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ABSTRACT

Traditional urban solid waste management in Latin American cities operates using fixed routes, without 
considering the dynamic state of waste containers. This rigid approach leads to operational inefficiencies, 
excessive fuel consumption, and a significant environmental impact. A distributed architecture was designed 
that integrates HC-SR04 sensors (fill level) and MQ-135 sensors (air quality), connected to Heltec WiFi LoRa 
32 V3 nodes. The captured data is transmitted via LoRa technology to a central gateway and stored in real-
time on Firebase. These data were used to train a Deep Q-Network (DQN) model, developed in PyTorch 
using OpenAI Gym, with an input of 30 parameters (15 containers × 2 variables) and 15 possible actions. 
Training was performed over 1000 epochs with a learning rate of 0,0005 and a discount factor γ = 0,99. 
The model achieved a stable decision policy to dynamically prioritize critical collection points. Compared 
to static routes, there was a 16,4 % reduction in distance traveled, 16,3 % in operational time, and 16,4 
% in fuel consumption. Route planning was complemented by the Dijkstra algorithm and visualized in a 
geospatial interface using the Google Maps API. The system was implemented as a Flask API integrated with 
a hybrid mobile application, allowing real-time visualization of optimized routes and container status. This 
intelligent and scalable solution reduces resource usage, improves urban sustainability, and is well-suited for 
deployment in smart cities.

Keywords: Routing Algorithms; Deep Reinforcement Learning (DQN); LoRa Technology; Smart Cities; Internet 
of Things (IoT).

RESUMEN

La gestión tradicional de residuos sólidos urbanos en ciudades latinoamericanas opera bajo rutas fijas, sin 
considerar el estado dinámico de los contenedores. Este enfoque rígido genera ineficiencias operativas, 
consumo excesivo de combustible y un impacto ambiental significativo. Se diseñó una arquitectura 
distribuida que integra sensores HC-SR04 (nivel de llenado) y MQ-135 (calidad del aire) conectados 
a nodos Heltec WiFi LoRa 32 V3. La información capturada se transmite mediante tecnología LoRa a un 
gateway central, siendo almacenada en tiempo real en Firebase. Los datos fueron utilizados para entrenar 
un modelo Deep Q-Network (DQN), desarrollado en PyTorch sobre OpenAI Gym, con una entrada de 30 
parámetros (15 contenedores × 2 variables) y 15 posibles acciones. El entrenamiento se realizó durante 
1000 épocas con una tasa de aprendizaje de 0,0005 y un factor de descuento γ = 0,99. El modelo logró 
una política de decisión estable para priorizar dinámicamente los puntos críticos de recolección. 
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En comparación con rutas estáticas, se evidenció una reducción del 16,4 % en distancia recorrida, 16,3 % 
en tiempo operativo y 16,4 % en consumo de combustible. La planificación de rutas fue complementada 
mediante el algoritmo de Dijkstra y visualizada en una interfaz geoespacial sobre Google Maps API. El sistema 
fue implementado como una API Flask integrada con una aplicación móvil híbrida, lo que permite visualizar 
en tiempo real las rutas optimizadas y el estado de los contenedores. Esta solución inteligente y escalable 
reduce el uso de recursos, mejora la sostenibilidad urbana y resulta adecuada para su despliegue en ciudades 
inteligentes.

Palabras clave: Algoritmos de Enrutamiento; Aprendizaje por Refuerzo Profundo (DQN); Tecnología LoRa; 
Ciudades Inteligentes; Internet de las Cosas (IoT).

INTRODUCTION
Urbanization has complicated waste management, and traditional fixed-route methods lead to inefficiencies. 

A dynamic routing system is proposed, using real-time analytics and intelligent algorithms to optimize waste 
collection in evolving urban environments.(1) Waste management represents a growing challenge due to 
population growth and the increasing volume of waste generated. Traditional systems, with non-optimized 
routes and inefficient planning, lead to high operational costs and environmental degradation. In response, 
intelligent approaches based on IoT and machine learning have been developed to predict fill levels and 
anticipate future waste generation, enhancing efficiency in smart cities.(2)

Recent assessments show a sustained rise in municipal solid waste (MSW), with global projections increasing 
from ~2,1 billion tonnes in 2023 to ~3,8 billion tonnes by 2050, intensifying environmental and fiscal burdens 
if business-as-usual practices persist. These costs span GHG emissions, air-quality impacts, and biodiversity 
losses, reinforcing the urgency for data-driven, adaptive collection systems in urban settings.(3)

