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ABSTRACT

The research highlights the importance of mathematical models for better planning in both state and 
private companies, specifically through curvilinear regressions, to forecast future activities of the State 
Telecommunications Regulation and Control Agency of Ecuador (ARCOTEL), by analyzing variables such as the 
number of internet service users. The study was based on data preprocessing, which included homogeneity 
analysis and scale changes. Statistical tests such as the Mann-Kendall Test and the Helmert Test were applied 
to evaluate trends in time series. Subsequently, the data were fitted from a linear model to a polynomial 
one. Evaluation metrics included absolute, mean, and quadratic percentage errors, as well as coefficients 
of determination and correlation. The analysis showed that the sixth-degree polynomial fitting provided an 
adequate adjustment for the time series, with high correlation coefficients and relatively low absolute and 
mean percentage errors, suggesting acceptable accuracy between the fitted and actual values. Scaling the 
data facilitated comparison and analysis, eliminating biases. The research emphasized the importance of 
effective planning using mathematical models to predict economic activity in companies. The sixth-degree 
polynomial fitting proved to be effective in representing time series, with low errors and high accuracy. 
These methods were useful for planning and forecasting in the telecommunications sector, as exemplified 
by the analysis of ARCOTEL users.
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RESUMEN

Se pone como antecedente de la investigación la importancia de los modelos matemáticos para una mejor 
planificación en empresas estatales y privadas, específicamente mediante regresiones curvilíneas, para 
pronosticar actividades futuras de la Agencia Estatal de Regulación y Control de las Telecomunicaciones del 
Ecuador (ARCOTEL) para analizar variables como el número de usuarios de servicios de internet. El estudio 
se basó en el preprocesamiento de datos, que incluyó análisis de homogeneidad y cambios de escala. Se 
aplicaron pruebas estadísticas como el Test de Mann-Kendall y la prueba de Helmert para evaluar tendencias 
en series de tiempo. Luego, se ajustaron los datos desde un modelo lineal hasta un polinomial. Las métricas 
de evaluación incluyeron errores porcentuales absolutos, medios y cuadráticos, así como coeficientes de 
determinación y correlación. El análisis mostró que el ajuste polinomial de grado 6 proporcionó un ajuste 
adecuado de las series de tiempo, con altos coeficientes de correlación, errores porcentuales absolutos 
y medios relativamente bajos, lo que sugirió una precisión aceptable entre los valores ajustados y los 
valores reales. El cambio de escala de los datos facilitó la comparación y el análisis, eliminando sesgos. 
La investigación subrayó la importancia de la planificación efectiva utilizando modelos matemáticos para 
predecir la actividad económica en empresas. El ajuste polinomial de grado 6 demostró ser efectivo en la
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representación de series temporales, con bajos errores y alta precisión. Estos métodos resultaron útiles para 
la planificación y pronóstico en el sector de telecomunicaciones, ejemplificado por el análisis de usuarios de 
ARCOTEL.

Palabras clave: Modelos Matemáticos; Regresiones Curvilíneas; Ajuste Polinomial; Estandarización de Datos.

INTRODUCTION 
A fundamental aspect of effective business planning, whether state-owned or private, lies in forecasting 

and anticipating economic activity.(1) To achieve this objective, it is essential to collect and store reliable 
information over time and to use an adjustment model capable of generating estimates close to actual values.
(2) Although it is valid to carry out the forecasting study using qualitative methods, we have opted to use 
quantitative approaches in this specific analysis for several reasons.

The availability of reliable data from the State Agency for the Regulation and Control of Telecommunications 
(ARCOTEL) covers a monitoring period of 11 years, including measurements of various parameters, such as the 
number of users of different operators offering internet services using multiple technologies. This data allows a 
statistical analysis to be carried out, examining the relationship between the dependent variable (the number 
of users of the different operators) and the independent variable (time).(3) The distribution of data over time 
suggests that the behavior of the variable follows a pattern as time passes, facilitating the development of a 
model at the end of the process that allows for the desired forecast, for the time series analysis, trend, cyclical 
variation, seasonal variation, and random variation are examined.

