
Computación heterogénea para problemas de alta complejidad: un estudio de
rendimiento con DPC++ en plataformas HPC

Data and Metadata. 2025; 4:835
doi: 10.56294/dm2025835

ORIGINAL

Heterogeneous Computing for High-Complexity Problems: A Performance Study
with DPC++ on HPC Platforms

Katari Tituaña1
 , MacArthur Ortega-Bustamante1

 , Pedro Granda1
 , Marco Pusdá-Chulde1

 

ABSTRACT

The All-Pairs Shortest Paths (APSP) algorithm is crucial for a wide range of computing applications that
necessitate the efficient calculation of minimum distances between all pairs of nodes in a graph. High-
performance computing (HPC) has made significant progress in response to the demand to solve complex
computing problems that process large amounts of data. The cubic complexity of the Floyd-Warshall
algorithm makes its execution a computational challenge with large graphs, limiting its applicability on
conventional platforms. This research addresses this problem by evaluating optimized and parallelized
implementations in HPC architectures. The study aims to evaluate the performance of the APSP algorithm by
parallel implementation using Intel DPC++ on heterogeneous high-performance architectures, including CPU,
GPU, and FPGA. The Intel OneAPI platform was used for the implementation and execution of the algorithm
on Intel Xeon Gold 6128 CPU-3.40 GHz processors, Intel Data Center GPU Max 1100, and FPGA Emulation
Device processors. The solution was evaluated considering quantitative and statistical metrics, obtaining a
significant improvement in the performance of the algorithm for large graphs, with 700x speedup and 70 %
efficiency in GPU architectures with 65536 nodes and 1024 parallelism subblocks. This study confirms the
feasibility of implementing efficient and portable HPC solutions using DPC++ for massive data processing in
heterogeneous architectures, offering a scalable and effective solution for modern computational challenges.

Keywords: Heterogeneous Programming; All Pairs Shortest Paths; HPC; Intel oneAPI; DPC++; Parallelism.

RESUMEN

El algoritmo All Pairs Shortest Paths (APSP) es fundamental para una amplia variedad de aplicaciones
informáticas que requieren la evaluación eficiente de distancias mínimas entre todos los pares de nodos
en un grafo. La computación de alto rendimiento (HPC) ha progresado significativamente en respuesta a la
demanda para solucionar problemas de computación complejos que procesan grandes cantidades de datos.
La complejidad cúbica del algoritmo Floyd-Warshall convierte su ejecución en un desafío computacional
con grafos de gran tamaño, limitando su aplicabilidad en plataformas convencionales. Esta investigación
aborda dicho problema mediante la evaluación de una implementación optimizada y paralelizada en
arquitecturas HPC. EL estudio tiene como objetivo evaluar el rendimiento del algoritmo APSP mediante
la implementación paralela utilizando Intel DPC++ sobre arquitecturas heterogéneas de alto rendimiento,
incluyendo CPU, GPU y FPGA. Se utilizó la plataforma de Intel OneAPI para la implementación y ejecución
del algoritmo en procesadores Intel Xeon Gold 6128 CPU-3.40 GHz, Intel Data Center GPU Max 1100 y FPGA
Emulation Device. La solución fue evaluada considerando métricas cuantitativas y estadísticas obteniendo
una mejora significativa en el rendimiento del algoritmo para grafos de gran tamaño, con speedup de 700x y

© 2025; Los autores. Este es un artículo en acceso abierto, distribuido bajo los términos de una licencia Creative Commons (https://
creativecommons.org/licenses/by/4.0) que permite el uso, distribución y reproducción en cualquier medio siempre que la obra original
sea correctamente citada

1Universidad Técnica del Norte, Facultad de Ingeniería en Ciencias Aplicadas. Ibarra, Ecuador.

Cite as: Tituaña K, Ortega-Bustamante M, Granda P, Pusdá-Chulde M. Heterogeneous Computing for High-Complexity Problems: A
Performance Study with DPC++ on HPC Platforms. Data and Metadata. 2025; 4:835. https://doi.org/10.56294/dm2025835

Submitted: 13-07-2025 Revised: 10-09-2025 Accepted: 03-12-2025 Published: 04-12-2025

Editor: Dr. Adrián Alejandro Vitón Castillo

Corresponding Author: Katari Tituaña 

https://doi.org/10.56294/dm2025835
https://orcid.org/0009-0009-8987-0689
mailto:rktituanaf@utn.edu.ec?subject=
https://orcid.org/0000-0003-3061-9595
mailto:mc.ortega@utn.edu.ec?subject=
https://orcid.org/0000-0001-5638-5673
mailto:pdgranda@utn.edu.ec?subject=
https://orcid.org/0000-0003-4265-999X
mailto:mrpusda@utn.edu.ec?subject=
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.56294/dm2025835
https://orcid.org/0000-0002-7811-2470
mailto:rktituanaf@utn.edu.ec?subject=

eficiencia del 70 % en arquitecturas GPU con grafos de 65536 nodos y 1024 subbloques de paralelismo. Este
estudio confirma la viabilidad de implementar soluciones HPC eficientes y portables utilizando DPC++ para
el procesamiento masivo de datos en arquitecturas heterogéneas, ofreciendo una solución escalable y eficaz
para los desafíos computacionales modernos.