In response to this issue, the integration of intelligent solutions based on emerging technologies such as 
the Internet of Things (IoT), low-power communication networks like LoRa (Long Range), and deep learning 
algorithms is proposed. These technologies enable distributed systems capable of real-time monitoring 
of container status and dynamic optimization of waste collection routes. Within this framework, artificial 
intelligence (AI) offers a highly promising complementary approach, as recent studies indicate it presents new 
opportunities to address the increasing complexity of waste management systems, including collection, sorting, 
recycling, and monitoring.(4) However, to maximize its impact, it is essential to address challenges related to 
data quality, privacy, operational costs, and the ethical frameworks that govern its implementation.

Over the last five years, smart-waste deployments have increasingly adopted IoT with long-range, low-
power networks (LoRa/LoRaWAN) for city-scale bin monitoring, and deep reinforcement learning to cope with 
stochastic, time-varying routing decisions. Field trials confirm LoRaWAN’s suitability for low-throughput sensing 
over large urban areas, while deep RL, particularly DQN, improves decision policies under partial observability 
compared to static graph search alone. Unlike Dijkstra or A* (which assume static, fully known graphs) and 
population-based heuristics (e.g., genetic algorithms), DQN learns a state-value policy directly from interaction, 
capturing delayed rewards and evolving constraints without prescribing fixed cost functions. This motivates our 
choice of LoRa-based sensing coupled with a DQN policy for adaptive container prioritization.(5,6,7,8,9,10)

This project proposes an intelligent architecture combining ultrasonic sensors, LoRa communication, and a 
Deep Q-Network (DQN) model trained in controlled simulations to select and prioritize critical containers. This 
technological integration aims to enhance operational efficiency, reduce environmental impact, and advance 
toward a more sustainable city model.

In Ibarra, solid waste collection is currently managed through fixed routes defined by the local government, 
with separate schedules for urban and rural zones. Collection is performed by conventional collection vehicles 
that follow predetermined paths, regardless of whether containers are full or nearly empty. While certain areas 
have seen improvements like the introduction of waste bins, the system remains largely static and unresponsive 
to actual waste generation patterns. This often results in inefficient routing, unnecessary fuel consumption, 
and operational strain on municipal services.(11)

A solution for urban waste management using LoRaWAN sensors can be assessed by evaluating its performance 
in real-world scenarios. The proposed approach validates the technical feasibility of an LPWAN network to 
monitor fill levels and enhance municipal operational efficiency.(12) In another study, a waste collection system 
based on Deep Reinforcement Learning (DRL) is proposed, utilizing autonomous vehicles and smart containers 
connected via IoT. Using Deep Q-Networks, routes are optimized based on traffic conditions and available 
energy, resulting in significant improvements in operational efficiency and energy consumption.(13)

Building on this approach, the present proposal integrates Deep Q-Networks (DQN) as the core of the 
route optimization system, leveraging data generated by ultrasonic sensors installed in waste containers and 
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transmitted via LoRa technology. Unlike other solutions, this system emphasizes hardware simplicity and 
scalability, enabling dynamic route planning that minimizes unnecessary travel and enhances energy efficiency.

LoRa (Long Range)
LoRa (Long Range) is a wireless communication technology designed to transmit data over long distances 

while consuming minimal energy, making it an ideal choice for Internet of Things (IoT) applications.(14)(1) As 
part of Low Power Wide Area Networks (LPWAN), LoRa enables the connection of distributed devices across 
large areas without the need for costly network infrastructure or high maintenance requirements.

Its structure is based on end devices (sensors or nodes), gateways (communication bridges), and network 
servers that manage data traffic. This modular architecture enables the development of scalable private 
networks, as highlighted in recent studies describing the design and implementation of customized gateways 
and LoRa servers segmented into independent modules for greater operational flexibility. Due to its efficiency, 
low cost, and ease of deployment, LoRa is particularly well-suited for monitoring complex urban environments, 
such as the smart waste collection system proposed in this work.