Although there are methods such as Neural Networks or the application of techniques such as moving 
averages, exponential smoothing, or the Box-Jenkins method for time series analysis, in this study, we choose 
to use polynomial regression methods. This choice is based on evaluating the effectiveness of these methods to 
identify the underlying pattern in time series, motivated by specific reasons.(4)

Polynomial models are simpler and easier to apply and interpret compared to more complex methods, 
such as neural networks or autoregressive integrated moving average models, which are used by both state 
and private operators in the telecommunications field. In addition, these models are remarkably flexible and 
adaptable to a wide variety of data patterns, making them ideal for capturing the inherent complexity in time 
series.

In time series related to telecommunications, the specific shape of the curve acquires practical relevance 
and contributes significantly to the interpretation of the observed trend’s results. The best model is selected 
using decision criteria established through an exhaustive evaluation of these methods, thus guaranteeing the 
choice of the most appropriate approach for the analysis of time series in the context of telecommunications.(5)

METHOD
The methodology used to analyze the time series of active lines in prepaid modalities, based on the data 

provided by ARCOTEL, was developed systematically. The process was carried out following these stages:

Data pre-processing
This stage was crucial to guarantee the availability and reliability of the data. A descriptive analysis of the 

ARCOTEL database was carried out to identify possible anomalous data, ensuring that the data used in the study 
was reliable and error-free.(6)

Homogeneity analysis with time series
Non-parametric statistical tests were used to identify errors and determine the homogeneity of the series. 

The Mann-Kendall test and the Helmert statistical test were used.(7)

Mann-Kendall test
This is a non-parametric statistical test used to identify trends in time series. It assesses the existence of a 

monotonic relationship between the values of the time series and time without assuming a specific distribution 
of the data. The test calculates the variance (V) and compares it with a threshold to determine the significance 
of the observed trend. It is beneficial for detecting systematic increases or decreases over time, which makes it 
ideal for time series studies with hydrological and climatic data where one wishes to identify trends in observed 
data.(8) Furthermore, the Mann-Kendall test is robust against data with non-normal distributions and can handle 
time series with missing values, increasing its applicability in various scientific fields.(9)
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Helmert statistical test
This test detects structural changes in the time series. It determines if there is a linear relationship between 

the values of the number of users of the different operators over time. The series is classified as homogeneous 
or non-homogeneous according to the difference between the sum of the signs and the square root. The Helmert 
test is used in Gauss-Helmert models for least squares estimation, providing a robust basis for statistical 
analysis in prediction processes. It is also used in contrast analysis, facilitating the evaluation of theoretical 
predictions about differences between group means in empirical data.(10)

Data Scaling
Instead of traditional standardization, the data was scaled to 0 and 1. This process, known as Min-Max 

normalization, is crucial when applying least squares methods to polynomials of degrees more significant than 
6. The main reason for this is that, when dealing with tremendous values, the coefficients in polynomials raised 
to high powers can become extremely large, which makes calculation difficult and can lead to problems with 
numerical precision. Transforming both the independent variable (time) and the dependent variable (users) to 
a scale between 0 and 1 ensures that all values remain within a manageable range, facilitating comparison and 
analysis.(11)

Polynomial Data Fitting
Polynomial data fitting captures the non-linear relationship between the independent variable (time) and 

the dependent variable (users). This process involves finding the coefficients of a polynomial equation that best 
fits the observed data. The objective is to minimize the sum of the squares of the differences between the 
observed values and those predicted by the polynomial model.

The polynomial fit can involve various degrees of the polynomial, from a simple linear fit to polynomials of 
a higher degree. This study considered models ranging from a linear fit to a 6th-degree polynomial to obtain an 
adjusted representation of the time series. As the degree of the polynomial increases, the model’s ability to 
adapt to the complexities of the data increases; however, with the risk of overfitting, where the model adjusts 
too much to the specific variations of the training data, losing its predictive capacity for new data.

The polynomial fitting process uses the least squares method, which looks for the coefficients that 
minimize the sum of the squares of the differences between the observed and predicted values. This method 
is fundamental in polynomial regression, as it allows the coefficients of the polynomial equation that best 
describes the relationship between the variables to be determined.(12)

Fitting Analysis
Several key metrics were used to evaluate the fit quality and the polynomial model’s predictive capacity. 

