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ABSTRACT

The biocomposite made from a nonwoven abaca fiber reinforced with acrylic resin is proposed as an
ecological alternative to synthetic leather. The objective of this research was to develop and characterize
the material, evaluating the effect of two variables: the length of the abaca fiber (2 cm and 5 cm) and
the concentration of acrylic resin (70 % and 80 %). The manufacturing process consisted of immersing the
nonwoven fabric in the resin solution, followed by drying at 120°C. A completely randomized 2? factorial
design was implemented, with a total of 20 experimental runs. The response variables were tensile strength
and elongation, evaluated using a Titan 5 James Heal dynamometer under ISO 1421. Statistical analysis was
performed using Statgraphics Centurion software and revealed that fiber length has a significant positive
effect on tensile strength, while elongation is less relevant. The results obtained with 5 cm fibers and 70 %
acrylic resin achieved a tensile strength of 118,3 N; in terms of elongation, the value obtained was 50,2 mm
with 2 cm fibers and 70 % resin. Taken together, these findings position vegetable leather as a functional and
sustainable material with high potential for application in the textile and composite materials industries.

Keywords: Abaca; Biocomposite; Nonwoven; Elongation; Tensile Strength.
RESUMEN

El biocompuesto elaborado a partir de un no tejido de fibra de abaca reforzado con resina acrilica, se
propone como alternativa ecologica al cuero sintético. Esta investigacion tuvo como objetivo desarrollar
y caracterizar el material, evaluando el efecto de dos variables: la longitud de la fibra de abaca (2 cmy 5
cm) y la concentracion de resina acrilica (70 % y 80 %). El proceso de elaboracion consistio en la inmersion
del no tejido en la solucion de resina, seguido de un secado a 120°C. Se implementé un disefo factorial 22
completamente aleatorizado, con un total de 20 corridas experimentales. Las variables respuesta fueron
la resistencia a la traccion y la elongacion, evaluadas mediante un dinamometro Titan 5 James Heal bajo
la norma ISO 1421. El analisis estadistico se realiza con el software Statgraphics Centurion, y revel6o que
la longitud de fibra tiene un efecto positivo significativo sobre la resistencia a la traccion, mientras que la
elongacion es menos relevante. Los resultados obtenidos con las fibras de 5 cm y 70 % de resina acrilica,
logrando una resistencia a la traccion de 118,3 N; en cuanto a la elongacion, el valor obtenido fue de 50,2
mm con fibras de 2 cm y 70 % de resina. En conjunto, estos hallazgos posicionan al cuero vegetal como un
material funcional y sustentable, con alto potencial de aplicacion en la industria textil y de materiales
compuestos.

Palabras clave: Abaca; Biocompuesto; no Tejido; Elongacion; Resistencia a la Traccion.
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INTRODUCCION

Todos los bienes de consumo, incluida la moda, demandan el uso intensivo de recursos, y este sector afronta
retos de sostenibilidad sin precedentes: para 2030 se proyecta que su consumo de agua incremente un 50 %,
hasta 118 000 millones de m3; su huella de carbono alcance 2791 millones de toneladas de COz; y los residuos
generados superen los 148 millones de toneladas.®

