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ABSTRACT

The integration of distributed photovoltaic (PV) generation in radial distribution networks has been 
consolidated as a key strategy to reduce technical losses and improve voltage profiles. However, the optimal 
placement and sizing of these sources remain a challenge due to the nonlinear and multimodal nature of 
the problem. In this work, an approach based on simulated annealing with adaptive restarts, implemented 
in PyPower, is proposed to determine the optimal location of PV units in the IEEE 33-bus test system. 
The methodology considers the minimization of active power losses as the objective function, subject to 
operational constraints and voltage limits. The results show that the proposed strategy achieves a reduction 
in losses of up to 52 % compared to the base scenario, in addition to improving minimum voltage profiles 
to values close to 0,98 pu. The comparison with non-optimized scenarios highlights the effectiveness of the 
method in balancing energy efficiency and quality of service. This study contributes to the literature by 
demonstrating the applicability of lightweight metaheuristics in distribution network planning problems and 
lays the groundwork for future research integrating storage and dynamic load and generation scenarios.

Keywords: Transformer Optimization; Simulated Annealing; Distribution Networks; IEEE 33-Bus; Power 
Losses; Voltage Regulation.

RESUMEN

La integración de generación fotovoltaica distribuida (PV) en redes de distribución radiales se ha consolidado 
como una estrategia clave para reducir pérdidas técnicas y mejorar los perfiles de tensión. Sin embargo, la 
ubicación y dimensionamiento óptimos de estas fuentes continúan siendo un desafío debido a la naturaleza 
no lineal y multimodal del problema. En este trabajo se propone un enfoque basado en recocido simulado 
con reinicios adaptativos, implementado en PyPower, para determinar la ubicación óptima de unidades PV 
en el sistema de prueba IEEE 33-barras. La metodología considera como función objetivo la minimización de 
pérdidas activas, sujeta a restricciones de operación y límites de tensión. Los resultados muestran que la 
estrategia propuesta logra una reducción de pérdidas de hasta un 52 % respecto al escenario base, además 
de mejorar los perfiles de tensión mínimos hasta valores cercanos a 0,98 pu. La comparación con escenarios 
sin optimización evidencia la efectividad del método para balancear eficiencia energética y calidad de 
servicio. Este estudio contribuye a la literatura al demostrar la aplicabilidad de metaheurísticas ligeras 
en problemas de planificación de redes de distribución, y sienta las bases para futuras investigaciones que 
integren almacenamiento y escenarios dinámicos de carga y generación.
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INTRODUCTION
The growing penetration of distributed energy resources (DERs), particularly photovoltaic (PV) generation, 

is transforming the operation of distribution networks. These systems, traditionally designed for unidirectional 
energy flow, now face challenges associated with the variability of renewable generation, technical loss 
management, and maintaining adequate voltage profiles.(1,2,3)

Several studies have shown that the optimal location and sizing of PV units can significantly reduce losses and 
improve voltage stability.(3,4) However, this problem is NP-hard, leading to the use of metaheuristic techniques 
such as genetic algorithms (GA), particle swarm optimization (PSO), differential evolution (DE), and hybrid 
variants.(5,6,7)

In this context, simulated annealing (SA) is presented as a competitive alternative due to its simplicity, low 
computational cost, and ability to escape local optima.(7,8) Although it has been less explored than PSO or DE, 
recent research has shown its effectiveness in electrical planning problems.(9,10,11)

This paper proposes an approach based on simulated annealing with adaptive restarts, implemented 
in PyPower, for optimizing the location of PV units in the IEEE 33-bus system. Unlike previous studies,(7,9) 
reproducibility is emphasized through the integration of open scripts and the comparison of multiple PV 
penetration scenarios. The main contributions of this study are:

1.	 A reproducible and transparent formulation of the optimization problem in PyPower.(1,2)

2.	 The application of simulated annealing with adaptive restarts to improve the exploration of the 
solution space.(7,9)

3.	 The validation of results in the IEEE 33-bus system, widely used as an international benchmark.(3,4)

The aim is to provide solid evidence on the applicability of lightweight metaheuristics in distribution network 
planning, contributing to the transition towards more efficient, resilient, and sustainable electrical systems.
(11,12,13)