Source: Croce et al.(15)

Figure 1. LoRa Network Architecture for Long-Range IoT Communication

The architecture consists of end devices that transmit data via LoRa to gateways, which then relay the 
information to the network server through an IP connection. The server manages and centralizes communication, 
enabling an efficient and low-power IoT network.(16)

It operates in unlicensed frequency bands, such as 868 MHz in Europe and 915 MHz in the Americas. Its 
range can exceed 10 km in rural areas and between 2 to 5 km in urban environments. LoRa uses Chirp Spread 
Spectrum modulation, which provides high interference tolerance and ensures robust communication even 
under challenging conditions. It supports low data transmission rates (from 0,3 kbps to 50 kbps), making it 
suitable for sending small data packets.(17) LoRa is highly energy-efficient, allowing devices to operate for years 
on standard batteries. The technology supports bidirectional communication, data encryption, and scalability 
to thousands of nodes within a single network.(18)

This technology was selected for its balance between long-range coverage, low energy consumption, and 
low implementation cost, making it ideal for urban environments like Ibarra. Unlike GSM or Wi-Fi networks, 
LoRa enables the deployment of a dedicated infrastructure without recurring fees, ensuring stable connectivity 
even in areas with limited coverage.(19)

Deep Q-Network (DQN)
Deep Q-Network (DQN) is a deep reinforcement learning approach that combines neural function 

approximation with Q-learning to select the next container to service under dynamic conditions.(20) Its objective 
is to train an agent to make optimal decisions in dynamic environments by maximizing cumulative rewards 
through continuous interaction with the environment.

As shown in figure 2, DQN uses a neural network to estimate action values (Q-values), allowing it to select the 
most appropriate action based on the current state of the environment. The agent learns through experience, 
receiving rewards for actions that move it closer to a goal and penalties for undesirable decisions, such as 
unnecessary movements or collisions.

https://doi.org/10.56294/dm2025829
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Source Jayasekara(21)

Figure 2. Structure of a Deep Q-Network (DQN) in a reinforcement learning environment

An agent observes the state of the environment, processes it through a deep neural network (DNN), and 
takes an action. It then receives a reward and updates its decision-making policy accordingly.(22)

This approach has been successfully applied to complex tasks such as autonomous robot navigation in dynamic 
environments. It is first trained in simulations and then implemented in real-world scenarios, demonstrating 
strong adaptability and real-time optimization capabilities. In the proposed project, this technique is used to 
dynamically select the containers that need to be collected, as shown in figure 3, taking into account factors 
such as fill level and route efficiency.

Figure 3. Comparison between fixed collection route and route optimized through intelligent algorithms

The figure compares two waste collection approaches: on the left, a fixed route that collects all containers 
regardless of their fill level; on the right, an optimized route that only visits containers that actually require 
service.

METHOD
System architecture

The system architecture is composed of four functional layers. In the device layer, ultrasonic sensors installed 
in containers detect fill levels and transmit the data via LoRa nodes. In the network layer, these sensor nodes 
send the information to a gateway using LoRa technology, which then relays it via Wi-Fi to a central database. 
In the application support and services layer, the data is processed and used to train a Deep Q-Network (DQN) 
model that learns to optimize collection routes. In the application layer, the trained model generates efficient 
routes that are displayed through an interface for the operator in charge.

Figure 4. Proposed System Architecture
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This modular architecture implements a distributed data acquisition and transmission infrastructure, 
where ultrasonic sensors connected to LoRa nodes capture the fill levels of waste containers and transmit the 
information via LPWAN links. The data is centralized through a gateway that uses Wi-Fi connectivity to forward 
it to a central database.

Subsequently, a processing pipeline is applied to structure and normalize the data, preparing it for input 
into a deep reinforcement learning model (Deep Q-Network). Trained in a simulated environment, this model 
generates optimal actions for dynamic route planning, and its results are integrated into a graphical interface 
for operational visualization.

Processes
a)	 Data acquisition and preprocessing. Each sensor node samples fill level (HC-SR04) and air-quality 

proxy (MQ-135) and transmits compact payloads via LoRa to the gateway, which relays them over Wi-Fi 
to Firebase. The backend (Flask) retrieves raw records, applies timestamp alignment, outlier filtering (3σ 
rule), min–max normalization to [0,1] per feature, and persists curated batches for training.

b)	 Training pipeline (DQN). The DQN agent learns a policy that prioritizes the next container to 
service from a state that stacks normalized fill and air features for all containers. To ensure stable 
learning in this dynamic, partially observable setting, we use the standard DQN recipe: a target network 
(stabilizes updates), experience replay (decorrelates samples), and a decaying ε-greedy exploration 
policy (balances exploration and exploitation). The resulting policy adapts to changing conditions and 
produces a value-aware prioritization rather than relying on fixed, static costs.

c)	 Inference and route generation. At runtime, the mobile client sends the current state to the Flask 
API. The policy returns the next container; selected containers are masked to avoid repetition and to 
produce a prioritized list. This ordered set feeds a directed road graph (street directionality enforced); 
the shortest path is computed with Dijkstra and rendered on a web map (Google Maps API) for the 
collection vehicle operator.

