𝑘 = 1
n ∑ 𝑥𝑥𝑛𝑛

𝑖𝑖=1 (6)

𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝑘𝑘) = 1
𝑚𝑚×𝑛𝑛 ∑ ∑ (∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑗𝑗∥∥× ∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑖𝑖∥∥

√∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑗𝑗∥∥
2× ∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑖𝑖∥∥

2
)𝑚𝑚

𝑖𝑖=1
𝑛𝑛
𝑗𝑗=1 (7)

𝑖𝑖𝑖𝑖𝑖𝑖 (𝐶𝐶𝑘𝑘) = 𝐷𝐷(𝐶𝐶𝑘𝑘) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝑘𝑘) (8)

Intensity (𝐶𝐶high) ≥ 𝜏𝜏 (9)

𝑃𝑃𝑥𝑥,𝑘𝑘 = ∑ 𝑒𝑒
− ∥

∥𝑥𝑥−𝑦𝑦𝑖𝑖∥∥2

2𝜎𝜎12 + 𝑒𝑒
− ∥

∥𝑥𝑥−𝜇𝜇𝑘𝑘∥∥2

2𝜎𝜎22 𝑛𝑛
𝑖𝑖 =1

2 (10)

𝑀𝑀𝑥𝑥,𝑘𝑘 = ~ (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑥𝑥 + 𝑃𝑃𝑥𝑥,𝑘𝑘 (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑥𝑥 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑥𝑥)) (11)

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑥𝑥 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘 ∗ 𝑀𝑀𝑥𝑥,𝑘𝑘) (12)

For each missing entry xm in the same feature, you then replace it with x‾ as shown in equation 2:𝑥𝑥‾ = 1
𝑛𝑛 ∑  𝑛𝑛

𝑖𝑖=1 𝑥𝑥𝑖𝑖 (1)

𝑥𝑥𝑚𝑚 = 𝑥𝑥‾ (2)

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑥𝑥 − 𝜇𝜇
𝜎𝜎 (3)

|{𝑥𝑥𝑗𝑗 ∣ 𝑑𝑑(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) ≤ 𝜖𝜖}| ≥ minSamples (4)

𝐷𝐷(𝐶𝐶𝑘𝑘) = 1
𝑚𝑚×𝑛𝑛 (∑ ∑ (∥∥𝑥𝑥𝑗𝑗 − 𝜇𝜇𝑗𝑗∥∥𝑚𝑚

𝑖𝑖=1) − ∥∥𝑥𝑥𝑗𝑗 − 𝜇𝜇𝑖𝑖∥∥)𝑛𝑛
𝑗𝑗=1 (5)

𝜇𝜇𝑘𝑘 = 1
n ∑ 𝑥𝑥𝑛𝑛

𝑖𝑖=1 (6)

𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝑘𝑘) = 1
𝑚𝑚×𝑛𝑛 ∑ ∑ (∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑗𝑗∥∥× ∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑖𝑖∥∥

√∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑗𝑗∥∥
2× ∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑖𝑖∥∥

2
)𝑚𝑚

𝑖𝑖=1
𝑛𝑛
𝑗𝑗=1 (7)

𝑖𝑖𝑖𝑖𝑖𝑖 (𝐶𝐶𝑘𝑘) = 𝐷𝐷(𝐶𝐶𝑘𝑘) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝑘𝑘) (8)

Intensity (𝐶𝐶high) ≥ 𝜏𝜏 (9)

𝑃𝑃𝑥𝑥,𝑘𝑘 = ∑ 𝑒𝑒
− ∥

∥𝑥𝑥−𝑦𝑦𝑖𝑖∥∥2

2𝜎𝜎12 + 𝑒𝑒
− ∥

∥𝑥𝑥−𝜇𝜇𝑘𝑘∥∥2

2𝜎𝜎22 𝑛𝑛
𝑖𝑖 =1

2 (10)

𝑀𝑀𝑥𝑥,𝑘𝑘 = ~ (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑥𝑥 + 𝑃𝑃𝑥𝑥,𝑘𝑘 (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑥𝑥 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑥𝑥)) (11)

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑥𝑥 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘 ∗ 𝑀𝑀𝑥𝑥,𝑘𝑘) (12)

This ensures the dataset remains the same size while providing a reasonable central value estimate for
missing observations. However, alternative methods (e.g., median or mode imputation, regression-based
imputation, or advanced model-based approaches) may be more appropriate if missing values comprise a
substantial portion of the dataset or the data distribution is skewed. In cases where the missing data is extreme
and may introduce bias even after imputation, removing those records entirely can be more effective, provided
the removal does not compromise the dataset’s representativeness.

Step 3 Normalization
Normalization using the standard deviation method is essential in preparing numerical features for machine

learning models. This method, often called z-score normalization, standardizes the data by centering it around
zero with a standard deviation of one. The equation 3 used for z-score normalization:

𝑥𝑥‾ = 1
𝑛𝑛 ∑  𝑛𝑛

𝑖𝑖=1 𝑥𝑥𝑖𝑖 (1)

𝑥𝑥𝑚𝑚 = 𝑥𝑥‾ (2)

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑥𝑥 − 𝜇𝜇
𝜎𝜎 (3)

|{𝑥𝑥𝑗𝑗 ∣ 𝑑𝑑(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) ≤ 𝜖𝜖}| ≥ minSamples (4)

𝐷𝐷(𝐶𝐶𝑘𝑘) = 1
𝑚𝑚×𝑛𝑛 (∑ ∑ (∥∥𝑥𝑥𝑗𝑗 − 𝜇𝜇𝑗𝑗∥∥𝑚𝑚

𝑖𝑖=1) − ∥∥𝑥𝑥𝑗𝑗 − 𝜇𝜇𝑖𝑖∥∥)𝑛𝑛
𝑗𝑗=1 (5)

𝜇𝜇𝑘𝑘 = 1
n ∑ 𝑥𝑥𝑛𝑛

𝑖𝑖=1 (6)

𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝑘𝑘) = 1
𝑚𝑚×𝑛𝑛 ∑ ∑ (∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑗𝑗∥∥× ∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑖𝑖∥∥

√∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑗𝑗∥∥
2× ∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑖𝑖∥∥

2
)𝑚𝑚

𝑖𝑖=1
𝑛𝑛
𝑗𝑗=1 (7)

𝑖𝑖𝑖𝑖𝑖𝑖 (𝐶𝐶𝑘𝑘) = 𝐷𝐷(𝐶𝐶𝑘𝑘) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝑘𝑘) (8)