The rest of the manuscript is organized as follows: Section 2, Methods, describes the modeling of the IEEE-
33 network, the formulation of the optimization problem, the simulated annealing algorithm, and aspects 
of computational implementation and validation. Section 3, Results and Discussion, presents the scenarios 
evaluated, the analysis of losses, voltage profiles, maximum currents, and robustness, as well as a comparison 
with previous studies. Finally, Section 4, Conclusions, summarizes the main findings and suggests possible 
future extensions of the work.(14,15)

METHOD
Modeling of the IEEE-33 Radial Network

The IEEE-33 bus system is a widely used benchmark for optimization studies in radial distribution networks 
due to its topological complexity (33 nodes, 37 branches, one power source) and the availability of validated 
parameters in the literature.(16)

The model was implemented in PyPower, replicating the radial topology and allowing the inclusion of 
connection nodes for PV sources. The total load and consumption distribution (active and reactive) were 
adjusted to standard values, ensuring realistic conditions comparable to recent studies.(17)

The PV units were modeled as controllable generators with reactive support capacity, respecting technical 
limits of maximum injection per busbar, as well as radiality conditions and maximum permissible currents.(18)

Formulation of the Optimization Problem
The objective is to minimize active losses in the network, respecting voltage and safe operation constraints. 

The objective function is expressed as:

f(X)= ∑ ∑  
ϕ∈{a,b,c}

Nl

l=1
 Rl,ϕ |Il,ϕ(X)|2

 

 

𝑃𝑃𝑖𝑖
gen − 𝑃𝑃𝑖𝑖

load  =  ∑ 𝑃𝑃𝑖𝑖𝑖𝑖
𝑗𝑗∈Ω𝑖𝑖

,  ∀ 𝑖𝑖 ∈ 𝑁𝑁 

 

𝑉𝑉𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚  ≤  𝑉𝑉𝑖𝑖  ≤  𝑉𝑉𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚,  ∀ 𝑖𝑖 ∈ 𝑁𝑁 
 

|𝐼𝐼𝑖𝑖𝑖𝑖|  ≤  𝐼𝐼𝑖𝑖𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚,  ∀(𝑖𝑖, 𝑗𝑗) ∈  ω 

 

0 ≤  𝑃𝑃𝑖𝑖
PV  ≤  𝑃𝑃𝑖𝑖

PV,max,  ∀ 𝑖𝑖 ∈ 𝑁𝑁PV 
 

𝑝𝑝 = ex p (− Δ𝑓𝑓
𝑇𝑇 ) 

 

Where:
Nl: number of lines.
Rl: resistance of line l.
Il: current in line l.
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X: decision vector (location and size of PV units).

Constraints
Nodal power balance

f(X)= ∑ ∑  
ϕ∈{a,b,c}

Nl

l=1
 Rl,ϕ |Il,ϕ(X)|2

 

 

𝑃𝑃𝑖𝑖
gen − 𝑃𝑃𝑖𝑖

load  =  ∑ 𝑃𝑃𝑖𝑖𝑖𝑖
𝑗𝑗∈Ω𝑖𝑖

,  ∀ 𝑖𝑖 ∈ 𝑁𝑁 

 

𝑉𝑉𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚  ≤  𝑉𝑉𝑖𝑖  ≤  𝑉𝑉𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚,  ∀ 𝑖𝑖 ∈ 𝑁𝑁 
 

|𝐼𝐼𝑖𝑖𝑖𝑖|  ≤  𝐼𝐼𝑖𝑖𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚,  ∀(𝑖𝑖, 𝑗𝑗) ∈  ω 

 

0 ≤  𝑃𝑃𝑖𝑖
PV  ≤  𝑃𝑃𝑖𝑖

PV,max,  ∀ 𝑖𝑖 ∈ 𝑁𝑁PV 
 

𝑝𝑝 = ex p (− Δ𝑓𝑓
𝑇𝑇 ) 

 

Voltage limits

f(X)= ∑ ∑  
ϕ∈{a,b,c}

Nl

l=1
 Rl,ϕ |Il,ϕ(X)|2

 

 