The Mean Absolute Percentage Error (MAPE) measures the average absolute error as a percentage of the actual 
values, useful for comparing different models or data sets. The Mean Absolute Error (MAE) calculates the 
average of the absolute differences between the actual and predicted values, providing a direct measure 
of accuracy. The Mean Squared Error (MSE) promotes the squares of the differences between the actual and 
predicted values, penalizing more significant errors more, and its square root, the Root Mean Squared Error 
(RMSE), allows errors to be interpreted on the same scale as the original values, facilitating comparison.(13) 
Furthermore, the Coefficient of Determination (R²) indicates the proportion of the variance in the dependent 
data that is predictable from the independent variables. In contrast, the Coefficient of Correlation (R) measures 
the strength and direction of the linear relationship between two variables, providing a complete evaluation of 
the effectiveness of polynomial modeling in time series analysis.(14)

RESULTS AND DISCUSSION
Data pre-processing

Table 1. Statistical analysis of prepaid and postpaid operators

Descriptive statistics
Postpayment Prepaid

CONECEL OTECEL CNT CONECEL OTECEL CNT

Average 7 443 458 3 521 820 114 1387 2 091 800 1 028 243 321 702

Standard error 123 193 34 457 76 564 40 402 21 616 15 041

Median 6 757 632 3 405 847 546 729 2 216 863 1 159 541 325 673

Standard deviation 1 606 241 449 270 998 272 526 776 281 834 196 113

Variance 2,5800E+12 2,0184E+11 9,9655E+11 2,7749E+11 7,9430E+10 3,8460E+10

Kurtosis -2 -1 -2 0 -1 -1
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Coefficient of asymmetry 0 0 0 -1 -1 0

Range 4 598 872 1 602 667 2 598 440 1 751 543 898 193 642 217

Minimum 53 27 336 2 611 348 121 410 928 531 468 235 48 961

Maximum 9 92 62 08 4 214 015 2 719 850 2 680 074 1 366 428 691 178

Sum 1 265 387 891 5 987 09 400 19 4035 844 355 605 990 174 801 323 54 689 338

Count 170 170 170 170 170 170

Data pre-processing was applied to active line users in both modalities (prepaid and postpaid) and to the 
three operators, CONECEL, OTECEL, and CNT. The analysis was based on the descriptive statistics summarized 
in the following table.

Descriptive Statistical Analysis
For the postpaid modality, CONECEL has the highest average number of users, followed by OTECEL and 

then CNT, which has significantly fewer users in comparison. The variability in the number of users is more 
significant in CONECEL, indicating a wider dispersion of the data around the mean. Regarding kurtosis and 
asymmetry, the distributions for the three operators are flatter than expected in a normal distribution and are 
symmetrical. The range of users is also more excellent in CONECEL, showing the most significant variability 
between the minimum and maximum number of users. For the prepaid modality, CONECEL again leads with the 
highest average number of users, followed by OTECEL and CNT. Variability is also more significant in CONECEL, 
suggesting a more excellent dispersion in the data. The distributions in CONECEL and OTECEL are flatter and 
tend towards the left, while CNTs are more symmetrical. The range of prepaid users is more excellent in 
CONECEL, which indicates a higher variability.

Interpretation for Polynomial Fitting
The high variability observed in CONECEL suggests that any polynomial fitting model must be able to capture 

this dispersion to be effective. The lower variability in OTECEL and CNT implies that their models could be more 
straightforward. Differences in central tendencies, such as the mean and median, indicate possible biases in 
the data that must be considered during modeling. The flat and asymmetric distributions in some operators 
suggest the presence of extreme values, which can influence the choice of the degree of the polynomial to 
avoid overfitting or underfitting. This analysis provides a solid basis for applying polynomial models, ensuring 
that the key characteristics of the data are adequately considered to achieve an accurate and practical fit.

Homogeneity Analysis with Time Series
Mann-Kendall test

The homogeneity analysis used the Mann-Kendall test to evaluate significant trends in the time series of 
the operators CONECEL, OTECEL, and CNT in the prepaid and postpaid modalities. As indicated above, the 
Mann-Kendall test is a non-parametric test used to detect trends in a time series and is based on the following 
formula:

𝑉𝑉 = 𝑆𝑆 − 1
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T is the number of significant events of the value being analyzed in the time series.
I is the number of minor events of the value being analyzed in the time series.
Below is the table of results from the Mann-Kendall test.