Intensity (𝐶𝐶high) ≥ 𝜏𝜏 (9)

𝑃𝑃𝑥𝑥,𝑘𝑘 = ∑ 𝑒𝑒
− ∥

∥𝑥𝑥−𝑦𝑦𝑖𝑖∥∥2

2𝜎𝜎12 + 𝑒𝑒
− ∥

∥𝑥𝑥−𝜇𝜇𝑘𝑘∥∥2

2𝜎𝜎22 𝑛𝑛
𝑖𝑖 =1

2 (10)

𝑀𝑀𝑥𝑥,𝑘𝑘 = ~ (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑥𝑥 + 𝑃𝑃𝑥𝑥,𝑘𝑘 (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑥𝑥 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑥𝑥)) (11)

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑥𝑥 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘 ∗ 𝑀𝑀𝑥𝑥,𝑘𝑘) (12)

Where x is the original value of the feature, μ is the mean of the feature values, and σ is the standard
deviation of the feature values.

Step 4 Split into train and test
The dataset must be divided into training, validation, and test sets to assess the model’s performance

effectively. The proposed model divides the dataset into 70 % training, 10 % validation, and 20 % testing.

Modified DBSCAN with Intensity-Based Post-Processing (M-DBSCAN)
While the standard DBSCAN algorithm can automatically identify dense regions and label outliers, it offers

limited options for refining the resulting clusters once the initial partitioning is complete. In this work, we
propose a modified DBSCAN procedure that applies an additional intensity-based post-processing step to
reassign data points between clusters, thereby improving overall cluster coherence.

The following are the main steps of the proposed M-DBSCAN:

Step 1 Initial Clustering with DBSCAN
The proposed MD-IP algorithm begins by applying DBSCAN with user-specified parameters and minSamples.

https://doi.org/10.56294/dm2025739

 5 Ali Obead O, et al

https://doi.org/10.56294/dm2025739

https://doi.org/10.56294/dm2025739

Each data point assigned to one of several clusters (llabeledby non-negative integers) or classified as noise
(label -1). Formally, for every point xi, DBSCAN checks whether (equation 4) to determine whether xi is a core
point, or whether it should be treated as part of a border cluster or noise.

𝑥𝑥‾ = 1
𝑛𝑛 ∑  𝑛𝑛

𝑖𝑖=1 𝑥𝑥𝑖𝑖 (1)

𝑥𝑥𝑚𝑚 = 𝑥𝑥‾ (2)

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑥𝑥 − 𝜇𝜇
𝜎𝜎 (3)

|{𝑥𝑥𝑗𝑗 ∣ 𝑑𝑑(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) ≤ 𝜖𝜖}| ≥ minSamples (4)

𝐷𝐷(𝐶𝐶𝑘𝑘) = 1
𝑚𝑚×𝑛𝑛 (∑ ∑ (∥∥𝑥𝑥𝑗𝑗 − 𝜇𝜇𝑗𝑗∥∥𝑚𝑚

𝑖𝑖=1) − ∥∥𝑥𝑥𝑗𝑗 − 𝜇𝜇𝑖𝑖∥∥)𝑛𝑛
𝑗𝑗=1 (5)

𝜇𝜇𝑘𝑘 = 1
n ∑ 𝑥𝑥𝑛𝑛

𝑖𝑖=1 (6)

𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝑘𝑘) = 1
𝑚𝑚×𝑛𝑛 ∑ ∑ (∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑗𝑗∥∥× ∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑖𝑖∥∥

√∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑗𝑗∥∥
2× ∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑖𝑖∥∥

2
)𝑚𝑚

𝑖𝑖=1
𝑛𝑛
𝑗𝑗=1 (7)

𝑖𝑖𝑖𝑖𝑖𝑖 (𝐶𝐶𝑘𝑘) = 𝐷𝐷(𝐶𝐶𝑘𝑘) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝑘𝑘) (8)

Intensity (𝐶𝐶high) ≥ 𝜏𝜏 (9)

𝑃𝑃𝑥𝑥,𝑘𝑘 = ∑ 𝑒𝑒
− ∥

∥𝑥𝑥−𝑦𝑦𝑖𝑖∥∥2

2𝜎𝜎12 + 𝑒𝑒
− ∥

∥𝑥𝑥−𝜇𝜇𝑘𝑘∥∥2

2𝜎𝜎22 𝑛𝑛
𝑖𝑖 =1

2 (10)

𝑀𝑀𝑥𝑥,𝑘𝑘 = ~ (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑥𝑥 + 𝑃𝑃𝑥𝑥,𝑘𝑘 (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑥𝑥 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑥𝑥)) (11)

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑥𝑥 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘 ∗ 𝑀𝑀𝑥𝑥,𝑘𝑘) (12)

Step 2 Calculation of Cluster Intensity
Once clustering is complete, we compute an intensity measure for each identified cluster Ck (ind (Ck)). The

intensity of a cluster is defined as data-based separation and cluster correlation, as shown in equation 5.

𝑥𝑥‾ = 1
𝑛𝑛 ∑  𝑛𝑛

𝑖𝑖=1 𝑥𝑥𝑖𝑖 (1)

𝑥𝑥𝑚𝑚 = 𝑥𝑥‾ (2)

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑥𝑥 − 𝜇𝜇
𝜎𝜎 (3)

|{𝑥𝑥𝑗𝑗 ∣ 𝑑𝑑(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) ≤ 𝜖𝜖}| ≥ minSamples (4)

𝐷𝐷(𝐶𝐶𝑘𝑘) = 1
𝑚𝑚×𝑛𝑛 (∑ ∑ (∥∥𝑥𝑥𝑗𝑗 − 𝜇𝜇𝑗𝑗∥∥𝑚𝑚

𝑖𝑖=1) − ∥∥𝑥𝑥𝑗𝑗 − 𝜇𝜇𝑖𝑖∥∥)𝑛𝑛
𝑗𝑗=1 (5)

𝜇𝜇𝑘𝑘 = 1
n ∑ 𝑥𝑥𝑛𝑛

𝑖𝑖=1 (6)

𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝑘𝑘) = 1
𝑚𝑚×𝑛𝑛 ∑ ∑ (∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑗𝑗∥∥× ∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑖𝑖∥∥

√∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑗𝑗∥∥
2× ∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑖𝑖∥∥

2
)𝑚𝑚

𝑖𝑖=1
𝑛𝑛
𝑗𝑗=1 (7)