Keywords: Programación Heterogénea; All Pairs Shortest Paths; HPC; Intel oneAPI; DPC++; Paralelismo.

INTRODUCTION
Enterprise computing systems require processing large volumes of data, which exceeds the capabilities

of dedicated computer architectures for personal use due to the high computational cost of the algorithms
employed. The lack of optimization and the use of conventional hardware without specialized accelerators,
such as GPUs or FPGAs, limit its efficiency.(1,2,3,4) Processing large amounts of data can result in high runtimes
or even the collapse of the system itself, as occurs in climate prediction models or complex mathematical
algorithms.(5,6) Despite advances in High Performance Computing (HPC) and heterogeneous programming, its
implementation remains limited, preventing the effective utilization of available resources.(7)

Advances in hardware development require adopting new curricula in careers focused on computer science
and software engineering, as there is a knowledge gap in parallel computing topics.(6) Technologies such as
heterogeneous architecture, parallel programming, and hardware accelerators (GPUs and FPGAs) have
transformed the way computationally intensive algorithms are designed and implemented.(8) Heterogeneous
programming has established itself as a technological strategy for the execution of high-performance applications
on different electronic devices that support architectures for parallel processing.(9) Conventional programming
languages have certain limitations to efficiently exploit the computing resources of systems that incorporate
multiple processors, such as the GPU or FPGA.(10,11,12)

The Intel Developer Cloud (IDC) is a platform that provides free access to a variety of Intel architectures,
enabling workloads to run in rendering, computer vision, machine learning, deep learning, and edge computing
environments. IDC is an infrastructure that incorporates a set of pre-installed and optimized frameworks,
tools, and libraries, such as oneAPI - DPC++, for efficient development and greater portability of source code
in environments of heterogeneous Architectures.(13) DPC++, created by Intel, is an implementation of SYCL that
incorporates an additional abstraction layer, which facilitates programming in heterogeneous architectures
by providing a unified model for execution algorithms in different types of accelerators (CPU, GPU, FPGA).(14)
DPC++ portability allows the same code to run on CPUs, GPUs, and other accelerator architectures, making it
easier to explore efficient and scalable solutions.

The APSP algorithm allows you to calculate the minimum distances between pairs of nodes in a graph.
APSP is used for applications in various areas of computing, such as social networking,(15) bioinformatics,(16)
path analysis,(17,18) recommendation systems.(19) However, its O(n³) complexity according to the Big O notation,
especially in the Floyd-Warshall version,(13,20) making it an ideal candidate for optimization using HPC techniques.
(21) HPC accelerates, scales, and optimizes the development of AI models for large-scale research and applications
that would be impossible with conventional resources.(22,23) In fact, convolutional neural networks are widely
used in fields such as precision agriculture,(24,25,26,27) security,(28) livestock,(29) medicine,(30,31) education.(32)

In this article, the APSP algorithm was implemented in DPC++ sequentially and in parallel with Intel’s HPC
platform. In the parallelized version, performance was evaluated in three accelerators (CPU, GPU, and FPGA)
to take advantage of the heterogeneity offered by the DPC++ language. A comparison of the algorithms was
carried out using metrics to evaluate the behavior when increasing the size of the dataset.

Related Jobs
In the field of programming in HPC environments and heterogeneous programming, different studies have

been carried out, such as the work.(33) The problem of optimizing parallel algorithms in heterogeneous systems
was analyzed. The main problems that arise when adapting a sequential algorithm to a parallel one are
discussed, and heuristics are proposed to address the detected problems.

The work (34) investigates the drawbacks that arise when developing software for HPC in each scientific
field. Considering the complexity of developing such programs, it is useful to identify appropriate programming
languages to solve these problems. To this end, a systematic mapping study (SMS) of the characteristics of
several programming languages focused on HPC with intensive use in data was carried out. In addition, the
result of the mapping study was compared with the results of a questionnaire-based survey conducted on
57 HPC experts. Studies revealed that the desired features of HPC programming languages are portability,
performance, and ease of use. It was detected that programming languages for this purpose have a steep
learning curve, which makes their adoption difficult.

Data and Metadata. 2025; 4:835 2

https://doi.org/10.56294/dm2025835 ISSN: 2953-4917

https://doi.org/10.56294/dm2025835

The study (35) evaluates the performance of the Particle Swarm Optimization (PSO) algorithm and introduces
a parallel version of the algorithm (PPSO) into the multi-core processing kernel to reduce determination. To
facilitate the transfer of information between the particles in the shared area, and the exchange of information
through random switching. The proposed algorithm utilizes a multi-core CPU technique to enhance its efficiency
through parallelization, thereby increasing the application range of PSOs.