From the table analysis, the level of significance used was 10 % (alpha = 0,1) for each variable. The assigned 
critical value (Vcrit=1,28) was used to determine if the absolute value of the test statistic (V= -0,0376) is less 
than the critical value (|V| < |Vcrit|). The results indicate that the Mann-Kendall test applied to the time 
series of users of the operators CONECEL, OTECEL, and CNT in the prepaid and postpaid modalities, as well as 
the total number of mobile phone users, has shown that the series are homogeneous. This indicates that no 
significant trends were found in the data, which is relevant for planning and predicting economic activity in the 
telecommunications sector.
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Table 2. Mann Kendall test on prepaid and postpaid data

Mann-
kendall test

Prepaid Postpay

CONECEL OTECEL CNT CONECEL OTECEL CNT

Alfa 10 % 10 % 10 % 10 % 10 % 10 %

Vcrit 1,28 1,28 1,28 1,28 1,28 1,28

I 120 120 120 120 119 120

T 120 120 120 120 119 120

S 0 0 0 0 0 0

V -0,0376 -0,0376 -0,0376 -0,0376 -0,0376 -0,0376

|V|<|Vcrit| Homogeneous Homogeneous Homogeneous Homogeneous Homogeneous Homogeneous

Helmert statistical test
To corroborate the previous test, we proceeded with the Helmert statistical test, which was much easier 

than the Mann Kendal Test and consisted of analyzing the sign of the deviations of each event in the series 
concerning its mean value, in which if a deviation of a sure sign is followed by another of the same sign a 
sequence S1 is created, in contrast, if a deviation is followed by another of the opposite sign it is registered 
as a change C, and is compared with the square root of (n-1), to classify the series as homogeneous or non-
homogeneous, according to the formulas indicated below:

𝑉𝑉 = 𝑆𝑆 − 1

√𝑛𝑛(𝑛𝑛 − 1)(2𝑛𝑛 + 5)
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The results of this process are shown in the following table.

Table 3. Helmert’s statistical test of the data in the prepaid and postpaid modalities

Average 
parameters

Prepaid Postpay
CONECEL OTECEL CNT CONECEL OTECEL CNT

S1= 13 12 14 14 14 13
C= 2 3 1 1 1 2

  Homogeneous Homogeneous Homogeneous Homogeneous Homogeneous Homogeneous

From the table analysis, it can be seen that the Helmert test compares the annual values of the data in the 
prepaid and postpaid modalities with an average value calculated to determine if significant changes indicate 
breaks in the structure of the series. The results showed that most of the years analyzed are homogeneous; 
they do not present substantial structural changes. This is evident in the tabulated values, where it can be seen 
that the majority of the years show an ‘S,’ indicating stability in the series. Therefore, the series is considered 
homogeneous because the values of the test remain consistent, as can be seen in the majority of the years. The 
few cases marked with ‘C’ (change) indicate years with significant variations but not enough to alter the overall 
homogeneity of the series. The changes are few and within the limits of a probable error.

Relationship with the Mann-Kendall test
The Helmert and Mann-Kendall tests work together to provide a complete view of the time series structure. 

While the Mann-Kendall test identifies general (monotonic) trends in the time series, the Helmert test focuses 
on detecting specific structural changes that could indicate breaks in the series.

In this study, both tests indicated homogeneity in the time series analyzed. This means that the series not 
only has no significant trends (according to the Mann-Kendall test) but also maintains a consistent structure 
over time (according to the Helmert test). The confirmation of homogeneity by both tests ensures that the time 
series are stable and suitable for further analysis.

Contribution to Polynomial Fitting
The homogeneity detected by the Helmert test is crucial for polynomial fitting. The structural stability of 

the time series allows polynomial models to be applied with confidence, as no sudden changes or hidden trends 
are expected that could distort the results. Polynomial models can thus capture the underlying relationship 
between time and the number of users of operators’ services, providing accurate and reliable estimates.

In summary, the Helmert test confirms that the time series are suitable for polynomial adjustment, validating 
their use in planning and predicting trends in the telecommunications sector. The time series’ stability and 
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homogeneity guarantee that the adjusted polynomial models will faithfully reflect the dynamics of the data, 
contributing to better strategic decision-making.

Data scaling
The Min-Max data normalization process in the study is a common and valuable practice for comparing 

variables on different scales. By transforming the variables to a scale between 0 and 1, a relative comparison 
between the various payment methods and operators is achieved without the absolute differences in their 
magnitudes.

This normalization of data allows us to eliminate biases caused by differences in the units of measurement 
and ranges of the variables, which facilitates the comparison and analysis of the data. By assigning the value 
0 to the minimum and the value 1 to the maximum in each payment method, a typical frame of reference is 
established to evaluate the behavior of users about time and the different payment methods, as we can see in 
the following table.