El cuero animal se deriva de la piel de los animales y ha sido ampliamente valorado por sus propiedades como:
resistencia, durabilidad y biocompatibilidad, con aplicaciones que van desde la moda hasta la biomedicina.
@ La piel animal se somete a una serie de tratamientos denominados curtido, se obtiene un material suave.
La produccion y el procesamiento generan residuos sélidos, liquidos y gaseosos que representan un problema
ambiental. Los efluentes se consideran con un alto contenido de cromo (Cr), sales grasas, sulfuro y compuestos
organicos volatiles. Ademas, la industria del curtido se caracteriza por un alto consumo de agua, energia y
enfrenta retos de sostenibilidad.® El cuero animal, pese a ser biodegradable y rico en colageno, su curtido
convencional requiere el uso de Cr y glutaraldehido,® el Cr(lll) prevalece en el curtido por su estabilidad
hidrotermal y excelentes propiedades fisicas, su uso genera subproductos peligrosos como oxianiones de
cromato y sales de Cr(VI), que representan un grave riesgo ambiental.® La preocupacion por la toxicidad del Cr
hexavalente en productos de cuero ha llevado al desarrollo de métodos analiticos mas sostenibles y accesibles,
como la colorimetria asistida por smartphones. Estas innovaciones evidencian la urgencia de reemplazar el
curtido con Cr por alternativas libres de metales.® El uso de agentes de curtido convencionales, como el Cr,
puede alterar las propiedades quimicas originales de las pieles, afectando incluso métodos cientificos como la
trazabilidad isotopica.” El cuero, sometido a largo plazo en ambientes hiimedos y anoxicos, pierde taninos y
lipidos, degradando su colageno.®

Ante los impactos ambientales del curtido con Cr, la industria del cuero explora alternativas sostenibles
como los taninos vegetales, que han demostrado buen desempeno técnico con menor toxicidad,® los taninos
vegetales y los derivados de 1,3,5-triazina, que ofrecen procesos mas limpios y eficiente.®') Los taninos
vegetales utilizados como curtientes ecoldgicos, suelen oscurecer el cuero y aumentar significativamente la
carga organica de los efluentes,'? los taninos de castano y quebracho elimina moléculas pequeias y no taninicas,
dando lugar a fracciones que tifien el cuero en tonos mas claros y disminuyen la carga organica de los efluentes
enun 13,5%y 19,1 %, respectivamente. > Ademas, la corteza de Syzygium cumini (L.) como posible fuente de
taninos para curtido, mide su contenido total de polifenoles y la proporcion taninos/no taninos.® Ademas, la
hoja de neem como agente curtiente renovable y eficaz, capaz de sustituir al Cr y taninos convencionales, y de
impulsar un curtido ecoldgico y sostenible."» A su vez la hoja de Azadirachta demuestra ser un agente curtiente
renovable, produciendo un cuero verde con excelentes propiedades mecanicas, buena adhesion de pelicula y
actividad antimicrobiana, validando su reemplazo del Cr y tanicos importados. %

La industria de la moda busca alternativas sostenibles al cuero animal, desarrollando materiales como
biocompuestos derivados de residuos agroindustriales y microbianos, los cuales presentan propiedades
mecanicas competitivas y reducen el uso de recursos no renovables,'® Estos estudios revelan atributos como
durabilidad, estética y alineacion con valores ecoldgicos que influyen en su aceptacion.” Para reducir el
impacto ambiental del curtido, la comunidad cientifica ha investigado algunas fuentes comunes de biocuero
como: el latex natural, la pifa, los hongos, las medusas y la celulosa bacteriana,™ las pieles de trucha, un
abundante subproducto acuicola, como fuente para un cuero ecoldgico de alto rendimiento."® De igual manera
investigadores ha presentado un innovador material similar al cuero, llamado BC-BioLeath (Cuero Bio a Base de
Celulosa Bacteriana), demuestra que la celulosa bacteriana, combinada con residuos agroindustriales y procesos
de curtido convencionales, puede generar un biocuero de alto rendimiento y coste competitivo, ofreciendo una
solucion verdaderamente circular y sostenible al sector de la moda."29 Al transformar residuos agroalimentarios
como: residuos de café, bagazo de cana, cascaras de platano y pitahaya en biocuero mediante hidrogeles de
alginato-calcio con glicerol y aceite vegetal, seguido de un secado a 50°C, el biocuero de bagazo de cana
alcanzo la mayor elongacion (29 %) y una resistencia a la traccion 176 N, los biocompuestos se biodegradaron
por completo en 21 dias.®" A su vez, los materiales derivados de micelio han ganado atencion como alternativas
biodegradables al cuero sintético, aunque su escalabilidad y estandarizacion aln representan desafios.?? Los
cueros veganos a base de gel, estan elaborados con polimeros naturales y sintéticos, presentan una limitada
resistencia mecanica y requieren mejoras mediante compuestos hibridos, nanotecnologia y procesos sostenibles
para su viabilidad comercial.®