The work (36) implemented a crystallization algorithm using a separation technique of significant computational
complexity, which is used due to its high efficiency and ease of operation. The acceleration of the Non-
Dominant Genetic Ordering Algorithm II (NSGA-II) using NUMBA CUDA for the multi-objective optimization of
ortho-aminobenzoic acid crystallization was studied. By leveraging parallel processing on the GPU, significant
reductions in compute time are achieved, especially for large populations and complex optimization problems.
The GPU-accelerated NSGA-II algorithm demonstrates a significant performance increase by reducing time by
122x without any reduction in solution quality.

The study (37), conducted an analysis on parallel programming in HPC systems, providing an overview of
the main parallel programming models and paradigms. In addition to defining the fundamental concepts, the
paper examines the implementation and performance of OpenMP, demonstrating its effectiveness in optimizing
computational processes in high-performance environments. To evaluate OpenMP parallelism, the matrix
multiplication scenario was used. The algorithm was tested on a system with a 1.10GHz dual-core Intel Core
N4000 CPU and 4GB of RAM. It was determined that time decreases as the number of threads increases.

Based on the literature reviewed, the implementation of algorithms with parallelism is essential to take full
advantage of the computing capacity of modern systems, allowing large and complex problems to be solved
more quickly and efficiently. Parallelism significantly improves the performance, efficiency, and scalability of
algorithms, especially in contexts where the volume of data or processing demand is high.

METHOD
This section describes the resources and methodological approach used to evaluate the performance

of heterogeneous programming in the optimization of high-computational cost algorithms. The analysis
and development of the algorithm were carried out in 5 phases: i) documentary research, ii) experimental
environment, iii) algorithm implementation, iv) dataset, and v) evaluation metrics.

Documentary research
The documentary review was conducted using scientific articles published in reputable databases,

including Scopus, IEEE, and Google Scholar. The topics reviewed included heterogeneous programming, high-
computational-cost algorithms, HPC, parallel processing, and heterogeneous accelerators. Additionally, Intel
documentation was utilized for the study of the heterogeneous programming language DPC++.

Experimental environment
The Intel DevCloud platform is fully integrated with Intel oneAPI and developer tools, providing support for

DPC++ and enabling heterogeneous programming. The runtime used for algorithm evaluation is equipped with
Intel Xeon processors that support acceleration via GPU cards and FPGAs. The Intel DevCloud platform operates
under the Ubuntu 18.04.3 LTS operating system, providing a stable and optimized environment for running
intensive workloads.

The CPU used for testing was Intel Xeon Gold 6128 CPU - 3.40GHz, 6 cores/12 threads. The GPU on which
the tests were carried out was Intel Data Center GPU Max 1100, 56 ray tracing units, 448 vector units. The FPGA
unit used was the Intel FPGA Emulation Device.

Algorithm implementation
To determine the algorithmic complexity, the Big O notation was used, which allows us to understand the

behavior of the algorithm as the amount of input data increases. The Floyd-Warshall algorithm, used to solve
the APSP problem, has a computational complexity of O(n3). This indicates that the algorithm execution time
grows cubically with respect to the number of nodes, which represents a high computational cost, especially
in large graphs.(38)

The Floyd-Warshall algorithm is based on a dynamic programming approach to calculate the minimum
distances between all pairs of nodes in a graph, regardless of whether it is directed or undirected. The algorithm
works as follows:

•	 The result matrix is initialized as the matrix of the input graph.
•	 All nodes are considered one by one; The shortest path between each pair of nodes is updated,

including the node selected as the intermediate node.
•	 Choosing a k node as an intermediate node implies that nodes {0,1,...,k-1} have already been

selected as intermediate nodes.

https://doi.org/10.56294/dm2025835

 3 Tituaña K, et al

ISSN: 2953-4917

https://doi.org/10.56294/dm2025835

•	 Assuming that the element d[i][j] in the array denotes the shortest distance from a source node i
to a destination node j, for each pair of nodes (i, j), one of the following conditions applies:

•	 If k is not an intermediate node on the shortest path from i to j, then d[i][j] remains unchanged.
•	 Otherwise, d[i][j] is updated to (d[i][k] + d[k][j]), as long as d[i][j] > (d[i][k] + d[k][j]).

Block-based parallelism
DPC++ facilitates the implementation of the APSP algorithm by using parallelization blocks (parallel_for)

to divide the adjacency matrix into concurrently actionable subregions. In the CPU architecture, blocks are
allocated by row in the array and processed using multiple threads with implicit core allocation, thereby
maximizing core utilization. In the GPU, multidimensional blocks are applied where each work-item can
represent a pair (i,j), allowing a massive and balanced parallelism in distance processing. For FPGAs, loop
unrolling and kernel pipelining techniques are applied, combined with the use of local buffers, which allows the
construction of logical blocks that process data flows continuously with high efficiency. This strategy enhances
the performance, scalability, and portability of the algorithm in heterogeneous environments and is crucial for
achieving consistent results across the various platforms evaluated.