For the present analysis, the time variable was assigned 0 to the first value and 1 to the 5072 days 
corresponding to the last value; this is for the 2 modalities, prepaid and postpaid.

For the user variable, the maximum values for each modality were assigned 1, that is 99,262,080 for prepaid 
and 26,800,740 for postpaid. Based on these, the table for each modality was completed, as indicated below.

Table 4. Standardization of data in the prepaid and postpaid modalities

Time
Postpayment Prepaid

CONECEL OTECEL CNT CONECEL OTECEL CNT

0 0,34646 0,17611 0,01924 0,72490 0,26702 0,02536

0,01 0,34963 0,17620 0,02439 0,73725 0,26308 0,02418

0,01 0,35282 0,17471 0,02461 0,74657 0,26406 0,02418

0,02 0,35667 0,20377 0,02461 0,75324 0,26501 0,02418

0,02 0,35912 0,20559 0,02390 0,76038 0,26503 0,02363

0,03 0,36447 0,17723 0,02240 0,76806 0,27697 0,02434

0,04 0,36782 0,17967 0,02245 0,77334 0,27927 0,02541

0,04 0,37165 0,18237 0,02257 0,77879 0,28401 0,02589

0,97 0,80482 0,45424 0,11493 0,67487 0,41559 0,26618

0,98 0,80962 0,45567 0,11399 0,67805 0,41930 0,26774

0,98 0,81349 0,45691 0,11384 0,68086 0,42219 0,26919

0,99 0,81775 0,45866 0,11389 0,68184 0,42347 0,27075

0,99 0,82250 0,46050 0,11392 0,68741 0,42453 0,27229

1 0,82699 0,46312 0,11365 0,69080 0,41987 0,27401

This treatment ensures that all values remain within a manageable range, facilitating comparison and 
analysis. A standard frame of reference is established by transforming the independent variable (time) and 
the dependent variable (users) to a scale between 0 and 1. This eliminates biases caused by differences in the 
units of measurement and ranges of the variables, allowing for an accurate and consistent evaluation of user 
behavior over time and between different payment methods.

Data normalization facilitates the application of polynomial models since keeping the values within a uniform 
range reduces the risk of obtaining substantial coefficients that can lead to numerical precision problems. This 
is especially important when working with polynomials of degree greater than 6. Standardization ensures that 
the model fits the data more efficiently and accurately, faithfully reflecting trends and patterns in the time 
series.

Polynomial Data Fitting
A polynomial approximation with least squares was used to fit the data in the study. The method consists of 

asking that the sum of the calculated distances between the value of the approximation function p(xi) and the 
computed value of the function f(xi) be minimal, that is:

𝑉𝑉 = 𝑆𝑆 − 1

√𝑛𝑛(𝑛𝑛 − 1)(2𝑛𝑛 + 5)
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If we assume a linear regression with, we square the distance to avoid derivability problems:

𝑉𝑉 = 𝑆𝑆 − 1

√𝑛𝑛(𝑛𝑛 − 1)(2𝑛𝑛 + 5)
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To determine the polynomial, we partially derive with respect to the two variables: First we derive with 
respect to a0:

𝑉𝑉 = 𝑆𝑆 − 1
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∑(𝑎𝑎𝑜𝑜𝑥𝑥𝑖𝑖 + 𝑎𝑎1 𝑥𝑥𝑖𝑖
2 − 𝑓𝑓(𝑥𝑥𝑖𝑖)𝑥𝑥𝑖𝑖) =  0

𝑚𝑚

𝑖𝑖=1
 

 

𝑎𝑎0 ∑ 𝑓𝑓(𝑥𝑥𝑖𝑖)
𝑚𝑚

𝑖𝑖=1
+  𝑎𝑎1 ∑ 𝑥𝑥𝑖𝑖

2 =  ∑ 𝑓𝑓(𝑥𝑥𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

𝑚𝑚

𝑖𝑖=1
𝑥𝑥𝑖𝑖 

 

𝑚𝑚𝑎𝑎0 +  𝑎𝑎1 ∑ 𝑥𝑥𝑖𝑖 =  ∑ 𝑓𝑓(𝑥𝑥𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

𝑚𝑚

𝑖𝑖=1
 

The resulting system is: 

𝑚𝑚𝑎𝑎0 +  𝑎𝑎1 ∑ 𝑥𝑥𝑖𝑖 =  ∑ 𝑓𝑓(𝑥𝑥𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