𝑖𝑖𝑖𝑖𝑖𝑖 (𝐶𝐶𝑘𝑘) = 𝐷𝐷(𝐶𝐶𝑘𝑘) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝑘𝑘) (8)

Intensity (𝐶𝐶high) ≥ 𝜏𝜏 (9)

𝑃𝑃𝑥𝑥,𝑘𝑘 = ∑ 𝑒𝑒
− ∥

∥𝑥𝑥−𝑦𝑦𝑖𝑖∥∥2

2𝜎𝜎12 + 𝑒𝑒
− ∥

∥𝑥𝑥−𝜇𝜇𝑘𝑘∥∥2

2𝜎𝜎22 𝑛𝑛
𝑖𝑖 =1

2 (10)

𝑀𝑀𝑥𝑥,𝑘𝑘 = ~ (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑥𝑥 + 𝑃𝑃𝑥𝑥,𝑘𝑘 (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑥𝑥 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑥𝑥)) (11)

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑥𝑥 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘 ∗ 𝑀𝑀𝑥𝑥,𝑘𝑘) (12)

Where: μk is mean of the cluster Ck. Equation 6 calculates the μk .

𝑥𝑥‾ = 1
𝑛𝑛 ∑  𝑛𝑛

𝑖𝑖=1 𝑥𝑥𝑖𝑖 (1)

𝑥𝑥𝑚𝑚 = 𝑥𝑥‾ (2)

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑥𝑥 − 𝜇𝜇
𝜎𝜎 (3)

|{𝑥𝑥𝑗𝑗 ∣ 𝑑𝑑(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) ≤ 𝜖𝜖}| ≥ minSamples (4)

𝐷𝐷(𝐶𝐶𝑘𝑘) = 1
𝑚𝑚×𝑛𝑛 (∑ ∑ (∥∥𝑥𝑥𝑗𝑗 − 𝜇𝜇𝑗𝑗∥∥𝑚𝑚

𝑖𝑖=1) − ∥∥𝑥𝑥𝑗𝑗 − 𝜇𝜇𝑖𝑖∥∥)𝑛𝑛
𝑗𝑗=1 (5)

𝜇𝜇𝑘𝑘 = 1
n ∑ 𝑥𝑥𝑛𝑛

𝑖𝑖=1 (6)

𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝑘𝑘) = 1
𝑚𝑚×𝑛𝑛 ∑ ∑ (∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑗𝑗∥∥× ∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑖𝑖∥∥

√∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑗𝑗∥∥
2× ∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑖𝑖∥∥

2
)𝑚𝑚

𝑖𝑖=1
𝑛𝑛
𝑗𝑗=1 (7)

𝑖𝑖𝑖𝑖𝑖𝑖 (𝐶𝐶𝑘𝑘) = 𝐷𝐷(𝐶𝐶𝑘𝑘) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝑘𝑘) (8)

Intensity (𝐶𝐶high) ≥ 𝜏𝜏 (9)

𝑃𝑃𝑥𝑥,𝑘𝑘 = ∑ 𝑒𝑒
− ∥

∥𝑥𝑥−𝑦𝑦𝑖𝑖∥∥2

2𝜎𝜎12 + 𝑒𝑒
− ∥

∥𝑥𝑥−𝜇𝜇𝑘𝑘∥∥2

2𝜎𝜎22 𝑛𝑛
𝑖𝑖 =1

2 (10)

𝑀𝑀𝑥𝑥,𝑘𝑘 = ~ (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑥𝑥 + 𝑃𝑃𝑥𝑥,𝑘𝑘 (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑥𝑥 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑥𝑥)) (11)

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑥𝑥 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘 ∗ 𝑀𝑀𝑥𝑥,𝑘𝑘) (12)

𝑥𝑥‾ = 1
𝑛𝑛 ∑  𝑛𝑛

𝑖𝑖=1 𝑥𝑥𝑖𝑖 (1)

𝑥𝑥𝑚𝑚 = 𝑥𝑥‾ (2)

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑥𝑥 − 𝜇𝜇
𝜎𝜎 (3)

|{𝑥𝑥𝑗𝑗 ∣ 𝑑𝑑(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) ≤ 𝜖𝜖}| ≥ minSamples (4)

𝐷𝐷(𝐶𝐶𝑘𝑘) = 1
𝑚𝑚×𝑛𝑛 (∑ ∑ (∥∥𝑥𝑥𝑗𝑗 − 𝜇𝜇𝑗𝑗∥∥𝑚𝑚

𝑖𝑖=1) − ∥∥𝑥𝑥𝑗𝑗 − 𝜇𝜇𝑖𝑖∥∥)𝑛𝑛
𝑗𝑗=1 (5)

𝜇𝜇𝑘𝑘 = 1
n ∑ 𝑥𝑥𝑛𝑛

𝑖𝑖=1 (6)

𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝑘𝑘) = 1
𝑚𝑚×𝑛𝑛 ∑ ∑ (∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑗𝑗∥∥× ∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑖𝑖∥∥

√∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑗𝑗∥∥
2× ∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑖𝑖∥∥

2
)𝑚𝑚

𝑖𝑖=1
𝑛𝑛
𝑗𝑗=1 (7)

𝑖𝑖𝑖𝑖𝑖𝑖 (𝐶𝐶𝑘𝑘) = 𝐷𝐷(𝐶𝐶𝑘𝑘) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝑘𝑘) (8)

Intensity (𝐶𝐶high) ≥ 𝜏𝜏 (9)

𝑃𝑃𝑥𝑥,𝑘𝑘 = ∑ 𝑒𝑒
− ∥

∥𝑥𝑥−𝑦𝑦𝑖𝑖∥∥2

2𝜎𝜎12 + 𝑒𝑒
− ∥

∥𝑥𝑥−𝜇𝜇𝑘𝑘∥∥2

2𝜎𝜎22 𝑛𝑛
𝑖𝑖 =1

2 (10)

𝑀𝑀𝑥𝑥,𝑘𝑘 = ~ (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑥𝑥 + 𝑃𝑃𝑥𝑥,𝑘𝑘 (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑥𝑥 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑥𝑥)) (11)

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑥𝑥 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘 ∗ 𝑀𝑀𝑥𝑥,𝑘𝑘) (12)

Clusters with a higher average distance to their mean have lower density and are considered less “intense”
in cohesive structure.