The diagram in figure 5 outlines the complete system flow, from data collection to the visualization of 
optimized routes.

The stored data is retrieved and preprocessed using Pandas and Numpy, preparing it for model training within 
a simulated environment using OpenAI Gym and PyTorch. In this setup, a Deep Q-Network (DQN) algorithm 
learns to select optimal routes based on the status of the containers.

Once trained, the model is deployed as an API via Flask. Users can access a web interface to request 
the optimal route, which is then generated and displayed using Google Maps API. This system integrates IoT 
technologies, deep learning, and web services to provide a dynamic and efficient waste collection solution.

Figure 5. System Flow Diagram
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Development board
The Heltec WiFi LoRa 32 V3 (HTIT-WB32LA) is a low-power IoT development board that integrates an ESP32-

S3FN8 microcontroller (dual-core, 240 MHz), Wi-Fi and Bluetooth connectivity, and an SX1262 LoRa module for 
long-range communication in the 863–928 MHz frequency range. It features a 0,96” OLED display (128×64), a 
USB Type-C port, a LoRa antenna with IPEX interface, and an integrated 3,7 V battery management system with 
overcharge protection.(23)

Source: Heltec Automation(23)

Figure 6. Components of the Heltec WiFi LoRa 32 V3 development module

Its design is optimized for low power consumption, achieving a receiver sensitivity of up to –134 dBm and a 
maximum transmission power of 21 dBm, making it an ideal solution for LPWAN networks in urban environments.

System design
The sensor node connection is powered by a 3,7 V, 1000 mAh battery, suitable for low-power applications. 

Two sensors are connected to the board: the HC-SR04, which measures distance to estimate the container’s 
fill level, and the MQ-135, which detects the concentration of air pollutants (figure 7). Both sensors share 
power and ground lines and send signals to the GPIO pins of the Heltec board. LoRa communication is used to 
wirelessly transmit the collected data to the gateway for further processing.

Figure 7. Connection diagram of the sensor node with Heltec WiFi LoRa 32 V3, HC-SR04, and MQ-135

The presented design enables efficient integration of both analog and digital sensors into a single autonomous 
node. The Heltec board simultaneously manages data acquisition and LoRa transmission, while the rechargeable 
battery power supply ensures operation in remote locations without electrical infrastructure. The modular 
assembly design facilitates easy replication and field maintenance. 

The system is designed to be deployed in solid waste containers, as illustrated in figure 8, located in urban 
environments specifically in strategic areas of Ibarra, Ecuador. These locations include residential, commercial, 
and high-traffic zones where waste accumulation tends to be more frequent. The goal is to monitor container 
fill levels in real-time and optimize both the frequency and routing of waste collection, thereby improving the 
operational efficiency of municipal services and reducing the associated environmental impact.
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Figure 8. 3D Model of the Smart Container with Integrated Sensors

In the proposed model, the sensing and transmission system is integrated directly into the container’s 
structure. A compact module mounted on the lid houses the Heltec board, sensors, and LoRa antenna. This 
configuration allows for a functional and aesthetically clean installation, protecting the electronic components 
from environmental factors and facilitating maintenance. The design is fully autonomous and adaptable to 
standard urban waste containers.

DEVELOPMENT
To validate the system’s behavior prior to physical deployment, a simulation was developed to emulate the 

operation of 15 sensor nodes attached to geolocated containers in Ibarra. Each node produces normalized fill 
and air-quality signals in accelerated time to emulate field dynamics.

Data are produced in accelerated time and ingested through the same Firebase → Flask path used at runtime, 
mirroring the continuous flow from physical nodes. The simulation enables the adjustment and training of the 
route optimization model without requiring active hardware, thus facilitating preliminary system validation.

Figure 9. Code snippet for simulating container coordinates and initial conditions

This simulation defines 15 geolocated containers and generates virtual fill and air-quality data in accelerated 
cycles; figure 9 shows a representative code snippet.