𝑚𝑚

𝑖𝑖=1
 

𝑎𝑎0 ∑ 𝑓𝑓(𝑥𝑥𝑖𝑖)
𝑚𝑚

𝑖𝑖=1
+  𝑎𝑎1 ∑ 𝑥𝑥𝑖𝑖

2 =  ∑ 𝑓𝑓(𝑥𝑥𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

𝑚𝑚

𝑖𝑖=1
𝑥𝑥𝑖𝑖  

 

∑[𝑎𝑎𝑜𝑜 + 𝑎𝑎1 𝑥𝑥𝑖𝑖 + 𝑎𝑎2 𝑥𝑥𝑖𝑖
2 + ⋯ + 𝑎𝑎𝑛𝑛 𝑥𝑥𝑖𝑖

𝑛𝑛 − 𝑓𝑓(𝑥𝑥𝑖𝑖)]2 = 0
𝑚𝑚

𝑖𝑖=1
 

 

𝑚𝑚𝑎𝑎0     +      𝑎𝑎1∑𝑥𝑥     +       𝑎𝑎2∑𝑥𝑥2   + ⋯ +   𝑎𝑎𝑛𝑛∑𝑥𝑥𝑛𝑛 = ∑𝑦𝑦 
𝑎𝑎0∑𝑥𝑥  +  𝑎𝑎1∑𝑥𝑥2   +   𝑎𝑎2∑𝑥𝑥3   + ⋯ +   𝑎𝑎𝑛𝑛∑𝑥𝑥𝑛𝑛+1 = ∑𝑥𝑥𝑥𝑥 
𝑎𝑎0∑𝑥𝑥2   +   𝑎𝑎1∑𝑥𝑥3   +   𝑎𝑎2∑𝑥𝑥4   + ⋯ +   𝑎𝑎𝑛𝑛∑𝑥𝑥𝑛𝑛+2 = ∑𝑥𝑥2𝑦𝑦 
𝑎𝑎0∑𝑥𝑥𝑛𝑛 + 𝑎𝑎1∑𝑥𝑥𝑛𝑛+1 + 𝑎𝑎2∑𝑥𝑥𝑛𝑛+2 + ⋯ + 𝑎𝑎𝑛𝑛∑𝑥𝑥𝑛𝑛+𝑛𝑛 = ∑𝑥𝑥𝑛𝑛𝑦𝑦 
 

When solving, the first degree polynomial is found: p(x)=ao+ a1x

In the present investigation, a good fit was not obtained with a first-degree polynomial; the same polynomial 
regression method was used until a polynomial of degree, n, for example, was reached. The procedure is based 
on minimizing the function:
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𝑚𝑚𝑎𝑎0 +  𝑎𝑎1 ∑ 𝑥𝑥𝑖𝑖 =  ∑ 𝑓𝑓(𝑥𝑥𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

𝑚𝑚

𝑖𝑖=1
 

𝑎𝑎0 ∑ 𝑓𝑓(𝑥𝑥𝑖𝑖)
𝑚𝑚

𝑖𝑖=1
+  𝑎𝑎1 ∑ 𝑥𝑥𝑖𝑖

2 =  ∑ 𝑓𝑓(𝑥𝑥𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

𝑚𝑚

𝑖𝑖=1
𝑥𝑥𝑖𝑖  

 

∑[𝑎𝑎𝑜𝑜 + 𝑎𝑎1 𝑥𝑥𝑖𝑖 + 𝑎𝑎2 𝑥𝑥𝑖𝑖
2 + ⋯ + 𝑎𝑎𝑛𝑛 𝑥𝑥𝑖𝑖

𝑛𝑛 − 𝑓𝑓(𝑥𝑥𝑖𝑖)]2 = 0
𝑚𝑚

𝑖𝑖=1
 

 