Step 3 Redistribution of Points from Low-Intensity Clusters
Algorithm 1 (pseudocode below) checks whether any cluster’s intensity is below a specified threshold τ. If

a cluster Clow fails to meet this intensity threshold, each point xi∈Clow is examined and moved to the nearest
cluster that satisfies. If a cluster Clow fails to meet this intensity threshold, each point xi∈Clow is examined and
moved to the nearest cluster that satisfies this, as shown in equation 9.

𝑥𝑥‾ = 1
𝑛𝑛 ∑  𝑛𝑛

𝑖𝑖=1 𝑥𝑥𝑖𝑖 (1)

𝑥𝑥𝑚𝑚 = 𝑥𝑥‾ (2)

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑥𝑥 − 𝜇𝜇
𝜎𝜎 (3)

|{𝑥𝑥𝑗𝑗 ∣ 𝑑𝑑(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) ≤ 𝜖𝜖}| ≥ minSamples (4)

𝐷𝐷(𝐶𝐶𝑘𝑘) = 1
𝑚𝑚×𝑛𝑛 (∑ ∑ (∥∥𝑥𝑥𝑗𝑗 − 𝜇𝜇𝑗𝑗∥∥𝑚𝑚

𝑖𝑖=1) − ∥∥𝑥𝑥𝑗𝑗 − 𝜇𝜇𝑖𝑖∥∥)𝑛𝑛
𝑗𝑗=1 (5)

𝜇𝜇𝑘𝑘 = 1
n ∑ 𝑥𝑥𝑛𝑛

𝑖𝑖=1 (6)

𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝑘𝑘) = 1
𝑚𝑚×𝑛𝑛 ∑ ∑ (∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑗𝑗∥∥× ∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑖𝑖∥∥

√∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑗𝑗∥∥
2× ∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑖𝑖∥∥

2
)𝑚𝑚

𝑖𝑖=1
𝑛𝑛
𝑗𝑗=1 (7)

𝑖𝑖𝑖𝑖𝑖𝑖 (𝐶𝐶𝑘𝑘) = 𝐷𝐷(𝐶𝐶𝑘𝑘) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝑘𝑘) (8)

Intensity (𝐶𝐶high) ≥ 𝜏𝜏 (9)

𝑃𝑃𝑥𝑥,𝑘𝑘 = ∑ 𝑒𝑒
− ∥

∥𝑥𝑥−𝑦𝑦𝑖𝑖∥∥2

2𝜎𝜎12 + 𝑒𝑒
− ∥

∥𝑥𝑥−𝜇𝜇𝑘𝑘∥∥2

2𝜎𝜎22 𝑛𝑛
𝑖𝑖 =1

2 (10)

𝑀𝑀𝑥𝑥,𝑘𝑘 = ~ (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑥𝑥 + 𝑃𝑃𝑥𝑥,𝑘𝑘 (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑥𝑥 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑥𝑥)) (11)

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑥𝑥 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘 ∗ 𝑀𝑀𝑥𝑥,𝑘𝑘) (12)

The distance measure used here is the Euclidean distance between the point xi and the centroid μk of
each potential “high-intensity” cluster Chigh. This procedure mitigates the problem of having multiple small,
scattered, or loosely connected clusters by consolidating them into more coherent clusters. After redistributing
these points, the intensities are recalculated, and the process repeats until all clusters have an intensity above
τ or no further improvement is possible.

Algorithm 1
Modified DBSCAN with Intensity-Based Redistribution (M-DBSCAN).
1	 Perform standard DBSCAN on scaled dataset with parameters ϵ and minSamples.
2	 Compute the intensity of each non-noise cluster (equation 8)
3	 While any cluster’s intensity is below threshold τ:

a. Identify a cluster Clow with Intensity (Clow)<τ.
b. For each point xi in Clow:
i. Find cluster Chigh among the other clusters such that ∥xi-μhigh∥ is minimized and Intensity (Chigh)≥τ.
ii. Reassign xi to Chigh if such a cluster exists.
c. Recompute all cluster intensities.

4	 Output: Final clusters.

Train machine learning on clusters
During this stage, machine learning algorithms are individually trained on each cluster, allowing

customization that reflects the unique characteristics of each data subset. This approach enhances machine
learning effectiveness by adapting models to specific patterns within each cluster, leading to a deeper and
more accurate understanding. Furthermore, deep learning algorithms excel at further separation within a
single cluster, where data are more similar. Their ability to extract complex features and handle large datasets
enables finer differentiation of similar data points. Figure 4 shows the framework of training CNN independently
on each cluster.

Data and Metadata. 2025; 4:739 6

https://doi.org/10.56294/dm2025739

Figure 4. Framework of training CNN on clusters

Proposed CNN architecture

Figure 5. Proposed CNN architecture

https://doi.org/10.56294/dm2025739

 7 Ali Obead O, et al

https://doi.org/10.56294/dm2025739

https://doi.org/10.56294/dm2025739

In this CNN architecture for DNS intrusion attack prediction, we begin with an Overview and Motivation that
highlights how large volumes of DNS traffic data can be processed to identify malicious behavior by leveraging
the spatial (or spatiotemporal) feature‐learning capability of CNNs. Next, the Input Representation phase
involves data preprocessing (such as converting DNS traffic into a matrix or tensor format) and normalization
or scaling, ensuring continuous features are standardized for efficient training. The Convolutional Layers then
extract hierarchical features in two stages: first, a convolution with 32 filters (kernel_size=3, ReLU activation)
detects initial localized patterns, followed by max pooling (pool_size=2) to reduce dimensionality and provide
a degree of invariance; a second convolution, now with 64 filters (again kernel_size=3 and ReLU activation),
learns more abstract features, and another max pooling layer further condenses these representations. Finally,
in Flatten and Fully Connected Layers, the output is reshaped into a 1D vector, passed through a 50 % dropout to
mitigate overfitting, and fed into a dense layer with 128 ReLU‐activated units, aggregating high‐level features.
The network concludes with a final dense layer (2 units, softmax activation) that outputs the probability of
normal versus malicious DNS traffic.

Predict the test data
The prediction process in the proposed model-based membership function considers the test point’s relation

to the cluster data and the prediction probability in overall CNNs.
A cluster-based membership function (which captures how well the test point x aligns with the data belonging

to a specific cluster k) as shown in equation 10.

