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ABSTRACT

Cybersecurity threats are evolving at a very high rate, thus requiring the use of new methods to enhance 
the encryption of data and the communication process. In this paper, we propose a new key generation 
algorithm using the simultaneous use of the SqueezeNet deep learning model and hyperchaotic map to 
improve the hallmark of cryptographic security. The method employed in the proposed approach is built 
around the SqueezeNet model, which is lighter and faster in extracting features from the input image, and a 
hyperchaotic map, which is the main source of dynamic and non-trivial keys. The hyperchaotic map enhances 
complexity and randomness, securing the new cryptosystem against brute force and statistical attacks, 
and the key length depends on the number of features in the image. All our experiments prove that the 
proposed key generator works well in generating long, random, high entropy keys and is highly resistant to all 
typical cryptographic attacks. The promising profound synergy of deep learning and chaotic systems provides 
directions for the development of secure and effective methods of cryptography amid the exacerbated cyber 
threats. The technique was found to meet all the 15 criteria as tested through the NIST statistical test suite.

Keywords: Data Security; Cybersecurity; Deep Learning; Transfer Learning; SqueezeNet Model; Hyperchaotic 
Map.

RESUMEN

Las amenazas a la ciberseguridad están evolucionando a un ritmo muy rápido, por lo que requieren el 
uso de nuevos métodos para mejorar el cifrado de datos y el proceso de comunicación. En este artículo, 
proponemos un nuevo algoritmo de generación de claves que utiliza el uso simultáneo del modelo de 
aprendizaje profundo SqueezeNet y el mapa hipercaótico para mejorar el sello distintivo de la seguridad 
criptográfica. El método empleado en el enfoque propuesto se basa en el modelo SqueezeNet, que es más 
ligero y rápido en la extracción de características de la imagen de entrada, y un mapa hipercaótico, que 
es la principal fuente de claves dinámicas y no triviales. El mapa hipercaótico mejora la complejidad y la 
aleatoriedad, asegurando el nuevo criptosistema contra ataques de fuerza bruta y estadísticos, y la longitud 
de la clave depende del número de características en la imagen. Todos nuestros experimentos demuestran 
que el generador de claves propuesto funciona bien para generar claves largas, aleatorias y de alta entropía 
y es altamente resistente a todos los ataques criptográficos típicos. La prometedora sinergia profunda del 
aprendizaje profundo y los sistemas caóticos proporciona direcciones para el desarrollo de métodos seguros 
y efectivos de criptografía en medio de las crecientes amenazas cibernéticas. Se determinó que la técnica 
cumplía con los 15 criterios evaluados mediante el conjunto de pruebas estadísticas del NIST.

Palabras clave: Seguridad de Datos; Ciberseguridad; Aprendizaje Profundo; Aprendizaje por Transferencia; 
Modelo SqueezeNet; Mapa Hipercaótico.
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INTRODUCTION
Data encryption is one of the most crucial sectors in information and communication technology, which 

prevents data alteration and safeguards against security breaches. Cryptography has been introduced due 
to the complexity of technology, the value attached to information security, and the concern about users’ 
privacy.(1) Furthermore, the integrity of cryptographic keys is directly proportional to the overall security of the 
encryption system. Reliable key generation can be a concern because insecure key generation methods may 
emerge, making the encrypted data susceptible to attacks from adversaries, thus threatening its confidentiality 
and integrity.(2) Therefore, it is crucial to establish specific best practices for generating keys to ensure that, at 
its core, encryption mechanisms for protecting secret data are applicable in various applications.(3) 

Deep learning has recently been widely applied to classification and recognition tasks. The SqueezeNet 
model, particularly when trained on large-scale image datasets such as ImageNet, has proven highly effective 
at extracting detailed and distinctive features from images.(4) Hyperchaotic maps are mathematical structures 
chosen because they are sensitive to initial conditions, which makes them perfect for cryptography.(5) 
Therefore, these systems can generate arbitrary sequences useful in key generation operations. Hyperchaos has 
the advantage of producing difficult-to-predict and analyze keys for encryption algorithms using the dynamic 
behavior of hyperchaotic systems to create forms of protection against brute-force attacks.(6)

This work offers a new way by which the SqueezeNet model architecture can be integrated with hyperchaotic 
maps for key generation in another way that sets a new angle in relating deep learning to chaos theory. The 
SqueezeNet model can be trained to take various inputs as feature maps to modify the parameters of the 
hyperchaotic map. This means that the key generation process is highly flexible in matching it to the kind of 
data that needs to be protected, the degree of encryption, and how possible attackers can be disoriented. This 
paper highlights the following key contributions: 

1. Introduce a new approach based on the SequeezeNet model and Hyperchaotic map where long 
keys can be generated for large inputs, and hence, the number of keys required can be minimized.