𝑚𝑚𝑎𝑎0     +      𝑎𝑎1∑𝑥𝑥     +       𝑎𝑎2∑𝑥𝑥2   + ⋯ +   𝑎𝑎𝑛𝑛∑𝑥𝑥𝑛𝑛 = ∑𝑦𝑦 
𝑎𝑎0∑𝑥𝑥  +  𝑎𝑎1∑𝑥𝑥2   +   𝑎𝑎2∑𝑥𝑥3   + ⋯ +   𝑎𝑎𝑛𝑛∑𝑥𝑥𝑛𝑛+1 = ∑𝑥𝑥𝑥𝑥 
𝑎𝑎0∑𝑥𝑥2   +   𝑎𝑎1∑𝑥𝑥3   +   𝑎𝑎2∑𝑥𝑥4   + ⋯ +   𝑎𝑎𝑛𝑛∑𝑥𝑥𝑛𝑛+2 = ∑𝑥𝑥2𝑦𝑦 
𝑎𝑎0∑𝑥𝑥𝑛𝑛 + 𝑎𝑎1∑𝑥𝑥𝑛𝑛+1 + 𝑎𝑎2∑𝑥𝑥𝑛𝑛+2 + ⋯ + 𝑎𝑎𝑛𝑛∑𝑥𝑥𝑛𝑛+𝑛𝑛 = ∑𝑥𝑥𝑛𝑛𝑦𝑦 
 

If we partially differentiate with respect to the coefficients with , and set each of the derivatives equal to 
zero, we obtain the following system of equations.

𝑚𝑚𝑎𝑎0 +  𝑎𝑎1 ∑ 𝑥𝑥𝑖𝑖 =  ∑ 𝑓𝑓(𝑥𝑥𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

𝑚𝑚

𝑖𝑖=1
 

𝑎𝑎0 ∑ 𝑓𝑓(𝑥𝑥𝑖𝑖)
𝑚𝑚

𝑖𝑖=1
+  𝑎𝑎1 ∑ 𝑥𝑥𝑖𝑖

2 =  ∑ 𝑓𝑓(𝑥𝑥𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

𝑚𝑚

𝑖𝑖=1
𝑥𝑥𝑖𝑖  

 

∑[𝑎𝑎𝑜𝑜 + 𝑎𝑎1 𝑥𝑥𝑖𝑖 + 𝑎𝑎2 𝑥𝑥𝑖𝑖
2 + ⋯ + 𝑎𝑎𝑛𝑛 𝑥𝑥𝑖𝑖

𝑛𝑛 − 𝑓𝑓(𝑥𝑥𝑖𝑖)]2 = 0
𝑚𝑚

𝑖𝑖=1
 

 

𝑚𝑚𝑎𝑎0     +      𝑎𝑎1∑𝑥𝑥     +       𝑎𝑎2∑𝑥𝑥2   + ⋯ +   𝑎𝑎𝑛𝑛∑𝑥𝑥𝑛𝑛 = ∑𝑦𝑦 
𝑎𝑎0∑𝑥𝑥  +  𝑎𝑎1∑𝑥𝑥2   +   𝑎𝑎2∑𝑥𝑥3   + ⋯ +   𝑎𝑎𝑛𝑛∑𝑥𝑥𝑛𝑛+1 = ∑𝑥𝑥𝑥𝑥 
𝑎𝑎0∑𝑥𝑥2   +   𝑎𝑎1∑𝑥𝑥3   +   𝑎𝑎2∑𝑥𝑥4   + ⋯ +   𝑎𝑎𝑛𝑛∑𝑥𝑥𝑛𝑛+2 = ∑𝑥𝑥2𝑦𝑦 
𝑎𝑎0∑𝑥𝑥𝑛𝑛 + 𝑎𝑎1∑𝑥𝑥𝑛𝑛+1 + 𝑎𝑎2∑𝑥𝑥𝑛𝑛+2 + ⋯ + 𝑎𝑎𝑛𝑛∑𝑥𝑥𝑛𝑛+𝑛𝑛 = ∑𝑥𝑥𝑛𝑛𝑦𝑦 
 

Where the subscripts of the variables and the summations have been omitted to simplify the writing.
In the present investigation, the non-linear analysis was carried out on the time series of active lines, using 

polynomials from n=1 to n=6.

Figure 1. Polynomial adjustment of data in the prepaid modality

Figure 2. Polynomial fit of the post-paid data

The degree of the polynomial was increased, and the best graphical fit was obtained with a degree 6 
polynomial. This analysis was based on the adequacy of the fit to the data, the interpretation of the results, 
and the subsequent analysis of the error, which is indicated below.
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The degree 6 polynomial fit showed a high correlation with the observed data, indicating a good fit of 
the model. The absolute and mean percentage errors were relatively low, suggesting an acceptable accuracy 
between the adjusted and actual values. This accuracy and the good fit were achieved by transforming the data 
to a manageable scale between 0 and 1, which facilitated analysis and comparison without introducing biases 
due to the original magnitudes of the data.