𝑥𝑥‾ = 1
𝑛𝑛 ∑  𝑛𝑛

𝑖𝑖=1 𝑥𝑥𝑖𝑖 (1)

𝑥𝑥𝑚𝑚 = 𝑥𝑥‾ (2)

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑥𝑥 − 𝜇𝜇
𝜎𝜎 (3)

|{𝑥𝑥𝑗𝑗 ∣ 𝑑𝑑(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) ≤ 𝜖𝜖}| ≥ minSamples (4)

𝐷𝐷(𝐶𝐶𝑘𝑘) = 1
𝑚𝑚×𝑛𝑛 (∑ ∑ (∥∥𝑥𝑥𝑗𝑗 − 𝜇𝜇𝑗𝑗∥∥𝑚𝑚

𝑖𝑖=1) − ∥∥𝑥𝑥𝑗𝑗 − 𝜇𝜇𝑖𝑖∥∥)𝑛𝑛
𝑗𝑗=1 (5)

𝜇𝜇𝑘𝑘 = 1
n ∑ 𝑥𝑥𝑛𝑛

𝑖𝑖=1 (6)

𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝑘𝑘) = 1
𝑚𝑚×𝑛𝑛 ∑ ∑ (∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑗𝑗∥∥× ∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑖𝑖∥∥

√∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑗𝑗∥∥
2× ∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑖𝑖∥∥

2
)𝑚𝑚

𝑖𝑖=1
𝑛𝑛
𝑗𝑗=1 (7)

𝑖𝑖𝑖𝑖𝑖𝑖 (𝐶𝐶𝑘𝑘) = 𝐷𝐷(𝐶𝐶𝑘𝑘) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝑘𝑘) (8)

Intensity (𝐶𝐶high) ≥ 𝜏𝜏 (9)

𝑃𝑃𝑥𝑥,𝑘𝑘 = ∑ 𝑒𝑒
− ∥

∥𝑥𝑥−𝑦𝑦𝑖𝑖∥∥2

2𝜎𝜎12 + 𝑒𝑒
− ∥

∥𝑥𝑥−𝜇𝜇𝑘𝑘∥∥2

2𝜎𝜎22 𝑛𝑛
𝑖𝑖 =1

2 (10)

𝑀𝑀𝑥𝑥,𝑘𝑘 = ~ (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑥𝑥 + 𝑃𝑃𝑥𝑥,𝑘𝑘 (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑥𝑥 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑥𝑥)) (11)

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑥𝑥 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘 ∗ 𝑀𝑀𝑥𝑥,𝑘𝑘) (12)
Where σ1

2 is the variance between point x and data of cluster k, and 2σ2
2 is the variance between point x

and the centre of cluster k and both>0.

𝑥𝑥‾ = 1
𝑛𝑛 ∑  𝑛𝑛

𝑖𝑖=1 𝑥𝑥𝑖𝑖 (1)

𝑥𝑥𝑚𝑚 = 𝑥𝑥‾ (2)

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑥𝑥 − 𝜇𝜇
𝜎𝜎 (3)

|{𝑥𝑥𝑗𝑗 ∣ 𝑑𝑑(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) ≤ 𝜖𝜖}| ≥ minSamples (4)

𝐷𝐷(𝐶𝐶𝑘𝑘) = 1
𝑚𝑚×𝑛𝑛 (∑ ∑ (∥∥𝑥𝑥𝑗𝑗 − 𝜇𝜇𝑗𝑗∥∥𝑚𝑚

𝑖𝑖=1) − ∥∥𝑥𝑥𝑗𝑗 − 𝜇𝜇𝑖𝑖∥∥)𝑛𝑛
𝑗𝑗=1 (5)

𝜇𝜇𝑘𝑘 = 1
n ∑ 𝑥𝑥𝑛𝑛

𝑖𝑖=1 (6)

𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝑘𝑘) = 1
𝑚𝑚×𝑛𝑛 ∑ ∑ (∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑗𝑗∥∥× ∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑖𝑖∥∥

√∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑗𝑗∥∥
2× ∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑖𝑖∥∥

2
)𝑚𝑚

𝑖𝑖=1
𝑛𝑛
𝑗𝑗=1 (7)

𝑖𝑖𝑖𝑖𝑖𝑖 (𝐶𝐶𝑘𝑘) = 𝐷𝐷(𝐶𝐶𝑘𝑘) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝑘𝑘) (8)

Intensity (𝐶𝐶high) ≥ 𝜏𝜏 (9)

𝑃𝑃𝑥𝑥,𝑘𝑘 = ∑ 𝑒𝑒
− ∥

∥𝑥𝑥−𝑦𝑦𝑖𝑖∥∥2

2𝜎𝜎12 + 𝑒𝑒
− ∥

∥𝑥𝑥−𝜇𝜇𝑘𝑘∥∥2

2𝜎𝜎22 𝑛𝑛
𝑖𝑖 =1

2 (10)

𝑀𝑀𝑥𝑥,𝑘𝑘 = ~ (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑥𝑥 + 𝑃𝑃𝑥𝑥,𝑘𝑘 (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑥𝑥 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑥𝑥)) (11)

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑥𝑥 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘 ∗ 𝑀𝑀𝑥𝑥,𝑘𝑘) (12) The CNN-predicted probability (i.e., how likely CNN thinks x belongs to cluster k) as shown in equation 12.

𝑥𝑥‾ = 1
𝑛𝑛 ∑  𝑛𝑛

𝑖𝑖=1 𝑥𝑥𝑖𝑖 (1)

𝑥𝑥𝑚𝑚 = 𝑥𝑥‾ (2)

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑥𝑥 − 𝜇𝜇
𝜎𝜎 (3)

|{𝑥𝑥𝑗𝑗 ∣ 𝑑𝑑(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) ≤ 𝜖𝜖}| ≥ minSamples (4)

𝐷𝐷(𝐶𝐶𝑘𝑘) = 1
𝑚𝑚×𝑛𝑛 (∑ ∑ (∥∥𝑥𝑥𝑗𝑗 − 𝜇𝜇𝑗𝑗∥∥𝑚𝑚

𝑖𝑖=1) − ∥∥𝑥𝑥𝑗𝑗 − 𝜇𝜇𝑖𝑖∥∥)𝑛𝑛
𝑗𝑗=1 (5)

𝜇𝜇𝑘𝑘 = 1
n ∑ 𝑥𝑥𝑛𝑛

𝑖𝑖=1 (6)

𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝑘𝑘) = 1
𝑚𝑚×𝑛𝑛 ∑ ∑ (∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑗𝑗∥∥× ∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑖𝑖∥∥

√∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑗𝑗∥∥
2× ∥∥𝑥𝑥𝑗𝑗−𝜇𝜇𝑖𝑖∥∥

2
)𝑚𝑚

𝑖𝑖=1
𝑛𝑛
𝑗𝑗=1 (7)