Previously selected containers are masked, ensuring that the prioritized list produced at inference is 
consistent with the policy described in Methods (Processes).

Model Training
Training follows the DQN procedure summarized in Methods. The agent iteratively observes the city state 

and selects the next container, receiving feedback that promotes prioritizing critical bins. Learning curves are 
monitored and the best checkpoint is deployed through the Flask API. Using simulated data representing the 
fill levels and air quality at each collection point, the agent makes decisions in each cycle, receiving rewards 

https://doi.org/10.56294/dm2025829
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or penalties based on the accuracy of its choices. This iterative process allows the model to refine its policy to 
maximize operational efficiency, optimizing routes according to real-world environmental conditions.

The reward promotes servicing high-priority containers (high fill, poor air-quality proxy) and discourages low-
impact selections. This simple, normalized signal is sufficient to bias learning toward operationally meaningful 
actions, consistent with the city’s objectives.

The agent was trained for 1000 epochs with a learning rate of 0,0005 and a discount factor γ = 0,99. The 
input dimensionality is 2×N (fill and air per container; N = 15), and the output layer has N discrete units, 
each corresponding to one container selection action. These settings were kept fixed across runs to ensure 
comparability and consistency with the Methods description.

Figure 10. Training process of the DQN model

The result shown in figure 10 corresponds to the training process of the DQN model, where a stable total 
reward close to 329,02 is consistently observed over several consecutive epochs, with slight variations such 
as in epoch 124. This behavior indicates that the agent has reached a stable and efficient policy for decision-
making within the simulated environment. The consistency in reward suggests that the model has properly 
converged, optimizing its performance in selecting containers that require priority collection.

Selection Method
The selection method implemented in the system relies on the policy learned by the Deep Q-Network (DQN) 

model, which determines the container to service in each cycle. Based on the current system state—defined by 
the fill levels and air quality of all containers the agent evaluates possible actions and selects the one with the 
highest Q-value. This approach enables dynamic prioritization of the most critical collection points, optimizing 
resource utilization and reducing unnecessary routes.

Figure 11. System output after applying the trained model

The system defines a priority order for waste collection. In this case, containers C1, C15, C4, C2, and C10 
have been identified as the most critical based on their current status. This list reflects the decisions made by 
the DQN model agent, taking into account variables such as fill level and air quality. The model receives, in 
real-time, a structured array in JSON format from a client interface developed in Ionic. Each object in the array 
represents the state of a container, including key parameters such as the percentage of fill and air quality. As 
illustrated in figure 12, this information is sent to the backend via an HTTP request, where the server processes 
the data and transforms it into input vectors to feed the pre-trained Deep Q-Network (DQN) model.

Figure 12. Real-time model execution receiving data from a mobile application developed in Ionic

Once processed, the model evaluates the complete state of the environment and generates an ordered 
sequence of actions representing the containers with the highest priority for service. In this case, the model 
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returns the prioritized containers [‘C3’, ‘C11’, ‘C1’, ‘C15’, ‘C6’, ‘C14’, ‘C12’, ‘C7’, ‘C4’], prioritizing those 
with high waste levels and/or poor air quality. This output optimizes the collection order and can later be 
visualized in a graphical environment such as the Google Maps API. An HTTP 200 response confirms the successful 
execution of the request and the prediction pipeline.

Route Calculation
Once the containers have been prioritized by the model, the Dijkstra algorithm is applied to determine the 

optimal collection route. This algorithm computes the shortest path between the selected nodes, minimizing 
the total travel distance. The road network used respects the actual directionality of streets, ensuring that the 
generated routes are viable for execution in urban environments.

The integration of the DQN model with the Dijkstra algorithm enables the system not only to identify which 
containers require service, but also to determine the most efficient order and path to reach them optimizing 
both operational time and fuel consumption.

Figure 13. Model response with the prioritized list of containers for collection

Figure 14. Interactive map in the app showing the optimal route and real-time location

The model has returned a list of nine containers selected as a priority for collection. This sequence has 
already been processed based on the individual status of each container and will subsequently be used as input 
for the route calculation algorithm.