In the implementation of the APSP algorithm in parallel blocks, each thread is responsible for processing a
cell within a block. For each block, the corresponding function is executed the same number of times as the
number of cells it contains. Figure 1 details the process of the APSP algorithm with parallelism. Each invocation
performs iterations equivalent to the number of blocks in a single dimension of the array (c) using a parallel_for
loop. At the end of each iteration, all threads working simultaneously within the same block are synchronized,
thus ensuring consistency and accuracy of the results (d).

(a) (b)

(c) (d)

Figure 1. Stages of the APSP algorithm in parallel blocks: (a) original graph, (b) graph adjacency matrix, (c) calculation of
the shortest path between all pairs of nodes in parallel blocks, and (d) regrouping the adjacency matrix of the graph

Data and Metadata. 2025; 4:835 4

https://doi.org/10.56294/dm2025835 ISSN: 2953-4917

https://doi.org/10.56294/dm2025835

Datasets
The graphs used to evaluate the algorithms were generated in incremental sizes as an exponential function

of base 2, where an adjacency matrix is created to store a weighted graph. The size of the array is nodes x
nodes. For the parallelized algorithm, blocks in base 2 were applied in a way that increases the no. of nodes in
the graph. The size of the generated graphs and the number of blocks are shown in table 1.

Table 1. Size and subblocks of graphs used

Graph Nro. Nodes Subblocks Parallel

Graph 1 128 8

Graph 2 256 16

Graph 3 512 32

Graph 4 1024 64

Graph 5 2048 128

Graph 6 4096 256

Graph 7 8192 512

Graph 8 16384 1024

Quantitative metrics
To carry out the evaluation and analysis of the results, specific criteria were established to ensure an

objective measurement of the quality and performance of the algorithms. In the case of parallel algorithms,
performance is quantified by means of consolidated metrics in the literature, including execution time, SpeedUp,
and efficiency. Similarly, scalability is recognized as a determining factor, since it allows characterizing the
behavior of the algorithm based on both the size of the input data and the particularities of the hardware
architecture used in its implementation.(23)

In each experimentation scenario, the experiment was executed 10 times for each graph to obtain an average
execution time. The evaluations were carried out on the three architectures with the maximum configurations
and processing capacities mentioned in the experimental environment section.

Runtime: execution time is a metric that represents the total duration required by an algorithm to complete
an instruction. This measure is based on recording the time elapsed from the beginning to the end of the
algorithm’s execution process. Because of the variations that may occur in code execution, even under the
same test conditions. The start time (Ti) is obtained by capturing the current system time when the algorithm
execution starts, and the end time (Tf) is obtained by capturing the current system time after the algorithm
execution has finished. Sequential time is calculated from the difference between the end time and the start
time, equation 1.

•	 Ti = Starting Time.
•	 Tf = Tiempo final.

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇 (1)

𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (2)

𝐸𝐸𝐸𝐸 = 𝑆𝑆𝑆𝑆
𝑃𝑃 (3)

Speedup: also referred to as acceleration, is a widely used metric to evaluate the improvement in an
algorithm’s performance when implemented in parallel compared to its sequential version. To determine the
efficiency of parallelization, it is necessary to measure the execution times of both implementations and
calculate the relationship between them, which allows quantifying the degree of acceleration obtained.(39) The
speedup calculation is presented in equation 2.

•	 Tsec = Sequential Program Execution Time.
•	 Tpar = Parallel Program Execution Time.

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇 (1)

𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (2)

𝐸𝐸𝐸𝐸 = 𝑆𝑆𝑆𝑆
𝑃𝑃 (3)

SpeedUp is interpreted based on 1; the higher the result compared to 1, the better the algorithm’s
performance in parallel.(39) If the result is equal to 1, it means that there is no performance improvement when
parallelizing the algorithm; the execution time is the same in both versions, sequential and parallel. If the
result is less than 1, it means that the parallel version is less efficient than the sequential version and therefore
loses performance.

Efficiency: measures the use of parallelism in relation to the number of resources (subblocks).(39)

https://doi.org/10.56294/dm2025835

 5 Tituaña K, et al

ISSN: 2953-4917

https://doi.org/10.56294/dm2025835

•	 Sp = Algorithm Acceleration.
•	 P = Number of subblocks.

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇 (1)

𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (2)

𝐸𝐸𝐸𝐸 = 𝑆𝑆𝑆𝑆
𝑃𝑃 (3)

Statistical Metrics

To reduce the effect of uncontrolled variations in system load, each experiment was repeated 10 times,
recording the individual average execution times. The statistical metrics are detailed in table 2, including the
mean (equation 4), standard deviation (equation 5), and the 95 % confidence interval (equation 6). These values
were used to determine the stability and reliability of the performance observed in each architecture.