𝑖𝑖𝑖𝑖𝑖𝑖 (𝐶𝐶𝑘𝑘) = 𝐷𝐷(𝐶𝐶𝑘𝑘) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝑘𝑘) (8)

Intensity (𝐶𝐶high) ≥ 𝜏𝜏 (9)

𝑃𝑃𝑥𝑥,𝑘𝑘 = ∑ 𝑒𝑒
− ∥

∥𝑥𝑥−𝑦𝑦𝑖𝑖∥∥2

2𝜎𝜎12 + 𝑒𝑒
− ∥

∥𝑥𝑥−𝜇𝜇𝑘𝑘∥∥2

2𝜎𝜎22 𝑛𝑛
𝑖𝑖 =1

2 (10)

𝑀𝑀𝑥𝑥,𝑘𝑘 = ~ (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑥𝑥 + 𝑃𝑃𝑥𝑥,𝑘𝑘 (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑥𝑥 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑥𝑥)) (11)

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑥𝑥 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘 ∗ 𝑀𝑀𝑥𝑥,𝑘𝑘) (12)

RESULTS
This section discusses the experiments regarding the proposed models:

Evaluate the proposed Clustering (M-DBSCAN)
This section evaluates the proposed Modified DBSCAN (M-DBSCN) in two aspects: its comparison with the

original DBSCN and the number of recent dynamic clustering models.
Table 1 illustrates the comparison of the M-DBSCAN and standard DBSCN in terms of four evaluation metrics:

the number of clusters identified by each method, Adjusted Rand Index (ARI), Normalized Mutual Information
(NMI) completeness, and V-measure.

ARI, NMI, completeness, and V-measure all range from 0 to 1 (with ARI also potentially going as low as -1, but
typically staying above 0 in practice), and higher values in each indicate that the discovered clusters match the
true class labels more closely. ARI focuses on correctly grouping and separating data relative to true labels, NMI
measures how much information is shared between clusters and labels, completeness checks if each valid class
is assigned to a single cluster, and V-measure combines completeness and homogeneity (ensuring each cluster
mainly contains a single class). The number of clusters has no “ideal” universal value; it should be interpreted
relative to the data and analysis goals.

Table 1. Compare the performance of the proposed M-DBSCAN and original DBSCAN

Method name No. clusters ARI NMI Completeness V_Measure

DBSCAN 90 0,13 0,27 0,16 0,26

M-DBSCAN 4 0,36 0,29 0,23 0,29

The original DBSCAN produces 90 clusters, which suggests very fine-grained partitioning or potentially many
small clusters. Meanwhile, the Modified DBSCAN produces 4 clusters, which indicates a more consolidated or
less fragmented clustering. Generating fewer clusters may mean stricter density thresholds and an improved

Data and Metadata. 2025; 4:739 8

https://doi.org/10.56294/dm2025739

parameter-setting procedure.
The ARI is higher for Modified DBSCAN (0,36) compared to Original DBSCAN (0,13). A higher ARI suggests that

the Modified DBSCAN clusters align better with the reference labels.
NMI for Original DBSCAN is 0,26, while for Modified DBSCAN, it is 0,29. Although the difference is not as

significant as with ARI, the Modified DBSCAN still shows an improvement. NMI is bounded between 0 and 1, and
a higher NMI indicates a better agreement between the cluster assignments and the ground truth relative to
the total information shared.

Completeness is higher for Modified DBSCAN (0,23) than for Original DBSCAN (0,16). The Completeness
measures whether all points of a given valid class are assigned to the same cluster. Improved completeness
suggests Modified DBSCAN keeps more “true class” members together.

V-measure is also higher in Modified DBSCAN (0,29) versus Original DBSCAN (0,26). V-measure is a harmonic
mean of homogeneity and completeness. Again, a higher value indicates better overall cluster quality in capturing
the homogeneity (each cluster contains only members of a single class) and completeness (all members of a
class are assigned to the same cluster).

The comparison suggests Modified DBSCAN performs better across all metrics, indicating higher agreement
with ground-truth labels (where applicable) and forming more cohesive and comprehensive clusters. It is
particularly noteworthy that it manages to do this with far fewer clusters, implying a more robust clustering
solution that likely generalizes better and is easier to interpret.

Table 2. Compare the performance of the proposed M-DBSCAN with state-of-
the-art models

Method Name No. Clusters Ari Nmi Completeness V_Measure

DECS(22) 8 0,28 0,12 0,19 0,23

EDFC(13) 13 0,19 0,27 0,16 0,22

HCMD(21) 10 0,21 0,12 0,14 0,17

M-DBSCAN 4 0,36 0,29 0,23 0,29

Overall, M-DBSCAN delivers the best performance across all reported metrics (ARI=0,36, NMI=0,29,
Completeness=0,23, and V-Measure=0,29) while producing the fewest clusters (4). In comparison, DECS forms
8 clusters with a moderately high ARI (0,28) but a relatively low NMI (0,12), indicating less shared information
with the proper labels. EDFC has the highest number of clusters (13) and achieves a competitive NMI (0,27),
but its ARI (0,19) falls behind other methods. Meanwhile, HCMD creates 10 clusters with moderate-to-low
performance on all metrics (e.g., ARI=0,21, NMI=0,12). These results suggest that M-DBSCAN captures better
alignment with ground truth (reflected by higher ARI and NMI) and offers stronger completeness and overall
V-measure despite clustering the data into fewer groups.

Evaluate model detection performance
In this section, the proposed model of the balancing data is evaluated and compared with standard machine

learning and deep learning algorithms in the detection classification report.
Table 3 illustrates the results of the compression of the proposed model with the standard machine learning

algorithms and deep learning. The comparative performance of various machine learning algorithms—KNN,
Naïve Bayes (NB), Decision Trees (DT), Support Vector Machines (SVM), Artificial Neural Networks (ANN),
Convolutional Neural Networks (CNN), and the proposed model—is summarized in terms of precision, recall,
F1-score, and overall accuracy for both benign and DNS-over-HTTPS (DoH) traffic classification. Naïve Bayes
(NB) exhibits markedly lower performance, with a particularly poor precision for the benign class (9,72 %)
and insufficient recall for DoH (37,75 %), resulting in the lowest accuracy (65,80 %) among all tested methods.
This outcome suggests that NB’s simplifying assumptions regarding feature independence do not capture the
complex, potentially high-dimensional relationships needed to distinguish effectively between regular and
encrypted malicious traffic.