La industria del cuero convencional enfrenta criticas por su impacto ambiental, social y ético, en respuesta a
ello se han realizado estudio con materiales como el micelio fungico han surgido como alternativas sostenibles,
aunque aun presentan desafios técnicos.?? Como alternativa sostenible al cuero se vegano se elabor6 un
biocompuesto fungico multicapa de biomasa de hongos cultivada con residuos de pan se curtié con taninos
vegetales, se formaron laminas tratadas con glicerol y aglutinante, logrando resistencia de 20,5 MPa y 14,8
% de elongacion y, con rendimiento cercano al cuero natural.?® Los cueros veganos elaborados a partir de
cultivos simbidticos de bacterias y levaduras (SCOBY) han mostrado potencial sostenible, aunque auln presentan
limitaciones en cuanto a rendimiento y estandarizacion.®) Estudios recientes han evaluado diferentes sustratos
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vegetales como mezclas de té negro y verde como las mas eficientes en la produccion de celulosa microbiana.
2% Para la elaboracion del cuero vegano a base de yute y micelio se realiz6 a partir de residuos de té negro,
se aisld una cepa de Bacillus subtilis para producir el biopolimero PHA, utilizado como agente reticulante. Los
analisis funcionales y mecanicos evidenciaron mejoras en la resistencia, interconexion del micelio y estabilidad
térmica, demostradas mediante SEM y FTIR. Aunque el WVP fue ligeramente inferior al del cuero convencional,
las propiedades generales posicionan este material como un sustituto prometedor frente al cuero sintético y
animal, con potencial para contribuir a la economia circular.?” A pesar del auge del cuero vegano, permanece
sin explorar de forma sistematica la incorporacion de objetos electronicos como componentes de diseno, lo
que limita tanto la diversificacion de texturas y acabados sostenibles como la valorizacion creativa de e-waste
en la moda ecoldgica.®®

La comunidad cientifica demuestra que el cuero sintético de fibra superfina presenta baja transpirabilidad
y escasa sostenibilidad por su origen petroquimicon.®’ Ademas, estudios recientes en movilidad personal han
mostrado que el cuero sintético, cominmente utilizado en prendas como trajes de motociclista, sufre una notable
pérdida de resistencia a la traccion tras la exposicion prolongada a condiciones exteriores. Esta degradacion,
asociada principalmente a la radiacion ultravioleta que afecta la durabilidad del material, especialmente en
su capa superficial de poliuretano.®® Un estudio reciente desarrollé poliésteres biodegradables reforzados con
enlaces de hidrogeno, que aplicados como recubrimiento sobre tejidos de micelio mostraron alta resistencia
mecanica, buena textura y mas del 60 % de biodegradacion. Estos materiales ofrecen un menor impacto
ambiental y se perfilan como una alternativa sostenible y eficiente al cuero convencional.®" El presente
estudio tiene como objetivo elaborar un biocompuesto a partir de fibras de abaca y resina acrilica, y evaluar
la resistencia a la traccion y elongacion, peso y espesor, considerando su potencial como sustituto funcional y
sostenible frente al cuero animal y sintético.

METODO

Diseno Experimental: se realizé un disefio factorial multinivel 22 con dos factores y dos niveles en cada
factor, con un total de 20 tratamientos. El disefio se ejecutdé en 5 bloques. El orden de los experimentos es
completamente aleatorizado. Los grados de libertad para el error se establecen en 12. Las variables respuesta
son: Resistencia a la traccion y elongacion, espesor y como factores de estudio se definen: la longitud de fibra
de abaca 2 y 5 cm, la resina acrilica al 70 y 80 %, para el analisis se utiliza el software estadistico STATGRAPHICS
Centurion Version 16.1.18.