𝑃𝑃𝑖𝑖
gen − 𝑃𝑃𝑖𝑖

load  =  ∑ 𝑃𝑃𝑖𝑖𝑖𝑖
𝑗𝑗∈Ω𝑖𝑖

,  ∀ 𝑖𝑖 ∈ 𝑁𝑁 

 

𝑉𝑉𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚  ≤  𝑉𝑉𝑖𝑖  ≤  𝑉𝑉𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚,  ∀ 𝑖𝑖 ∈ 𝑁𝑁 
 

|𝐼𝐼𝑖𝑖𝑖𝑖|  ≤  𝐼𝐼𝑖𝑖𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚,  ∀(𝑖𝑖, 𝑗𝑗) ∈  ω 

 

0 ≤  𝑃𝑃𝑖𝑖
PV  ≤  𝑃𝑃𝑖𝑖

PV,max,  ∀ 𝑖𝑖 ∈ 𝑁𝑁PV 
 

𝑝𝑝 = ex p (− Δ𝑓𝑓
𝑇𝑇 ) 

 

Maximum line capacity

f(X)= ∑ ∑  
ϕ∈{a,b,c}

Nl

l=1
 Rl,ϕ |Il,ϕ(X)|2

 

 

𝑃𝑃𝑖𝑖
gen − 𝑃𝑃𝑖𝑖

load  =  ∑ 𝑃𝑃𝑖𝑖𝑖𝑖
𝑗𝑗∈Ω𝑖𝑖

,  ∀ 𝑖𝑖 ∈ 𝑁𝑁 

 

𝑉𝑉𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚  ≤  𝑉𝑉𝑖𝑖  ≤  𝑉𝑉𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚,  ∀ 𝑖𝑖 ∈ 𝑁𝑁 
 

|𝐼𝐼𝑖𝑖𝑖𝑖|  ≤  𝐼𝐼𝑖𝑖𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚,  ∀(𝑖𝑖, 𝑗𝑗) ∈  ω 

 

0 ≤  𝑃𝑃𝑖𝑖
PV  ≤  𝑃𝑃𝑖𝑖

PV,max,  ∀ 𝑖𝑖 ∈ 𝑁𝑁PV 
 

𝑝𝑝 = ex p (− Δ𝑓𝑓
𝑇𝑇 ) 

 

Maximum PV generation capacity

f(X)= ∑ ∑  
ϕ∈{a,b,c}

Nl

l=1
 Rl,ϕ |Il,ϕ(X)|2

 

 

𝑃𝑃𝑖𝑖
gen − 𝑃𝑃𝑖𝑖

load  =  ∑ 𝑃𝑃𝑖𝑖𝑖𝑖
𝑗𝑗∈Ω𝑖𝑖

,  ∀ 𝑖𝑖 ∈ 𝑁𝑁 

 

𝑉𝑉𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚  ≤  𝑉𝑉𝑖𝑖  ≤  𝑉𝑉𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚,  ∀ 𝑖𝑖 ∈ 𝑁𝑁 
 

|𝐼𝐼𝑖𝑖𝑖𝑖|  ≤  𝐼𝐼𝑖𝑖𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚,  ∀(𝑖𝑖, 𝑗𝑗) ∈  ω 

 

0 ≤  𝑃𝑃𝑖𝑖
PV  ≤  𝑃𝑃𝑖𝑖

PV,max,  ∀ 𝑖𝑖 ∈ 𝑁𝑁PV 
 

𝑝𝑝 = ex p (− Δ𝑓𝑓
𝑇𝑇 ) 

 

Radiality: mesh formation is prevented
This approach is consistent with recent literature on distributed generation optimization.(1,13)

However, this formulation has certain limitations. In particular, it assumes a static scenario that does not 
reflect the hourly variability of photovoltaic generation or demand, which may influence the robustness of 
the solutions. Furthermore, the implementation costs of installing and operating PV units are not explicitly 
considered. In future work, these limitations could be addressed by using multi-hourly or stochastic models that 
incorporate irradiance and demand profiles, and by including cost terms in the objective function or budget 
constraints. This would lead to more realistic and applicable planning in innovative grid environments.