In contrast, KNN, DT, SVM, ANN, and CNN each show more robust and relatively balanced performance
profiles, with accuracy values in the mid-90 % range. For instance, Decision Trees achieve 94,80 % accuracy,
coupled with strong F1-scores above 94 % for both classes, indicative of an effective partitioning strategy.
Similarly, CNN maintains an accuracy of 94,59 % while achieving F1 scores around 95 % for benign and DoH
data, reflecting its capacity to learn spatial or local correlations in feature representations. Notably, the
proposed model outperforms all baselines, boasting the highest accuracy (96,38 %) and exhibiting markedly
high precision, recall, and F1-scores for both classes (e.g., 99,29 % recall for benign and 99,26 % precision
for DoH). This superior performance is likely attributable to an enhanced ability to model the nuanced traffic

https://doi.org/10.56294/dm2025739

 9 Ali Obead O, et al

https://doi.org/10.56294/dm2025739

https://doi.org/10.56294/dm2025739

characteristics of DoH connections, possibly through advanced feature engineering, architecture design, or
hyperparameter tuning. As a result, the proposed framework mitigates the critical false negatives and false
positives that often plague network security systems, offering a more reliable tool for practical DoH detection
and network defense.

Table 3. Result of the proposed model with machine learning
and deep learning algorithms

Model Class
Label Precision Recall F1-

Score
Model

Accuracy

KNN Benign 91,35 97,27 94,22 94,10

DoH 97,16 91,01 93,98

NB Benign 9,72 94,53 73,19 65,80

DoH 87,61 37,75 52,76

DT Benign 92,33 97,57 94,88 94,80

DoH 97,49 92,09 94,72

SVM Benign 90,53 94,84 92,63 92,55

DoH 94,72 90,32 92,46

ANN Benign 90,90 98,08 94,35 94,20

DoH 97,97 90,41 94,04

CNN Benign 92,12 97,39 95,62 94,59

DoH 97,01 91,67 95,38

Proposed
model

Benign 93,43 99,29 96,27 96,38

DoH 99,26 93,18 96,13

Figure 6 shows the result of the confusion matrix of competition algorithms. The confusion matrices for
the Proposed Model, CNN, ANN, SVM, KNN, Naïve Bayes (NB), and Random Forest (RF) highlight significant
differences in their performance when classifying benign (Class 0) and attack (Class 1) traffic.

Data and Metadata. 2025; 4:739 10

https://doi.org/10.56294/dm2025739

Figure 6. Confusion matrices of the competition algorithm (a-Proposed algorithms-CNN, C-ANN, D-SVM , E-KNN, I-NB, and
G-RF

The Proposed Model demonstrates the most robust performance, achieving a recall of 93,18 % for Class 1
and a false-positive rate of only 0,71 % for Class 0, making it highly effective for detecting attacks with minimal
misclassification. CNN follows closely with a Class 1 recall of 92,00 % and a false-positive rate of 2,23 %,
reflecting a firm but slightly less balanced performance than the Proposed Model. ANN achieves a Class 1 recall
of 90,42 % and a false-positive rate of 1,92 %, showing moderate effectiveness but underperforming compared
to CNN and the Proposed Model. Conversely, SVM exhibits the weakest performance among these models, with
a Class 1 recall of 90,32 % and the highest false-positive rate of 5,16 %, making it less suitable for high-precision
and reliability scenarios. Among the traditional machine learning models, RF demonstrates strong and balanced
performance, achieving 92,09 % recall for Class 1, a 7,91 % false-negative rate, and a low false-positive rate
of 2,43 %, making it more reliable than KNN and NB. KNN achieves a Class 1 recall of 91,01 % but with an 8,99
% false-negative rate and a false-positive rate of 2,73 %, indicating decent but less optimal performance. NB,
however, performs poorly, with a Class 1 recall of only 37,75 % and a high 62,25 % false-negative rate, severely
limiting its utility in detecting attacks. The Proposed Model is the most effective for detecting benign and
attack traffic, with CNN and RF as the best performers. SVM, KNN, and especially NB exhibit varying degrees of
limitation in classification accuracy.

CONCLUSIONS
This proposal presented a hybrid model for detecting malicious traffic on networks. The proposed model

addresses critical challenges in detecting and preventing such attacks, including high-dimensional datasets,
data imbalance, and evolving attack strategies. By integrating metaheuristic optimization and machine learning
techniques, the model significantly improved detection accuracy, false-positive reduction, and scalability.

Dynamic Clustering: to cluster data adaptively, a modified DBSCAN algorithm with intensity-based post-
processing was employed. This technique ensured better segmentation and classification by managing data
imbalance and reducing the overlap between standard and attack data. A tailored Convolutional Neural Network
(CNN) architecture was introduced to learn complex patterns within the clustered data. This step further
enhanced detection accuracy and minimized false-positive rates.

BIBLIOGRAPHIC REFERENCES
1.	 Hadi SM, Alsaeedi AH, Al‐Shammary D, Alkareem Alyasseri ZA, Mohammed MA, Abdulkareem KH, et

al. Trigonometric words ranking model for spam message classification. IET Networks. 2022. https://doi.
org/10.1049/ntw2.12063

https://doi.org/10.56294/dm2025739

 11 Ali Obead O, et al

https://doi.org/10.56294/dm2025739

https://doi.org/10.56294/dm2025739

2.	 Hammi B, Zeadally S, Nebhen J. Security threats, countermeasures, and challenges of digital supply
chains. ACM Computing Surveys. 2023., https://doi.org/10.1145/3588999

3.	 Schmitt M. Securing the Digital World: Protecting smart infrastructures and digital industries with Artificial
Intelligence (AI)-enabled malware and intrusion detection. Journal of Industrial Information Integration.
2023;36:100520.https://doi.org/10.1016/j.jii.2023.100520

4.	 Hart M, Dave R, Richardson E. Next-Generation Intrusion Detection and Prevention System Performance
in Distributed Big Data Network Security Architectures. International Journal of Advanced Computer Science
and Applications. 2023;14(9).DOI:10.14569/IJACSA.2023.01409103