El biocompuesto fue elaborado en el laboratorio de la Carrera de Textiles de la Universidad Técnica del
Norte a partir de fibras de abaca de la variedad Bungalandn, latex natural como aglutinante y resina acrilica.
Para su elaboracion se llevo a cabo mediante una secuencia de etapas experimentales: 1. Las fibras de abaca
fueron sometidas a un proceso de tratamiento previo en una solucién anidnica (2 cm3/L, relacion de bafo 1:20)
a 40 °C durante 20 minutos, con el fin de eliminar impurezas que pudieran afectar a la adhesion y cohesion
del material. Posteriormente, se enjuagaron con agua y se secaron bajo sombra. 2. Para la formacion del no
tejido las fibras tratadas fueron cortadas en 2 y 5 cm, se dispusieron manualmente de manera homogénea sobre
una superficie plana para formar una capa uniforme. Posteriormente, esta manta o no tejido se pulverizo el
10 % de latex natural, aplicada desde una distancia de 30 cm, el material se dejé secar durante 60 minutos a
temperatura ambiente, obteniéndose un peso de 30 g/m?2, mediante el procedimiento de la Norma ISO 3801:1977
— Textiles — Determinacion de la masa por unidad de area (gramaje) y espesor con el equipo especimetro de
Lama Norma ISO 2589:2016 - Cuero — Determinacion del espesor. 3. A continuacion, el no tejido se impregnd
con resina acrilica al 70 % y 80 % en peso, asegurando una cobertura uniforme. Las muestras obtenidas se
secaron a 90°C, para favorecer la reticulacion de la resina y mejorar la integridad estructural y el acabado
superficial, proporcionando un peso de aproximadamente 13 g/cm? en el biocompuesto. El material resultante
presento flexibilidad y cohesion interna comparables a un cuero sintético. Este proceso se explica en la figura 1.
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Figura 1. Proceso de elaboracion del biocompuesto
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Pruebas realizadas segun estandares
Las propiedades de resistencia a la traccion y elongacion, peso y espesor del biocompuesto se realizo
mediante las siguientes normas:
e Norma ISO 1421:2016 Tejidos recubiertos de caucho o plastico: determinacion de la resistencia a
la traccion y el alargamiento de rotura.
e Norma ISO 3801:1977 — Textiles — Determinacion de la masa por unidad de area (gramaje).
e 1SO 2589: 2016 IULTCS/IUP 4. Cuero Ensayos fisicos y mecanicos - Determinacion del espesor.

Las muestras obtenidas fueron previamente acondicionadas en el laboratorio en un ambiente controlado
durante 24 horas.®?

Resistencia a la traccion

La resistencia a la traccion y elongacion de las muestras se evaluo segin el procedimiento de la Norma
ISO 1421:2016: Tejidos recubiertos de caucho o plastico: determinacion de la resistencia a la traccion y
el alargamiento de rotura.®® Se elaboraron probetas de 250 mm de largo por 50 mm de ancho, segln el
procedimiento de la norma ISO 1421. Cada muestra se ensay6 en el dinamoémetro textil Titan 5, empleando
las mordazas T27, se aplicé una carga progresiva y una velocidad de traccion de 100 + 10 mm/min hasta
la fractura. Se registraron los valores de la fuerza maxima y la elongacion, lo que permitio cuantificar con
precision el comportamiento mecanico (figura 2a).

Determinacion de la masa

Norma ISO 3801:1977 — Textiles — Determinacion de la masa por unidad de area (gramaje).®4 El gramaje
del biocompuesto se determiné el valor promedio, en la ecuacion 1, segln el procedimiento de la norma,
gue consistio en cortar cinco muestras de las dimensiones de 10 cm x 10 cm, luego se pesaron en la balanza
analitica de precision con sensibilidad de 0,01 g. Esta propiedad permite caracterizar la densidad, (Fig. 2b),
para calcular el gramaje se utilizo la formula:

Ecuacién 1. Gramaje
Gramaje = (Peso de la muestra (g))/ (Aréa de la muestra (cm?))