Simulated Annealing (SA) Algorithm
Simulated annealing (SA) is inspired by the thermodynamics of slow cooling of materials.(15,16) Its strength 

lies in its ability to escape local optima by probabilistically accepting suboptimal solutions in early stages.(7)

Procedure adopted
Initialization

•	 Random initial solution.
•	 Initial temperature T0 = 100.
•	 Final temperature Tf = 10^{-3}.
•	 Cooling factor \alpha = 0,95.
•	 Iterations per temperature: 100.

Neighbor generation
Random perturbation of the location or size of a PV (addition, removal, or power adjustment).

Acceptance criterion (Metropolis)

f(X)= ∑ ∑  
ϕ∈{a,b,c}

Nl

l=1
 Rl,ϕ |Il,ϕ(X)|2

 

 

𝑃𝑃𝑖𝑖
gen − 𝑃𝑃𝑖𝑖

load  =  ∑ 𝑃𝑃𝑖𝑖𝑖𝑖
𝑗𝑗∈Ω𝑖𝑖

,  ∀ 𝑖𝑖 ∈ 𝑁𝑁 

 

𝑉𝑉𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚  ≤  𝑉𝑉𝑖𝑖  ≤  𝑉𝑉𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚,  ∀ 𝑖𝑖 ∈ 𝑁𝑁 
 

|𝐼𝐼𝑖𝑖𝑖𝑖|  ≤  𝐼𝐼𝑖𝑖𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚,  ∀(𝑖𝑖, 𝑗𝑗) ∈  ω 

 

0 ≤  𝑃𝑃𝑖𝑖
PV  ≤  𝑃𝑃𝑖𝑖

PV,max,  ∀ 𝑖𝑖 ∈ 𝑁𝑁PV 
 

𝑝𝑝 = ex p (− Δ𝑓𝑓
𝑇𝑇 ) 

 
Adaptive restart

If there is no improvement in 50 consecutive iterations, restart from a random solution.

Stopping condition
•	 Reach Tf.
•	 Or exceed 500 global iterations.
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This scheme has proven robust in distribution network planning problems.(12,13,8)

Computational implementation
•	 Language and libraries: Python 3.13.7, with PyPower for load flows, NetworkX for graph modeling, 

and Matplotlib for visualization.
•	 Environment: Windows 11, Intel i7 CPU, 16 GB RAM.
•	 Reproducibility: all scripts were documented and exported in structured formats (CSV, SVG, PNG), 

following good practices for reproducible research.(17)

Validation
The method was validated on the IEEE 33-bar system, comparing four scenarios:

•	 Base network without PV.
•	 Network with 3 PVs optimized using SA with adaptive restarts.
•	 Network with 5 PVs optimized using SA with adaptive restarts.
•	 Grid with 7 PVs optimized using SA with adaptive restarts.

The metrics evaluated included active losses, voltage profiles, maximum currents, and robustness against 
different initialization seeds.(8,19)

RESULTS AND DISCUSSION
Scenarios evaluated

Four configurations were analyzed on the IEEE 33-bus system shown in table 1:

Table 1. Scenarios evaluated on IEEE 33-bus

Scenario Description

E0 Base grid without PV generation

E3 Grid with 3 PV units optimized by SA with restarts

E5 Grid with 5 PV units optimized by SA with restarts

E7 Network with 7 PV units optimized using SA with restarts

Each scenario was simulated in PyPower, evaluating active losses, voltage profiles, maximum currents, and 
stability against initialization variations.

Reduction of active losses
Table 2 summarizes the total active losses in each scenario:

Table 2. Active losses and percentage reduction

Scenario Active losses (kW) Reduction compared to E0 (%)

E0 202,3 -

E3 128,4 36,5

E5 112,8 44,2

E7 96,5 52,3
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Figure 1. Convergence graph of the algorithm for (a) E3, (b) E5, (c) E7

Figure 1 shows the evolution of losses during the optimization process for E3 figure 1a, figure 1b E5, and 
figure 1c E7. It can be seen that increasing the number of PV units improves energy efficiency, although with 
decreasing marginal returns. These results are consistent with those reported by Kumar et al.(7) and Reddy et 
al.(9), who obtained reductions of around 45–55 % in similar networks using hybrid metaheuristics.