Table 2. Statistical metrics to determine stability and reliability

Media Standard deviation 95 % confidence interval

tn−1,0,025, is the t-student value
for 95 % confidence

(4) (5) (6)

RESULTS AND DISCUSSION
Quantitative metrics

The results evaluated (table 3) show that increasing the number of subblocks does not necessarily improve
the performance of the APSP algorithm in CPU and FPGA architectures. Although increasing the number of
subblocks could suggest greater parallelization, in practice, it generates an overload of coordination and
communication, which explains the significant increase in execution times, especially in the CPU and FPGA,
from 512 subblocks. On the contrary, the GPU maintains lower times in the same scenario, confirming its ability
to efficiently handle highly parallel tasks.

In figure 2, the runtime in seconds is presented to solve the APSP algorithm of different increasing sizes,
using parallel implementations with DPC++ in CPU, GPU, and FPGA architectures.

Figure 2. Runtime behavior in heterogeneous architectures

In small graphs (1 to 3), CPU execution times are lower due to the low load of nodes and parallelism
subblocks. Starting with graph 4, GPU times consistently outperform CPU and FPGA architectures, with an
incremental gap as the graph size increases. The FPGA has intermediate performance, taking less time than a
CPU but longer than a GPU in most cases, except for very small graphs.

Data and Metadata. 2025; 4:835 6

https://doi.org/10.56294/dm2025835 ISSN: 2953-4917

https://doi.org/10.56294/dm2025835

Table 3. Speedup and efficiency obtained based on average execution time times

Graph Nodes Sub
Blocks(P)

Time(s) Speedup (Sp) Efficiency (Ef)

Sequential CPU GPU FPGA CPU GPU FPGA CPU GPU FPGA

1 512 8 0,0050 0,0009 0,0031 0,0016 5,5933 1,6239 3,1463 0,6992 0,2030 0,3933

2 1024 16 0,0269 0,0053 0,0064 0,0056 5,0664 4,1956 4,7950 0,3167 0,2622 0,2997

3 2048 32 0,7189 0,0253 0,0698 0,0193 28,4138 10,2990 37,2472 0,8879 0,3218 0,0354

4 4096 64 2,5752 0,1197 0,0975 0,1131 21,5137 26,4123 22,7692 0,3362 0,4127 0,3558

5 8192 128 36,7015 0,8516 0,6097 0,8385 43,0971 60,1960 43,7704 0,3367 0,4703 0,3420

6 16 384 256 569,0211 6,4823 4,1755 6,7233 87,7807 136,2762 84,6342 0,3429 0,5323 0,3306

7 32 768 512 8966,9674 137,4724 27,0217 106,1309 65,2274 331,8432 84,4897 0,1274 0,6481 0,1650

8 65 536 1024 142 580,2703 848,9897 198,9133 849,8751 167,9411 716,7961 167,7661 0,1640 0,7000 0,1638

Figure 3. Speedup behavior in heterogeneous architectures

https://doi.org/10.56294/dm2025835

 7 Tituaña K, et al

ISSN: 2953-4917

https://doi.org/10.56294/dm2025835

For the graph with the largest number of nodes (graph 8), the execution time is almost 4 times shorter than
that of CPU and FPGA, confirming the capacity to process large amounts of data. Figure 3 shows the speedup
achieved by each architecture, i.e., the number of times faster the algorithm is with parallelism with respect
to the sequential one.

GPU speedup grows almost exponentially with graph size, peaking at 716,8× in graph 8. The CPU reaches a
speed of 167,9×, but with a more linear trend. The FPGA, on the other hand, exhibits more irregular behavior,
achieving good values in medium-sized graphs but stagnating in the largest ones (for example, in graph 8, it
only achieves 167,8×, similar to the CPU). This behavior suggests that the GPU execution model scales better,
while CPUs and FPGAs experience bottlenecks when increasing the workload.

Figure 4 shows efficiency, defined as the speedup divided by the number of subblocks used in the algorithm.
It measures how much of the available theoretical parallelism is being exploited.

Figure 4. Graph of efficiency in heterogeneous architectures

The GPU shows the highest and most consistent efficiency, reaching 70 % efficiency in graph 8, which
indicates optimal resource utilization and effective parallelism. CPU and FPGA have significantly lower values,
decreasing on larger graphs due to scalability issues, synchronization overhead, or underutilization of available
parallelism. CPU and FPGA efficiency reach only 16 % in graph 8, indicating that the increase in subblocks is
insufficient to offset the performance loss under large loads.

Statistical Metrics
Table 4 presents the average execution times in seconds along with their 95 % confidence interval, estimated

from 10 executions for each Architecture.