5.	 Geng J, Wang J, Fang Z, Zhou Y, Wu D, Ge W. A survey of strategy-driven evasion methods for PE malware:
Transformation, concealment, and attack. Computers & Security. 2024;137:103595. https://doi.org/10.1016/j.
cose.2023.103595Manickam S, Nuiaa RR, Alsaeedi AH, Alyasseri ZAA, Mohammed MA, Jaber MM. An enhanced
mechanism for detection of Domain Name System-based distributed reflection denial of service attacks
depending on modified metaheuristic algorithms and adaptive thresholding techniques. IET Networks. 2022:1-
13. https://doi.org/10.1049/ntw2.12043

7. Al-E’mari S, Anbar M, Sanjalawe Y, Manickam S, Hasbullah I. Intrusion Detection Systems Using Blockchain
Technology: A Review, Issues and Challenges. Computer Systems Science & Engineering. 2022;40(1). 10.32604/
csse.2022.017941

8.	 Hasbullah I. Intrusion Detection Systems Using Blockchain Technology: A Review, Issues and Challenges.
DOI:10.32604/csse.2022.017941

9.	 Balogun BF. An Enhanced Network Anomaly Intrusion Detection System Using Dimensionality Reduction
Approach and Residue Number System: Kwara State University (Nigeria); 2023. Balogun BF. An Enhanced Network
Anomaly Intrusion Detection System Using Dimensionality Reduction Approach and Residue Number System:
Kwara State University (Nigeria); 2023.

10.	 Liu Q, Li P, Zhao W, Cai W, Yu S, Leung VC. A survey on security threats and defensive techniques of machine
learning: A data driven view. IEEE access. 2018;6:12103-17. https://doi.org/10.1109/ACCESS.2018.2805680

11.	 Ahmed S, Khan ZA, Mohsin SM, Latif S, Aslam S, Mujlid H, et al. Effective and Efficient DDoS Attack
Detection Using Deep Learning Algorithm, Multi-Layer Perceptron. Future Internet. 2023;15(2):76. https:// doi.
org/10.3390/fi15020076

12.	 Nuiaa RR, Manickam S, Alsaeedi AH, Alomari ES. A new proactive feature selection model based on the
enhanced optimization algorithms to detect DRDoS attacks. Int J Electr Comput Eng. 2022;12(2):1869-80. DOI:
10.11591/ijece.v12i2.pp1869-1880

13.	 Nuiaa RR, Manickam S, Alsaeedi AH, Al-Shammary DEJ. Evolving Dynamic Fuzzy Clustering (EDFC) to
Enhance DRDoS_DNS Attacks Detection Mechnism. International Journal of Intelligent Engineering and Systems.
2022;15(1):509-19. DOI: 10.22266/ijies2022.0228.46

14.	 Aktar S, Nur AY. Towards DDoS attack detection using deep learning approach. Computers & Security.
2023;129:103251. https://doi.org/10.1016/j.cose.2023.103251

15.	 Nuiaa RR, Alsaeedi AH, Alkafagi SS, Alfoudi ASD. A Critical Review of Optimization MANET Routing
Protocols. Wasit Journal of Computer and Mathematics Science. 2022;1(4). https://doi.org/10.31185/wjcm.94

16.	 Al Ogaili RRN, Raheem OA, Abdkhaleq MHG, Alyasseri ZAA, Alsaidi SAAA, Alsaeedi AH, et al. AntDroidNet
Cybersecurity Model: A Hybrid Integration of Ant Colony Optimization and Deep Neural Networks for Android
Malware Detection. Mesopotamian Journal of CyberSecurity. 2025;5(1):104-20. DOI: https://doi.org/10.58496/
MJCS/2025/008

17. Abd Aliwie, A. N. (2025). Conversational Silence in Harold Pinter’s The Birthday Party: A Pragmatic
Perspective. International Journal of Arabic-English Studies. https://doi.org/10.33806/ijaes.v25i2.860

Data and Metadata. 2025; 4:739 12

https://doi.org/10.56294/dm2025739

18.	 Shafi I, Chaudhry M, Montero EC, Alvarado ES, Diez IDLT, Samad MA, et al. A Review of Approaches
for Rapid Data Clustering: Challenges, Opportunities and Future Directions. IEEE Access. 2024. DOI: 10.1109/
ACCESS.2024.3461798

19.	 Wani AA. Comprehensive analysis of clustering algorithms: exploring limitations and innovative solutions.
PeerJ Computer Science. 2024;10:e2286. DOI:10.7717/peerj-cs.2286

20.	 Alsaeedi AH, Hadi SM, Alazzawi Y. Adaptive Gamma and Color Correction for Enhancing Low-Light Images.
International Journal of Intelligent Engineering & Systems. 2024;17(4). DOI: 10.22266/ijies2024.0831.15

21.	 Alfoudi AS, Aziz MR, Alyasseri ZAA, Alsaeedi AH, Nuiaa RR, Mohammed MA, et al. Hyper clustering model
for dynamic network intrusion detection. IET Communications. 2022. https://doi.org/10.1049/cmu2.12523

22.	 Hadi SM, Alsaeedi AH, Nuiaa RR, Manickam S, Alfoudi ASD. Dynamic Evolving Cauchy Possibilistic
Clustering Based on the Self-Similarity Principle (DECS) for Enhancing Intrusion Detection System. International
Journal of Intelligent Engineering & Systems. 2022;15(5). DOI: 10.22266/ijies2022.1031.23

FINANCING
The authors did not receive financing for the development of this research.

CONFLICT OF INTEREST
The authors declare that there is no conflict of interest.

AUTHORSHIP CONTRIBUTION
Conceptualization: Ola Ali Obead, Hakem Beitollahi.
Data curation: Ola Ali Obead, Hakem Beitollahi.
Formal analysis: Ola Ali Obead, Hakem Beitollahi.
Research: Ola Ali Obead, Hakem Beitollahi.
Methodology: Ola Ali Obead, Hakem Beitollahi.
Project management: Ola Ali Obead, Hakem Beitollahi.
Software: Ola Ali Obead, Hakem Beitollahi.
Supervision: Ola Ali Obead, Hakem Beitollahi.
Validation: Ola Ali Obead, Hakem Beitollahi.
Display: Ola Ali Obead, Hakem Beitollahi.
Drafting - original draft: Ola Ali Obead, Hakem Beitollahi.
Writing - proofreading and editing: Ola Ali Obead, Hakem Beitollahi.

https://doi.org/10.56294/dm2025739

 13 Ali Obead O, et al

https://doi.org/10.56294/dm2025739