Next, the application displays an interactive map on its interface, representing the spatial distribution of 
the containers along with their respective fill levels, classified using a color-coded scheme (red, yellow, and 
green). Once the model provides the prioritized containers, the system enables calculation and visualization of 
the optimal route using the path generated by the Dijkstra algorithm, while respecting actual street directions.

https://doi.org/10.56294/dm2025829
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This route is overlaid directly on the map, giving the user a clear view of the order and path to follow. The 
interface also enables real-time tracking of the route, enhancing operational control over the waste collection 
tasks.

The route respects real-world urban road constraints and connects only the containers previously selected 
by the DQN model, optimizing both time and resource usage.

RESULTS
This section summarizes the learning behavior of the policy and contrasts operational indicators against 

a traditional fixed route. As shown in table 1, the AI-optimized approach achieves consistent improvements 
across the three key metrics, distance, time, and fuel consumption, providing a clear quantitative view of the 
gains attributable to the prioritization layer.

Figure 15. Evolution of the reward obtained over more than 7000 training epochs of the agent

Figure 16. Reward evolution per epoch during the training of the DQN model

Figures 15–16 show a consistent upward trend in training rewards, with occasional fluctuations typical 
of the exploration–exploitation trade-off. After the mid-training phase, the agent stabilizes around higher 
reward levels and reaches a peak near epoch ~6,370, indicating a robust and generalizable policy for container 
prioritization under dynamic conditions.

Building on these learning dynamics, table 1 confirms consistent reductions across the three indicators, 
distance, time, and fuel, aligning with the expected effect of value-aware prioritization.

Figure 17 visually contrasts both approaches across distance, time, and fuel, reinforcing the uniform 
advantage of the AI-optimized route already quantified in table 1. These improvements clearly demonstrate the 
efficiency of the AI algorithm in selecting not only the most critical containers but also the most operationally 
optimal visiting sequence.

Data and Metadata. 2025; 4:829  10 

https://doi.org/10.56294/dm2025829 ISSN: 2953-4917

https://doi.org/10.56294/dm2025829


Table 1. Comparative results of route optimization using artificial intelligence

AI Route Optimization 

Segment Distance (km) Time (h) Consumption (L)

C15 → C6 0,24525646 0,00817516 0,01962037

C6 → C11 0,06616749 0,00220558 0,00529339

C11 → C3 0,20750449 0,00691682 0,01660036

C3 → C4 0,10635578 0,00354519 0,00850846

C4 → C1 0,25411671 0,00847056 0,02032934

TOTAL 0,87939907 0,0293133 0,07035193

Traditional Fixed Route

C3 → C4 0,10635578 0,00354519 0,00850846

C4 → C6 0,33464025 0,01115468 0,02671220

C6 → C11 0,06616744 0,00220558 0,00529339

C11 → C1 0,26085625 0,00869521 0,02086850

C1 → C15 0,28364219 0,00945474 0,02269138

TOTAL 1,05166191 0,0350554 0,08413295

Improvement (%) ~16,4 % ~16,3 % ~16,4 %

Figure 17. Route Comparison: Traditional vs AI

This type of visualization provides immediate insight into the positive impact of implementing an intelligent 
collection system, not only in terms of sustainability and energy efficiency but also in the optimization of 
logistical resources. This translates into significant benefits for urban waste management systems, reinforcing 
the value of AI-driven solutions for smart and sustainable city operations.

DISCUSSION
The implementation of the proposed system based on Deep Q-Networks (DQN) and LoRa communication led 

to a significant improvement in the dynamic planning of waste collection routes. The results were compared 
with previous research to validate the system’s performance and scalability.

The observed gains stem from combining DQN-based prioritization with shortest-path routing. Unlike static 
graph search (e.g., Dijkstra/A*) or hand-crafted heuristics, the DQN policy learns from evolving states (fill and 
air-quality signals), adapting container selection under stochastic, time-varying conditions typical of urban 
operations. This adaptive layer complements the road-network optimizer rather than replacing it, explaining 
the sustained improvements in distance, time, and fuel.

Unlike the study by Cruz et al.(12), which focused solely on the technical feasibility of LoRaWAN networks for 
waste monitoring, the present work integrates real sensors, reinforcement learning model training, and route 
calculation within simulated scenarios featuring dynamic conditions. While Cruz and collaborators validated 
aspects like connectivity and coverage, this proposal extends the scope toward active route optimization, 
showing tangible impact across three key metrics: distance, time, and fuel consumption.