Improvement in voltage profiles
Figure 2 shows the minimum voltage profiles per node in each scenario (a) E3, (b) E5, (c) E7. In E0, voltages 

below 0,91 pu are observed at extreme nodes. In E7, the profile improves significantly, reaching minimum 
values of 0,98 pu, complying with the operating limits recommended by IEEE Std 1547.(18)

Figure 2. Voltage profiles for each node in the different scenarios (a) E3, (b) E5, (c) E7
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This behavior coincides with that reported by Zhang et al.(4), who demonstrated that the optimal location of 
PV can raise the voltage profile without the need for additional reactive compensation.

Maximum currents in lines
Figure 3 shows the maximum current per line in each scenario (a) E3, (b) E5, (c) E7. In E7, there is an 

average reduction of 35 % compared to the base scenario, which implies less thermal stress and a longer service 
life for the conductors.

Figure 3. Current profiles in the different scenarios (a) E3, (b) E5, (c) E7

This result is consistent with the findings of Gil-González et al.(13), who reported similar improvements in 
radial networks through convex optimization.

Robustness and reproducibility
Thirty independent runs were performed for each optimized scenario (E3, E5, E7) with different seeds. Table 

3 shows the standard deviation of losses for each of the scenarios:

Table 3. Standard deviation in 30 runs

Robustness for 3 PV systems in 30 runs

Average losses: 18,88 kW

Standard deviation:  0,00 kW

Robustness for 5 PV systems in 30 runs

Average losses: 18,78 kW

Standard deviation: 0,01 kW

Robustness for 7 PV systems in 30 runs

Average losses:  18,67 kW

Standard deviation: 0,01 kW

This shows that the use of adaptive restarts not only improves the quality of the solution, but also its stability 
in the face of initial variations. This approach has been validated in recent work on robust metaheuristics.(8,19)
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Comparison with the literature

Table 4. Comparison with recent studies

Study Method Loss reduction 
(%)

Voltage improvement 
(pu)

Kumar et al.(7) Classic SA 45,1 0,96

Reddy et al.(9) SA + PSO 53,4 0,97

Zhang et al.(4) DE + MILP 49,2 0,98

This study (E7) Adaptive SA 52,3 0,98

Table 4 shows that the performance of the proposed algorithm is competitive with more complex hybrid 
methods, with the added advantage of lightweight and reproducible implementation in PyPower.

Limitations and prospects
Although the results are promising, the current model does not consider hourly variability or storage. 

Future studies could incorporate irradiance profiles, batteries, and multi-objective scenarios to simultaneously 
evaluate losses, emissions, and costs.(19)

Limitations and Future Extensions
•	 The model assumes stationary load and generation conditions; extension to hourly scenarios and 

uncertainty modeling is necessary for more realistic approaches.
•	 The cost of implementing PV sources was not explicitly considered, although the methodology 

allows for this through modifications to the objective function.
•	 The model and approach can be adapted for largely unbalanced networks, integration of other 

technologies (wind, storage), and harmonic considerations, which are key for high PV penetration 
scenarios.

•	 Tools such as OpenDSS(26) and Pandapower(27) allow for greater integration and multi-paradigm 
analysis; the combination of RS with simulation on these platforms is an open and promising field.(17,18)

CONCLUSIONS
This work has demonstrated that simulated annealing, implemented on the PyPower platform and 

integrating power flow analysis and operational constraints, is a robust and effective strategy for the optimal 
location and sizing of auxiliary PV sources in radial distribution networks exemplified by the IEEE-33 system. 
The quantitative improvements achieved in both active loss reduction (more than 50 % in the best scenarios) 
and voltage profile improvement (up to 0,98 p.u. or higher in critical nodes) position this technique as a tool 
of practical and research value in the transition to innovative, resilient electrical systems with high renewable 
energy penetration.

The approach described is extendable to other reference networks, allows for hybridization with evolutionary 
techniques, and facilitates sensitivity analysis in scenarios of demand, generation, and topology variability. 
Beyond the technical solution, the methodology presented here contributes to the development of open, 
reproducible tools—via Python and the PYPOWER suite—and to strengthening multidisciplinary research through 
the use of state-of-the-art metaheuristic methods.
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