Fit analysis
The table presents the analysis of the polynomial fit of the data. The coefficients obtained from the fit of the 

polynomial model to the different time series of the prepaid and postpaid modalities of the different operators 
are summarized in the following table.

Table 5. Coefficients, correlation and average errors in the prepaid and postpaid modalities

n Prepaid 
-CONECEL

Prepaid 
-OTECEL Prepaid -CNT Post-payment 

-CONECEL
Post-payment 

-OTECEL
Post-payment 

-CNT

a0 0,7652 0,2667 0,036 0,036 0,1663 0,011

a1 -0,5894 0,2236 -0,5954 -0,5954 0,8163 0,6641

a2 22,286 6,984 7,4723 7,4723 -5,0621 -8,5855

a3 -98,698 -35,314 -37,699 -37,699 23,535 40,534

a4 163,27 62,838 85,142 85,142 -41,972 -74,146

a5 -117,31 -48,45 -83,73 -83,73 30,362 58,229

a6 30,961 13,893 29,659 29,659 -7,393 -16,589

R2 0,9349 1 0,9917 0,9917 0,9946 0,944

MAPE 3,84 2,3 13,69 3,42 2,3 12,6

MAE 0,0286 0,008 0,007 0,026 0,008 0,011

MSE 0,002 1,00E-04 8,30E-05 0,001 1,00E-04 3,00E-04

Data analysis shows that the 6th-degree polynomial fit provides a robust model for the time series of prepaid 
and postpaid users for the different operators. The high accuracy of the model is reflected in the low MAPE, 
MAE, and MSE values, as well as in the high values, which suggests that the model is adequate for describing 
and predicting the trends observed in the data.

The coefficients of determination (indicated in the table) are high, which suggests a good fit of the polynomial 
model to the data. These values range from 0,9349 to 1, indicating that the 6th-degree polynomial model can 
explain between 93,49 % and 100 % of the variability in the observed data.

The lower values of the Mean Absolute Percentage Error (MAPE) indicate a higher precision of the model. In 
this study, the values range from 2,3 % to 13,69 %, which suggests that the model has an acceptable percentage 
precision in most time series.

The low ((Mean Absolute Error) MAE indicates a minor difference between the adjusted and actual values. 
The values obtained vary between 0,007 and 0,0286, suggesting a good fit of the model to the data for a 6th-
degree polynomial.

In this indicator, on the other hand, lower values are observed for the MAE (Mean Absolute Error), which 
indicates a smaller difference between the adjusted values and the real values. This suggests a good fit of the 
model to the data, which is also the best fit for a degree 6 polynomial.

The values of the (Mean Squared Error) MSE, which range between 1,00E-04 and 0,002, are relatively low. 
This indicates a smaller discrepancy between the adjusted values and the real values, which again confirms a 
good fit for a degree 6 polynomial.

Return prediction of future data
For the prediction of future values, having the adjustment formulas in terms of the coefficients indicated in 

table 5, we have the formulas that allow us to predict future values. As an example for the operator CONECEL 
in the prepaid payment modality, the adjustment formula is: y=0,7652-0,5894 x+22,286 x2-98,698 x3+163,27 
x4-117,31 x5+30,961 x6.

Predictions obtained using the formulas allow the operator to anticipate future demand for prepaid or 
postpaid services, thus facilitating strategic and operational planning. This includes resource management, 
infrastructure planning, and the development of marketing strategies aimed at satisfying projected demand.
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CONCLUSIONS
This article highlights the importance of effective planning in forecasting the number of users, which 

directly impacts the economic factors for both state-owned and private companies. Time series analysis in 
telecommunications requires robust techniques to detect trends and structural changes in the data. Statistical 
methodologies such as the Mann-Kendall test and the Helmert contrast provide a solid basis for interpreting 
and predicting temporal patterns, facilitating the forecasting of the evolution of the number of internet service 
users.

Data standardization improves comparison and analysis, allowing for accurate evaluation of company 
planning and forecasting, particularly in the case of ARCOTEL and its analysis of telecommunications users. 
Various mathematical models, including curvilinear regressions, have proven fundamental in this process. The 
study results indicate that the 6th-degree polynomial fit adequately represents the time series, evidenced by 
high correlation coefficients that suggest a good fit of the model. The absolute percentage errors and mean 
squares are relatively low, indicating an acceptable precision between the adjusted and actual values.
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