In comparison with Kavitha et al.(13), who implemented a DRL-based autonomous collection system, this 
work targets a realistic and deployable solution for Latin American municipalities. It leverages affordable 
hardware such as Heltec WiFi LoRa 32 V3 boards and low-cost sensors. Although both studies apply DQN, this 
research emphasizes a modular, distributed architecture and a mobile integration API, enabling immediate 
deployment in urban settings.
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This comparative analysis highlights the system’s practical advantages: not only does it achieve technical 
improvements, but it also ensures economic feasibility and real-world applicability—crucial factors for adoption 
in developing urban infrastructures.

Terminology was standardized throughout: sensor node denotes the embedded unit (Heltec + sensors), 
gateway the LoRa-to-IP bridge, and the municipal collection vehicle executing the computed route.

Robustness and Scalability
At the design level, the modular architecture of the system allows for the addition of more sensors or 

containers without modifying the core logic of the model. The integration of LoRa communication with Firebase 
enables scalability across cities with varying urban topologies, effectively overcoming the limitations of GSM or 
WiFi networks in areas with weak infrastructure.

The reward signal combined fill level and an air-quality proxy to increase sensitivity to operationally critical 
bins. This simple, normalized design produced more discriminative policies than distance-only objectives, 
consistently guiding the agent toward higher-impact actions.

Comparative Visualization
To complement the numerical analysis, a radar chart (Figure 18) was developed to visually synthesize the 

efficiency differences between the two approaches. It highlights three key metrics: total distance traveled, 
operation time, and fuel consumption. All values were normalized relative to the maximum value for each 
parameter to facilitate comparison.

As shown in the chart, the route optimized by artificial intelligence (AI) lies closer to the center in all 
dimensions, indicating lower resource usage and greater operational efficiency compared to the traditional 
fixed route. This visual representation reinforces the quantitative findings and clearly illustrates the practical 
advantage of AI-driven route planning.

Figure 18. Radar plot comparing the efficiency of traditional fixed-route versus AI-optimized route using Deep Q-Networks 
(DQN). Lower values indicate higher efficiency across metrics

CONCLUSIONS 
The implementation of the Deep Q-Network (DQN) algorithm enabled the calculation of waste collection 

routes based on the real-time status of containers, taking into account both fill levels and air quality. Unlike 
static methods, this adaptive approach avoids unnecessary visits to low-priority containers, generating optimal 
paths that minimize total distance, travel time, and fuel consumption. The results show a significant reduction 
in these parameters, validating the effectiveness of deep reinforcement learning for intelligent urban solid 
waste management.

The elimination of redundant routes and prioritization of critical collection points translates into a reduced 
number of vehicles on the road. This directly contributes to a decrease in pollutant emissions (such as CO₂, 
NOx, and particulate matter) from combustion-engine collection vehicles. Additionally, fuel use is optimized, 
improving not only the operational efficiency of the service but also the environmental sustainability of public 
sanitation operations aligning with the principles of smart and green cities.

The proposed system is based on a modular distributed architecture, combining HC-SR04 ultrasonic sensors 
and MQ-135 air quality sensors connected to Heltec WiFi LoRa 32 V3 boards, communicating via LoRa to a 
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central gateway. This setup, supported by a cloud database (Firebase) and a lightweight backend (Flask API), 
proved effective for near real-time data acquisition, transmission, and analysis. Its low energy consumption, 
long-range communication, and flexibility make it suitable for deployment in dense urban or hard-to-reach 
areas, with the ability to scale to more containers or add sensors without compromising system performance.

The model was pre-trained using simulated data with time acceleration, which allowed validation of its 
behavior and performance prior to physical deployment. This simulation phase, based on virtual sensors and real 
urban scenarios, enabled tuning of hyperparameters, refinement of the route selection policy, and assessment 
of the model in controlled conditions. The trained model was later deployed via a Flask API integrated with an 
interactive web application, demonstrating the feasibility of an end-to-end solution from data acquisition to 
visualization and field execution. This lays the groundwork for agile implementation in municipalities or other 
urban management entities.

Limitations and future work. Results were obtained in a controlled simulation with real geolocations 
and normalized sensing proxies; thus, field trials at scale are needed to assess performance under network 
variability (coverage, latency, packet loss), sensor faults, and urban traffic dynamics. Future work will extend 
the architecture to larger deployments, incorporate additional environmental variables, and explore multi-
agent reinforcement learning for cooperative route planning among multiple collection vehicles.
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