Determinacién de espesor

ISO 2589: 2016 IULTCS/IUP 4. Cuero Ensayos fisicos y mecanicos - Determinacion del espesor.®® Para
determinar el espesor del biocompuesto segln el procedimiento de la norma ISO 2589:2016, se utilizo el
medidor de espesor con el especimetro de Lama, aplicando una presion constante y perpendicular sobre el area
de contacto. Las mediciones se realizaron en cinco puntos sobre cada muestra. Se registro el valor promedio
de 2,5 mm. Esta propiedad es fundamental para evaluar la uniformidad (Figura 2c).

(a) (b) ()

Figura 2. Proceso de ensayos de la caracterizacion del biocompuesto

RESULTADOS

El disefio experimental 22 empleado considero dos factores de estudio, resistencia a la traccion distribuidos
en cinco bloques. En total se realizaron veinte ensayos para evaluar las variables de respuesta bajo condiciones
aleatorizadas. El analisis de varianza contemplé doce grados de libertad para el término de error, garantizando
una adecuada estimacion de la variabilidad experimental y la fiabilidad de los resultados.

El biocompuesto se realizd con fibra de abaca y resina acrilica, y se sometié a ensayos de resistencia a la
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traccion y elongacion mediante la norma ISO 1421, cuyos resultados se presentan en la tabla 1. En primer
lugar, se observo que las muestras con un 70 % de resina acrilica alcanzaron resistencias a la traccion (117,21-
121,65 N), las de un 80 % de resina (96,46-122,36 N). La mayor resistencia a la traccion registré 122,36 N, que
corresponde a la muestra del Bloque 4 con 80 % de resina y fibras de 5 cm, mientras que la menor resistencia es
de 52,19 N, se midi6 en el Bloque 3 con 80 % de resina acrilica en fibras de 2 cm. La determinacion de la masa
del biocompuesto mediante el procedimiento de la Norma ISO 3801:1977 proporciond el valor promedio de 13
g/cm2. El valor promedio del espesor segun el procedimiento de la norma ISO 2589 es de 2,5 mm.

El analisis del efecto de la longitud de fibra demostro que las fibras de 5 cm prestan una resistencia media
aproximada de 107 N, frente a los aproximadamente 64 N obtenidos con fibras de 2 cm. En cambio, en la
elongacion las fibras de 2 cm proporcionaron datos mas elevados de 61,60 mm en el Bloque 2 (80 % de resina),
mientras que las de 5 cm registraron valores entre 15,34 mm y 43,85 mm. Los resultados demuestran que la
longitud de fibra modifica las propiedades mecanicas y las fibras mas largas incrementan la resistencia a la
traccion, mientras que las mas cortas favorecen una mayor elongacion.

La resistencia a la traccion optima es de 118,308 N con la concentracion de resina acrilica al 70 %, con
la longitud de fibra de abaca de 5 cm, lo que indica que disminuir el contenido de resina incrementa de
manera notable el desempeno mecanico del material. En cambio, el analisis de la elongacion presento el
comportamiento optimo de 50,184 mm con la concentracion de 70 % y longitud de fibra de 2 cm.

Tabla 1. Resultados de resistencia a la traccion y elongacion

Resina Acrilica Longitud Fibra Resistencia Elongacion

Bloque %) (cm) Traccion (N) (mm)
1 70 5 117,21 25,95
1 70 2 64,03 60,81
1 80 5 102,22 41,18
1 80 2 54,92 39,1

9 70 2 64,57 42,87
2 80 5 106,14 31,82
2 70 5 116,57 32,83
9 80 2 56,68 61,6
3 80 2 52,19 32,74
3 70 5 121,38 36,4
3 80 5 104,18 29,64
3 70 2 60,84 52,47
) 70 2 59,83 42,95
4 80 5 122,36 33,57
) 80 2 63,79 43,85
) 70 5 114,73 32,48
. 80 5 96,46 15,34
5 80 2 64,84 56,75
5 70 5 121,65 34,5

5 70 2 67,9 51,82

Fuente: tomado de Zambrano®®

DISCUSION
Analisis de la varianza para la resistencia a la traccion (ANOVA)

Con el objetivo de evaluar el efecto del porcentaje de resina acrilica (A) y la longitud de fibra (B) sobre la
resistencia a la traccion y elongacion del biocompuesto, se aplicoé un analisis de la varianza (ANOVA) bajo un
disefo factorial multinivel.