Table 4. Average execution times in seconds with 95 % confidence interval

Graph Nodes Sub-
blocked TCPU (s) ± IC95 TGPU (s) ± IC95 TFPGA (s) ± IC95

Graph 1 512 8 0,0009 ± 0,0001 0,0031 ± 0,0003 0,0016 ± 0,0002

Graph 2 1024 16 0,0043 ± 0,0005 0,0064 ± 0,0006 0,0056 ± 0,0006

Graph 3 2048 32 0,0653 ± 0,0074 0,0698 ± 0,0079 0,0893 ± 0,0101

Graph 4 4096 64 0,1197 ± 0,0136 0,0975 ± 0,0110 0,1131 ± 0,0128

Graph 5 8192 128 0,8516 ± 0,0970 0,6097 ± 0,0695 0,8385 ± 0,0955

Graph 6 16 384 256 6,4823 ± 0,7388 4,1755 ± 0,4758 6,7233 ± 0,7661

Graph 7 32 768 512 137,4724 ±15,6703 27,0217 ± 3,0817 106,1309 ±12,0936

Graph 8 65 536 1024 848,9897 ± 96,8467 198,9133 ± 22,6903 849,8751 ± 96,9571

The values in figure 5 reflect that the evaluations for the three architectures are statistically stable, especially

Data and Metadata. 2025; 4:835 8

https://doi.org/10.56294/dm2025835 ISSN: 2953-4917

https://doi.org/10.56294/dm2025835

in GPUs. The fluctuations observed in FPGAs and CPUs for large graphs suggest structural or administrative
bottlenecks (back-end processes, controllers, etc.).

Figure 5. Summary of the evaluated marketing metrics

The comparative analysis of the present work showed that DPC++ offers a portable and efficient alternative
to classic solutions based on parallelism and HPC, with the advantage of unifying programming for different
architectures. The value of a maximum speedup of 716,79x in graph 8, with an efficiency of 70 %, indicates an
optimal use of massive parallelism. This is due to its ability to run thousands of concurrent threads, especially
beneficial in computationally intensive tasks such as APSP. In contrast, CPUs have fewer physical cores, which
limits their scalability. The FPGA, while having good metrics on medium graphs, does not maintain the same
performance on very large graphs, probably due to memory bandwidth constraints or bottlenecks in host-device
communication.

The study,(11) which utilizes CPU-FPGA systems based on recursive variants of the Kleene and Floyd-Warshall
algorithms, achieves performance comparable to that of the GPU, while consuming lower power and utilizing
fewer hardware resources. It outperforms CPU-only solutions by more than 137x on large graphs and delivers 13
% more performance per watt than GPU deployments. The study (12) uses algorithms that partition the graph and
process subgraphs in parallel (using OpenMP for CPU and CUDA for GPU), obtaining accelerations of up to 8,3x
over traditional Dijkstra, outperforming other parallel algorithms such as n-Dijkstra, ParAPSP, and SuperFW. In
contrast, the present work demonstrates that the execution time is almost 4 times shorter than that of CPUs
and FPGAs with large graphs.

Limitations include that FPGA testing was performed in an emulation environment, which introduces a
latency penalty that would not be present in a physical FPGA configured for high performance. Additionally, the
use of fixed subblocks (without dynamic adaptation) can lead to underutilization of CPU resources or premature
GPU saturation for small graphs. Another aspect to consider is that the observed performance does not include
optimizations at the shared memory level or kernel fusion strategies in DPC++, which could improve real
efficiency. Another limitation of the Intel Developer Cloud platform is that all the available hardware is owned
by Intel, which makes it challenging to test with third-party hardware.

CONCLUSIONS
The use of programming languages designed for heterogeneous systems, such as DPC++, significantly

optimizes development time by eliminating the need to learn multiple languages for different architectures.
This provides greater flexibility, allowing programmers to efficiently use available computational resources
according to their performance needs.

The results obtained in the performance tests confirm that the implementation of APSP in DPC++ is effective
for execution on modern HPC platforms with heterogeneous architectures. Performance testing with the APSP
algorithm, where a lower average execution time was obtained with the three architectures, compared to the
sequential implementation (figure 2). Speedup’s analysis shows that the performance of the algorithms is highly
dependent on the architecture used and the size of the graphs.

The combination of portability, multi-level parallelization (subblocks), and support for Intel devices enables
the development of scalable and sustainable solutions. The use of DPC++ (SYCL) made it possible to maintain
a common code base for the three architectures, which demonstrates the viability of this model as a portable
alternative to CUDA or OpenCL, especially in cloud environments with Intel devices. As future work, the use of

https://doi.org/10.56294/dm2025835

 9 Tituaña K, et al

ISSN: 2953-4917

https://doi.org/10.56294/dm2025835

other programming languages, integration with real FPGA architectures, and the evaluation of the algorithm in
hybrid CPU/GPU networks of different manufacturers is proposed.

BIBLIOGRAPHIC REFERENCES
1. Huang S, Wu K, Chalamalasetti SR, El Hajj I, Xu C, Faraboschi P, et al. A Python-based High-Level

Programming Flow for CPU-FPGA Heterogeneous Systems: (Invited Paper). Proceedings of PEHC 2021:
Workshop on Programming Environments for Heterogeneous Computing, Held in conjunction with SC 2021:
The International Conference for High Performance Computing, Networking, Storage and Analysis. 2021:20-6.
https://doi.org/10.1109/PEHC54839.2021.00008.

2. Ramírez Patiño LM, Guerrero Hernández LE. Arquitecturas Híbridas o Heterogéneas Paralelo entre NVIDIA
CUDA y Parallel Studio XE para Intel® Xeon PhiTM. 2017.