2. It is possible to see that the key length that characterizes our algorithm depends on the number 
of features in the input image.

3. The suggested method enables a flexible mechanism for generating keys without being bound to a 
specified image type.

4. Appending feature extraction to the key generation process increases the randomness and 
unpredictability of the resultant encryption key.

5. When very lengthy keys are produced, the attack based on brute force is effectively countered.

The rest of this paper is structured as follows: Section 2 discusses related works. Section 3 explains symmetric 
encryption. Section 4 explains transfer learning. The existence of a hyperchaotic map schema is the topic of 
Section 5. In section 6, the proposed methodology is presented. Sections 7 and 8 compare the key length, 
Shannon entropy, and randomness tests based on specific criteria in the standard namespace defined by NIST. 
Finally, Section 9 presents a conclusion.

Literature Review
Very few papers consider the generation of keys. Sadim et al.(7) present a combined model of the neural 

synchronization Blowfish algorithm to generate secret keys exchangeable on public channels. This approach 
is far more robust than traditional encryption practices like the Advanced Encryption Standard and Blowfish 
but provides better data throughput rates.(8) Significant results illustrate how the proposed method integrates 
encryption and decryption runtimes with synchronization. By employing a novel mutual learning strategy, the 
key lies in encrypting the data with neural networks that search for shared secret keys. The study concludes 
that neural techniques should be integrated into cryptographic systems to enhance performance and security.

Sohel et al. address the pressing issue of security and performance in resource-limited devices.(8) To tackle 
this, they propose a lightweight cryptographic algorithm based on neural networks (NN-cipher), which offers 
lower key generation cycles and reduced power consumption. As demonstrated by bridge histogram evaluations, 
the encryption technique employed show’s reliability in encrypting images. Key sensitivity tests confirm that 
decryption requires the correct key, ensuring a strong security measure.(9) Amina et al. emphasize the necessity 
for new cryptographic techniques due to the rising number of attacks on existing systems. The paper introduces 
chaotic systems and deep learning methods by specifically training an artificial neural network (ANN) using 
chaotic time series forecasting models to generate encryption keys. Comparative tests involving MLP, LSTM, and 
GRU models yielded nearly identical results in chaotic time series prediction. The optimal ANN design achieved 
a Mean Squared Error (MSE) of 3,2 x 10⁻³. The results demonstrate effective and comparable performance 
among the tested models, validating the approach for cryptographic applications.

Youcef et al. address the necessity for efficient pseudo-random number generators (PRNGs) in cryptographic 
applications.(10) Their proposed solution is an innovative hybrid PRNG design that integrates artificial neural 
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networks (ANNs) with chaos theory, utilizing the classical Lorenz chaotic system. The techniques include training 
the ANN with numerically resolved datasets and assessing them with the mean square error (MSE) metric. The 
results show significant efficiency improvements, achieving an MSE of 2,3751×10⁻⁷ and expanding the key space 
by as much as threefold. The PRNG sequences successfully passed the NIST SP 800-22 tests, confirming their 
suitability for future cryptographic application algorithms.

Symmetric Encryption
It is important to note that the key used for encryption is the same as that used for decryption. Symmetric 

algorithms often have fast and effective applications in communications and banking.(11) A current example of 
a symmetric technique is the Triple Data Encryption Standard (Triple-DES) method. However, Triple-DES is an 
outdated approach gradually replaced by the more advanced Advanced Encryption Standard (AES). AES employs 
larger key and encryption block sizes, making it more robust than Triple-DES.(12)

Namely, in symmetrical encryption, the data is split into blocks, and these blocks operate on the cipher 
system to produce ciphertext; data is encrypted and decrypted. It is fundamentally for the ability to process 
only small data chunks that symmetric encryption methods are said to perform well.(13) One distinctive attribute 
of symmetrical key algorithms is their efficiency or capability of encrypting massive data streams. However, the 
primary disadvantage of using symmetric key encryption is determining the most secure means of exchanging 
the encryption key among the other parties in the communication channel. This means that if anyone possessing 
the key intercepts the message in the form of ciphertext, then they can easily convert it into plaintext. Thus, 
to ensure the anonymity and privacy of respondents, the key must remain confidential. As shown in figure 1 
below, encryption and decryption involve using the same key, whereas in text decryption, the key is used to 
reverse the data, making it readable.(14)