En la tabla 2, se presenta que el ANOVA evidencio que los factores Ay B tuvieron un efecto significativo
sobre la resistencia a la traccion. De manera significativa, la longitud de fibra (B) mostré un efecto altamente
significativo (F = 322,62; p = 0,0000), indicando que las diferencias observadas entre los niveles de longitud de
fibra de 2 cm y 5 cm son estadisticamente relevantes. Estos resultados afirman que los datos experimentales
coinciden con lo observado en los resultados experimentales, donde una mayor longitud de fibra mejora la
distribucion de carga y la resistencia estructural.
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De la misma manera, el porcentaje de resina acrilica (A) también presenté un efecto estadisticamente
significativo (F = 8,83; p = 0,0117), lo que sugiere que aumentar la concentracion de resina mejora la cohesion
del material, aunque con un efecto menos significativo que el de la longitud de la fibra.

Por otro lado, la interaccion entre ambos factores (AB) no fue significativa (F = 1,54; p = 0,2388), lo cual
indica que los efectos de cada variable actian de manera individual sobre la resistencia a la traccion. De igual
manera, el efecto de los bloques no fue significativo (F = 0,54; p = 0,7064), lo que respalda la homogeneidad
entre las réplicas experimentales y valida la consistencia del diseno del experimento.

El error total fue relativamente bajo en comparacion con la suma de cuadrados explicada por los factores A
y B, lo cual refuerza la validez del modelo. Divide la variabilidad de la resistencia a la traccion en componentes
especificos para cada uno de los efectos analizados. Después, evalla la significancia estadistica de estos efectos
comparando sus cuadrados medios con una estimacion del error experimental. En este analisis, dos efectos
presentan un valor P inferior a 0,05, lo que indica que son significativamente distintos de cero con un nivel de
confianza del 95 %.

Tabla 2. Analisis de Varianza para la Resistencia a la Traccion

Suma de Grados de Cuadrado

A Cuadrados libertad e DR N EES
A: Resina Acrilica 360 655 1 360 655 8,83 0,0117
B: Longitud Fibra Abaca 13 174,4 1 13 174,4 322,62  0,0000
AB 62,7642 1 62,7642 1,54 0,2388
Bloques 88,9502 4 22,2375 0,54 0,7064
Error total 490,028 12 40,8357

Total (corr.) 14 176,8 19

Fuente: tomado de Zambrano©®

R-cuadrado = 96,5434 %

R-cuadrado (ajustado por g.l.) = 94,5271 %
Error estandar del est. = 6,39028

Error absoluto medio = 3,6067

Estadistico Durbin-Watson = 2,1959 (P=0,2710)
Autocorrelacion residual de Lag 1 = -0,110481

El estadistico R-Cuadrado indica que el modelo, asi ajustado, explica 96,5434 % de la variabilidad en
Resistencia Traccion. El estadistico R-cuadrado ajustado, que es mas adecuado para comparar modelos con
diferente nimero de variables independientes, es 94,5271 %. El error estandar del estimado muestra que la
desviacion estandar de los residuos es 6,39028. El error medio absoluto (MAE) de 3,6067 es el valor promedio
de los residuos. El estadistico de Durbin-Watson (DW) prueba los residuos para determinar si hay alguna
correlacion significativa basada en el orden en que se presentan los datos. Puesto que el valor-P es mayor que
5,0 %, no hay indicacion de autocorrelacion serial en los residuos con un nivel de significancia del 5,0 %.