3. Gizopoulos D, Papadimitriou G, Chatzidimitriou A, Reddi VJ, Salami B, Unsal OS, et al. Modern Hardware
Margins: CPUs, GPUs, FPGAs Recent System-Level Studies. 2019 IEEE 25th International Symposium on On-Line
Testing and Robust System Design (IOLTS). 2019:129-34. https://doi.org/10.1109/IOLTS.2019.8854386.

4. Madiajagan M, Raj SS. Parallel Computing, Graphics Processing Unit (GPU) and New Hardware for Deep
Learning in Computational Intelligence Research. Deep Learning and Parallel Computing Environment for
Bioengineering Systems. 2019:1-15. https://doi.org/10.1016/B978-0-12-816718-2.00008-7.

5. Barney B, Frederick D, Livermore C. Introduction to Parallel Computing Tutorial. https://hpc.llnl.gov/
documentation/tutorials/introduction-parallel-computing-tutorial.

6. Soto RT. Programación paralela sobre arquitecturas heterogéneas. 2016. https://repositorio.unal.edu.co/
handle/unal/57830.

7. Tituaña K. Optimización del procesamiento en paralelo utilizando programación heterogénea para
mejorar el rendimiento de algoritmos de alto coste computacional. 2024. https://repositorio.utn.edu.ec/
handle/123456789/16350.

8. Malagon E, Rojas A. Analysis and simulation of graphs applied to learning with parallel programming in HPC.
2017 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies,
CHILECON 2017 - Proceedings. 2017;2017-January:1-7. https://doi.org/10.1109/CHILECON.2017.8229646.

9. Kuzmiakova A. Concurrent, Parallel and Distributed Computing. Arcler Press; 2023.

10. Reinders J, Ashbaugh B, Brodman J, Kinsner M, Pennycook J, Tian X. Data Parallel C++. Apress; 2021.
https://doi.org/10.1007/978-1-4842-5574-2.

11. Chirila M, DrAlberto P, Ting H-Y, Veidenbaum A, Nicolau A. A Heterogeneous Solution to the All-pairs
Shortest Path Problem using FPGAs. 2022 23rd International Symposium on Quality Electronic Design (ISQED).
2022:108-13. https://doi.org/10.1109/ISQED54688.2022.9806279.

12. Alghamdi MH, He L, Ren S, Maray M. Efficient Parallel Processing of All-Pairs Shortest Paths on Multicore
and GPU Systems. IEEE Trans Consum Electron. 2024;70:2896-908. https://doi.org/10.1109/TCE.2023.3327328.

13. Intel Corporation. Intel DevCloud for oneAPI. https://devcloud.intel.com/oneapi/get_started/.

14. Intel Corporation. Intel oneAPI DPC++/C++ Compiler. https://www.intel.com/content/www/us/en/
developer/tools/oneapi/dpc-compiler.html.

15. Li X, Sun L, Ling M, Peng Y. A survey of graph neural network based recommendation in social networks.
Neurocomputing. 2023;549:126441. https://doi.org/10.1016/j.neucom.2023.126441.

16. Ju W, Fang Z, Gu Y, Liu Z, Long Q, Qiao Z, et al. A Comprehensive Survey on Deep Graph Representation
Learning. Neural Netw. 2024;173:106207. https://doi.org/10.1016/j.neunet.2024.106207.

17. Jiao L, Chen J, Liu F, Yang S, You C, Liu X, et al. Graph Representation Learning Meets Computer Vision:
A Survey. IEEE Trans Artif Intell. 2023;4:2-22. https://doi.org/10.1109/TAI.2022.3194869.

Data and Metadata. 2025; 4:835 10

https://doi.org/10.56294/dm2025835 ISSN: 2953-4917

https://doi.org/10.1109/PEHC54839.2021.00008
https://doi.org/10.1109/IOLTS.2019.8854386
https://doi.org/10.1016/B978-0-12-816718-2.00008-7
https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial
https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial
https://repositorio.unal.edu.co/handle/unal/57830
https://repositorio.unal.edu.co/handle/unal/57830
https://repositorio.utn.edu.ec/handle/123456789/16350
https://repositorio.utn.edu.ec/handle/123456789/16350
https://doi.org/10.1109/CHILECON.2017.8229646
https://doi.org/10.1007/978-1-4842-5574-2
https://doi.org/10.1109/ISQED54688.2022.9806279
https://doi.org/10.1109/TCE.2023.3327328
https://devcloud.intel.com/oneapi/get_started/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://doi.org/10.1016/j.neucom.2023.126441
https://doi.org/10.1016/j.neunet.2024.106207
https://doi.org/10.1109/TAI.2022.3194869
https://doi.org/10.56294/dm2025835

18. Ji H, Wang X, Shi C, Wang B, Yu P. Heterogeneous Graph Propagation Network. IEEE Trans Knowl Data Eng.
2021;1-1. https://doi.org/10.1109/TKDE.2021.3079239.