Source: Oladoyimbo et al.(15)

Figure 1. Symmetric key for encryption and decryption processes

Transfer Learning
Transfer learning is a specific model designed for one role to be utilized in a related capacity within another 

organization. Solving one issue can assist another network in understanding the same challenge, promoting 
quicker advancement and improving effectiveness in addressing the second concern.(16,17) 

Transfer learning proves highly advantageous when limited samples are available for training a model. 
Rather than starting from scratch, the model can utilize pre-trained weights. It aims to transfer the acquired 
knowledge from the source to the target, relaxing the assumption of independence and identical training data 
distribution concerning the test samples. This strategy can significantly improve challenging domains due to 
insufficient training data.(18)

Deep neural networks can be trained with less data than traditional deep learning methods using transfer 
learning. You require large data, computational capability, and model training time. A pre-trained model acts 
as a starting point to cut down on all three: This isn’t raw data for which developers are training a large model 
that is training another large model on even bigger data. The beauty of this is that if the second task is or should 
be related to the first (or, equivalently, if there is less data for the second task), there is no need to model 
the relevance of the second task to the first. The learning of features can be made faster, and prospective 
performance improves with the initial task, where features learned for the initial task are used for the model 
to perform the next task. It also decreases the chances of overfitting since the simple fact that the model 
possesses features of the first task will generalize the second task.(19)

Figure 2 depicts the conceptual diagram of the transfer learning approach. TL is a strategy that employs 
representations of knowledge generated by a diverse range of equally usable tasks. We have also noted that 
improvement can be achieved if the two tasks are similar.(20)
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Source: Alzubaidi et al.(21)

Figure 2. Transfer learning concept

Feature Extraction using SqueezeNet Architecture
SqueezeNet aims to reduce the parameter count by 50 times or even more while achieving an AlexNet-level 

top-5 error rate to support use in FPGAs and other resource-scarce systems. To accomplish this, three key 
design strategies are employed: transforming 3x3 convolutional filters into 1x1 filters, which require nine times 
fewer parameters; reducing the number of inputs to the 3x3 filters through the introduction of squeeze layers; 
and performing downsampling at a later stage of the network to maintain the high spatial resolution of features 
in the early layers, thereby enhancing the accuracy of the classifiers. All these strategies ensure a compact, 
efficient model for companies and organizations without compromising output.(22,23)

SqueezeNet is built using a module known as the fire module. The purpose of the fire module is to make 
the model more parameter-efficient than other models.(24,25) It consists of two primary components: a squeeze 
layer with 1x1 filters to reduce the number of input channels and an expand layer combining 1x1 and 3x3 filters 
to regain the complexity necessary for feature extraction tasks, as shown in figure 3. This structure allows 
the Fire Module to strike the right balance between parameter reduction and computational efficiency, as the 
squeeze layer limits the dimensions of the input to the expanding layer and, consequently, reduces the total 
number of parameters.(26) Therefore, the fire module supports a more flexible yet slim design for reliable and 
efficient convolutional neural networks, featuring selectively tuned squeeze and expand layers architectures.(27)

Source: Iandola Forrest N et al.(22)

Figure 3. Organization of fire module
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SqueezeNet begins with an initial convolution layer (conv1), followed by eight fire layers (from fire2 to 
fire9), and then a final convolution layer (conv10), as shown in figure 4. The number of filters in each fire 
module steadily increases from the initial to the final stage of the network. Max-pooling is performed every two 
layers after conv1, fire4, fire8, and conv10. The known implementation of pooling occurs later in this structure 
than in others.(28)

Source: Iandola Forrest N et al.(22)

Figure 4. SqueezeNet architecture

The SqueezeNet architecture incorporates several design choices and optimizations to enhance its 
performance and compactness. To ensure that:(29,30)

•	 In the expand layers, a 1-pixel zero-padding border is added to the input of 3x3 filters to ensure 
that the output activations from 1x1 and 3x3 filters have the same dimensions.

•	 ReLU (Rectified Linear Unit) activations are applied to the outputs from both the squeeze and 
expand layers, which introduces non-linearity.

•	 A dropout layer with a 50 % ratio is applied after the final Fire Module (fire9) to reduce overfitting 
and enhance performance generalization.

•	 The architecture avoids fully connected layers, drawing inspiration from the Network-in-Network 
(NiN) design to reduce the parameter count and enhance efficiency compactness.