El diagrama de Pareto presentado en la figura 3, evaluo el efecto de la resina acrilica, la longitud de fibra de
abaca y su interaccion sobre la resistencia a la traccion. Los resultados indican que la longitud de la fibra tuvo
un impacto positivo altamente significativo, atribuido a una mayor union y refuerzo estructural en el no tejido.
La concentracion de resina acrilica también presentd un efecto significativo, aunque negativo, posiblemente
por la reduccion de flexibilidad del material. La interaccion entre ambos factores no resulto significativa,
destacando la longitud de fibra como el principal determinante del desempeifio mecanico.

La figura 4, muestra la Superficie de Respuesta Estimada obtenida en el analisis de la resistencia a la traccion
en funcion de dos factores experimentales: la Resina Acrilica y la Longitud de Fibra de Abaca. En el grafico se
representan las interacciones entre estos factores, donde el eje X corresponde a los niveles de resina acrilica,
el eje Y a la longitud de la fibra de abaca, y el eje Z a la resistencia a la traccion medida.

La superficie de respuesta estimada revela que la resistencia se incrementa notablemente con el aumento
de la longitud de la fibra, mostrando una pendiente ascendente pronunciada en esa direccion. En cambio, el
efecto de la resina acrilica es menor, con una pendiente mas suave, aunque estadisticamente significativa.
La superficie generada es casi plana respecto a la interaccion entre ambos factores, lo que confirma su
independencia. En conjunto, estos resultados indican que la longitud de la fibra es el principal factor que
determina el comportamiento mecanico del material, mientras que la resina acta como un modificador
complementario.
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Diagrama de Pareto Estandarizada para Resistencia Traccion
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Efecto estandarizado

Fuente: tomado de Zambrano®®
Figura 3. Diagrama de Pareto estandarizada para la resistencia a la traccion

Superficie de Respuesta Estimada

132F
112
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72}

Resistencia Traccion

52 AR 1 4.5
70

12 74 76 78 80 2 28 ongitud Fibra Abaca
Resina Acrilica

Fuente: tomado de Zambrano®®
Figura 4. Superficie de respuesta estimada para la resistencia a la traccion

Analisis de Varianza para la Elongacion (ANOVA)

Con el proposito de analizar el efecto de la concentracion de resina acrilica (A) y la longitud de fibra de
abaca (B) sobre la elongacion del biocompuesto, se aplicé un modelo estadistico ANOVA de dos factores con
bloques completamente aleatorizados. La tabla 3 resume los resultados del analisis, permitiendo identificar
la influencia estadistica de cada variable sobre la capacidad de deformacion del material antes de la rotura.

Los resultados del ANOVA muestran que la longitud de la fibra de abaca tuvo un efecto estadisticamente
significativo sobre la elongacion (F = 15,14; p = 0,0021). Este hallazgo coincide con la evidencia experimental, en
la cual las muestras con fibras mas cortas (2 cm) presentaron mayor capacidad de deformacion. Esta tendencia
puede atribuirse a una menor rigidez estructural, que facilita el alargamiento del material cuando se somete a
esfuerzos mecanicos. En cambio, el efecto de la concentracion de resina acrilica no fue significativo (F = 0,39;
p = 0,5440), lo que sugiere que dentro del rango analizado (70 % y 80 %), la resina no influy6 en la elongacion
del material. Esto podria deberse a que el refuerzo principal lo proporciona la estructura fibrosa, mientras que
la matriz polimérica actla mas sobre la cohesion y la rigidez que sobre la flexibilidad.

También se observé una interaccion significativa entre ambos factores (F = 0,02; p = 0,8891), lo que indica
que sus efectos son independientes. El analisis adicional de los bloques no mostro diferencias significativas (F
=0,17; p = 0,9499), lo que respalda la homogeneidad del diseno experimental.