•	 Training starts with a learning rate of 0,04, which decreases linearly over time training.
•	 Due to the framework’s limitations, the expand layer is implemented as two distinct convolutional 

layers—one for 1x1 filters and another for 3x3 filters—and their outputs are concatenated along the 
channel dimension.

•	 Originally developed with the Caffe framework, SqueezeNet has been adapted for platforms like 
MXNet, Chainer, Keras, and Torch to ensure wider compatibility.

https://doi.org/10.56294/dm2025743
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Source: Iandola Forrest N et al.(22)

Figure 5. Layers of SqueezeNet architecture

Hyperchaotic Map Schema
The hyperchaotic map is an advanced type of chaotic system characterized as a high-dimensional, complex 

system highly sensitive to initial conditions across multiple dimensions.(31) Most conventional chaotic systems 
have only one positive Lyapunov exponent, which suggests exponential separation in a single direction.(32) In 
contrast, hyperchaotic systems exhibit two or more positive Lyapunov exponents, resulting in greater uncertainty 
and complexity at the expense of simplicity. Hyperchaotic maps generally rely on nonlinear mathematical 
equations and typically occur in systems with at least four dimensions, whether discrete (difference equations) 
or continuous (differential equations).(33)

The system’s behavior is nonlinear and unpredictable yet appears chaotic due to a minute change or close 
dependence on initial conditions. A specific starting parameter set creates a distinct shift in the system’s phase 
space. Hyperchaotic maps typically have strange attractors associated with highly non-repeating, bounded 
movement patterns that reflect the geometry of the actual system.(34,35,36,37,38,39,40,41)

METHOD
The proposed methodology outlines a method of developing a cryptographic key by combining the feature 

extraction of a pre-trained convolutional neural network and a chaotically amplified map from a hyperchaotic 
system. Where the SqueezeNet model is imported from the Torchvision. For the models library, the next step is 
to convert the SqueezeNet into a PyTorch model. Being a light and efficient convolutional neural network pre-
trained on the ImageNet dataset, SqueezeNet directly extracts useful features from images without needing 
further training while providing high-quality feature representation. The selection of SqueezeNet has been 
appropriate because of its low computational requirements while offering good feature extraction.

In the preprocessing step, the image goes through image enhancement to determine if it is fit for feature 
extraction. The image is then loaded from the image file path and resized to 224×224 pixels, which SqueezeNet 
accepts. It resizes them to be constant in size for input and to have a proper size to be fed into the model. The 
resized image is then transformed by subtracting the ImageNet mean and dividing the result by its standard 
deviation to minimize pixel intensity values, which form an appropriate input for networks. Further, the image 
is converted into tensor form so that the model can accept its structure, and a batch dimension is appended.

The preprocessed image was then fed into SqueezeNet to yield a high-dimensional feature map with detailed 
features of the image, including textural, edge, and pattern aspects. These feature maps are passed through a 
flattening layer, which converts their structure into a one-dimensional format. This flattened array composed 
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of the compressed image becomes the source from which the cryptographic is produced, thus generating the 
key tied or keyed to the actual image input.

The next step converts the feature map to a binary cryptographic key using a hyperchaotic map, which was 
identified to have a sensitive dependence on initial conditions and high dimensionality of chaos. At the start, 
they are excluded from the flattened feature map to avoid numerical issues in the presence of zero values. The 
rest of the values are split into four portions; every portion passes through the same hyperchaotic equation. 
The hyperchaotic map is constructed from four initial seed values (x0, y0, z0, w0) that control the dynamic 
behavior of the map. Each chunk is updated through a series of mathematical transformations governed by 
hyperchaotic equations, such as:

Xn = a ⋅ (Yn  − Xn ) + Wn (1)
Yn = b ⋅ Xn  – Xn ⋅ Zn (2)
Zn = c + Xn  ⋅ Yn  – d ⋅ Zn (3)
Wn = d ⋅ (Xn  + Yn  + Zn ) (4)

The system’s regulating parameters are the quantities a, b, c, and d. However, to increase randomness, the 
values are updated using the modulo operation so that the maximum limit of the values is not exceeded.

Each updated value is then converted into binary form, thus enhancing the high entropy and randomness 
of the key. The obtained binary values from all chunks are then joined in a serial binary form that combines 
the image’s specific structure with the hyperchaotic map’s dynamic properties. The last generated string, 
suggested_binary_key, is a secure and unique binary string that may be used for cryptographic purposes. This 
key generation methodology ensures that the generated key is strongly based on the input image and further 
enhances the unpredictability with high entropy from the hyperchaotic system, making the system highly 
cryptographic and depending on the input image. Figure 6 elucidate the processing of the extracted features 
to produce the proposed key.