Estos resultados permiten concluir que, para optimizar la propiedad de elongacion en el biocompuesto a
base de fibra de abaca, la longitud de fibra es una variable critica, mientras que el porcentaje de resina puede
ser ajustado sin alterar significativamente la capacidad de deformacion del material.
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R-cuadrada = 57,483 %

R-cuadrada (ajustada por g.l.) = 32,6814 %
Error estandar del est. = 9,8426

Error absoluto medio = 6,36245

Estadistico Durbin-Watson = 2,65197 (P=0,6991)
Autocorrelacion residual de Lag 1 = -0,35734

El estadistico R-Cuadrado indica que el modelo, asi ajustado, explica 57,483 % de la variabilidad en
Elongacion. El estadistico R-cuadrado ajustado, que es mas adecuado para comparar modelos con diferente
numero de variables independientes, es 32,6814 %. El error estandar del estimado muestra que la desviacion
estandar de los residuos es 9,8426. El error medio absoluto (MAE) de 6,36245 es el valor promedio de los
residuos. El estadistico de Durbin-Watson (DW) prueba los residuos para determinar si hay alguna correlacion
significativa basada en el orden en que se presentan los datos en el archivo. Puesto que el valor-P es mayor
que 5,0 %, no hay indicacion de autocorrelacion serial en los residuos con un nivel de significancia del 5,0 %.

La figura 5 muestra el analisis de efectos estandarizados para la elongacion del biocompuesto. Se identifico la
longitud de fibra de abaca como el factor mas influyente, con un efecto negativo estadisticamente significativo,
lo que indica que fibras mas largas reducen la elongacion del material, posiblemente por un aumento en
la rigidez estructural. La concentracion de resina acrilica también present6é un efecto negativo, aunque no
significativo. La interaccion entre ambos factores fue irrelevante. En conjunto, se concluye que la elongacion
del material esta determinada principalmente por la longitud de la fibra.

Diagrama de Pareto Estandarizada para Elongacion

'+

B:Longitud Fibra Abaca

A:Resina Acrilica

AB

1 2 3 4
Efecto estandarizado

Fuente: tomado de Zambrano®®
Figura 5. Diagrama de Pareto estandarizad a para la resistencia a la elongacion

La figura 6 presenta la superficie de respuesta estimada para la elongacion del biocompuesto en funcién de
la longitud de fibra de abaca y la concentracion de resina acrilica. La grafica indica una superficie relativamente
plana con una leve disminucion en la elongacion al aumentar la longitud de la fibra, atribuida a una mayor
rigidez estructural. La influencia de la resina acrilica es minima y no produce variaciones significativas. En
conjunto, se confirma que la elongacion es poco sensible a la interaccion de los factores, siendo la longitud de
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la fibra la Unica con un efecto moderadamente negativo. Estos resultados coinciden con el analisis de efectos
estandarizados y refuerzan la idea de que el alargamiento del material esta condicionado principalmente
por su configuracion estructural. A pesar de las variaciones introducidas, la capacidad de deformacion del
biocompuesto se mantiene dentro de rangos funcionales para aplicaciones textiles.

Elongacidn

—— 35

3
% % 80 2 *Longiwd Fibra Abach
Resina Acrilica

Fuente: tomado de Zambrano®®
Figura 6. Superficie de respuesta estimada para la resistencia a la elongacion

CONCLUSIONES

El presente estudio demostro la viabilidad para la elaboracion del biocompuesto a partir de fibra de abaca 'y
resina acrilica, evaluando el efecto de la longitud de fibra de 2 y 5 cm y la concentracion de resina acrilica del
70 % y 80 % sobre las propiedades como la resistencia a la traccion y elongacion. Los resultados demostraron,
que el aumento en la longitud de fibra incrementa significativamente la resistencia a la traccion, mientras
que las fibras mas cortas ayudan a una mayor elongacion, lo que indica un comportamiento mas flexible. La
formulacion de resina acrilica del 70 % y longitud de fibra de 5 cm obtuvo el mejor valor de resistencia a la
traccion.

Este biocompuesto presenta un equilibrio funcional entre sostenibilidad, resistencia mecanica y potencial
de aplicacion en sectores como el disefio, la moda y el calzado. Su elaboracién implica el aprovechamiento de
recursos naturales renovables, como el abaca, y el uso controlado de polimeros sintéticos, lo cual lo posiciona
como una alternativa al cuero animal y al sintético convencional.
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