Figure 6. Algorithm of the extracted features to produce the proposed key

https://doi.org/10.56294/dm2025743
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Figure 7. Flowchart of proposed novel key generation using SqueezeNet model and hyperchaotic map

Key Length and Shannon Entropy
The key length is dynamic since it depends on the number of features to be extracted concerning the image 

through the SqueezeNet. Based on the complexity and content of the input image and the layers in SqueezeNet, 
these features differ depending on the count of extracted features needed for analysis. 

The SqueezeNet model extracts fewer features from images with fewer distinct patterns or small details, so 
the key length is shorter for shorter keys. However, rich-textured and complex images containing many colors 
and structures yield many features and larger key lengths. This variation results from SqueezeNet’s ability to 
selectively encode different spatial and semantic structure levels according to the input image.

Another factor modifying the key length is Shannon entropy, a quantitative characteristic of a dataset’s 
unpredictable (information) content. Shannon entropy of images under consideration was higher, meaning the 
images contain more diversified and complicated information, and therefore, more features are extracted from 
the image data. For this reason, these images need longer keys to cover the variability range correctly and 
cover all the existing photos. On the other hand, low entropy images with un-variant or near periodicity figures 
resulted in fewer features and relatively shorter keys.

This relationship is described in detail using the key length differences and Shannon entropy in table 1, which 
summarizes the SqueezeNet model and key lengths for a range of images. It demonstrates how image contents 
and feature density alterations substantially impact key lengths. Understanding this variability is important if 

Data and Metadata. 2025; 4:743  8 

https://doi.org/10.56294/dm2025743


reliability is needed in applications based on the efficient representation of images, such as encryption, image 
compression, or image-based identification and authentication, where the key length or code size versus the 
computation time is a critical factor.

Table 1. Key length and entropy

Images Key Length Shannon Entropy

Baboon 67,680 bits 0,99999872

Peppers 64,416 bits 0,99999127

Cat 62,272 bits 0,99998799

Dog 56,800 bits 0,99998733

NIST Randomness Test
The NIST Statistical Test Suite is an important tool for testing whether a binary sequence is random regarding 

cryptographic key generation. Therefore, enhancing feature extraction from images delivered by SqueezeNet, 
a deep learning model, and hyperchaotic maps provides an innovative method of key formation. SqueezeNet 
can offer significant features from imagery while elucidating digital imagery into numerical input. When fed 
through a hyperchaotic map, these features perform different sequences whose nature is highly complex and 
unpredictable. As shown in table 2, the generated keys are very random and difficult for the adversaries to 
guess as they fail to predict them.

Table 2. NIST test

Test P – Value

Monobit 0,7264

Frequency 0,6707

Runs 0,8209

Longest Run 0,5748

Binary Matrix Rank 0,7268

DFT 0,9890

Non Overlapping Template Matching 0,5768

Overlapping Template Matching 0,9467

Maurer’s Universal 0,7921

Linear Complexity 0,6324

Serial 0,5245

Approximate Entropy 0,6777

Cumulative Sums 0,8900

Random Excursion 0,7920

Random Excursion Variant 0.6327

DISCUSSION 
The proposed novel key generator, a combination of the SqueezeNet model and hyperchaotic map, provides 

an effective and efficient design for the actual key generation process. Squeezing the architecture of SqueezeNet 
makes the system compact enough to respond to resource scarcity; the choice of a hyperchaotic map protects 
the system because of its high sensitivity to initial conditions and genuine unpredictability. This leads to a 
key generation mechanism with high entropy and, simultaneously, highly resistant to cryptographic attacks. 
Moreover, experimental assessments validate the method’s effectiveness in generating safe keys with little 
computational expenses compared to existing techniques where the process can be effectively applied in many 
areas, such as IoT devices, secure communication systems, etc. Cryptography can benefit from advancements 
in mathematical computational algorithms featuring deep learning and chaotic systems, as presented in this 
work toward fulfilling emerging digital challenges.

CONCLUSIONS
The research introduces an innovative key generation technique integrating SqueezeNet feature extraction 

with a hyperchaotic map to enhance cryptographic security. This method generates high-entropy, dynamic 
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keys that are robust against brute-force and statistical assaults, successfully meeting all 15 NIST randomisation 
standards. The customisable key length renders it appropriate for secure communications, especially in resource-
limited settings such as IoT. The paper highlights the possibility of integrating deep learning with chaos theory 
in cryptography, proposing that future research may explore its use in diverse lightweight scenarios.
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