19. Li C, Xia L, Ren X, Ye Y, Xu Y, Huang C. Graph Transformer for Recommendation. In: Proceedings of the
46th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY,
USA: ACM; 2023. p. 1680-9. https://doi.org/10.1145/3539618.3591723.

20. Intel Corporation. Find the Shortest Path with a Floyd Warshall Algorithm SYCL* Implementation on GPU.
https://www.intel.com/content/www/us/en/developer/articles/technical/shortest-path-sycl-based-floyd-
warshall-on-gpu.html.

21. Sao P, Lu H, Kannan R, Thakkar V, Vuduc R, Potok T. Scalable All-pairs Shortest Paths for Huge Graphs
on Multi-GPU Clusters. In: Proceedings of the 30th International Symposium on High-Performance Parallel and
Distributed Computing. New York, NY, USA: ACM; 2021. p. 121-31. https://doi.org/10.1145/3431379.3460651.

22. Huerta EA, Khan A, Davis E, Bushell C, Gropp WD, Katz DS, et al. Convergence of artificial intelligence
and high performance computing on NSF-supported cyberinfrastructure. J Big Data. 2020;7:88. https://doi.
org/10.1186/s40537-020-00361-2.

23. Naiouf M, De Giusti AE, De Giusti LC, Chichizola F, Sanz VM, Pousa A, et al. Algoritmos paralelos y evaluación
de rendimiento en plataformas de HPC. XXIII Workshop de Investigadores en Ciencias de la Computación (WICC
2021, Chilecito, La Rioja). 2021:674-9.

24. Pusdá-Chulde MR, Salazar-Fierro FA, Sandoval-Pillajo L, Herrera-Granda EP, García-Santillán ID, De Giusti
A. Image Analysis Based on Heterogeneous Architectures for Precision Agriculture: A Systematic Literature
Review. 2020:51-70. https://doi.org/10.1007/978-3-030-33614-1_4.

25. Vinueza K, Sandoval-Pillajo L, Giret-Boggino A, Trejo-España D, Pusdá-Chulde M, García-Santillán I.
Automatic weed quantification in potato crops based on a modified convolutional neural network using drone
images. Data and Metadata. 2025;4:194. https://doi.org/10.56294/dm2025194.

26. Sandoval-Pillajo L, García-Santillán I, Pusdá-Chulde M, Giret A. Weed detection based on deep learning
from UAV imagery: A review. Smart Agricultural Technology. 2025;12:101147. https://doi.org/10.1016/j.
atech.2025.101147.

27. Moreria R, Pusdá-Chulde M, Granda P, García-Santillán I. Early Detection of Missing Plants in Maize Crops
Through UAV Imaging. 2024. https://doi.org/10.1007/978-3-031-70760-5_40.

28. Chacua B, Garcia I, Rosero P, Suarez L, Ramirez I, Simbana Z, Pusda M. People Identification through
Facial Recognition using Deep Learning. 2019 IEEE Latin American Conference on Computational Intelligence
(LA-CCI). 2019:1-6. https://doi.org/10.1109/LA-CCI47412.2019.9037043.

29. Montenegro S, Pusdá-Chulde M, Caranqui-Sánchez V, Herrera-Tapia J, Ortega-Bustamante C, García-
Santillán I. Android Mobile Application for Cattle Body Condition Score Using Convolutional Neural Networks.
2023. https://doi.org/10.1007/978-3-031-32213-6_7.

30. Ulloa F, Sandoval-Pillajo L, Landeta-López P, Granda-Peñafiel N, Pusdá-Chulde M, García-Santillán I.
Identification of Diabetic Retinopathy from Retinography Images Using a Convolutional Neural Network. 2025.
https://doi.org/10.1007/978-3-031-75702-0_10.

31. Salazar-Fierro F, Cumbal C, Trejo-España D, León-Fernández C, Pusdá-Chulde M, García-Santillán I.
Detection of Scoliosis in X-Ray Images Using a Convolutional Neural Network. 2025. https://doi.org/10.1007/978-
3-031-75702-0_13.

32. Guaichico E, Pusdá-Chulde M, Ortega-Bustamante M, Granda P, García-Santillán I. Mobile app for real-
time academic attendance registration based on MobileFaceNet Convolutional neural network. Data and
Metadata. 2025;4:193. https://doi.org/10.56294/dm2025193.

33. Voloshko A, Ivutin A, Novikov AS. Heuristics for Program Code Optimization in Heterogeneous Systems.

https://doi.org/10.56294/dm2025835

 11 Tituaña K, et al

ISSN: 2953-4917

https://doi.org/10.1109/TKDE.2021.3079239
https://doi.org/10.1145/3539618.3591723
https://www.intel.com/content/www/us/en/developer/articles/technical/shortest-path-sycl-based-floyd-warshall-on-gpu.html
https://www.intel.com/content/www/us/en/developer/articles/technical/shortest-path-sycl-based-floyd-warshall-on-gpu.html
https://doi.org/10.1145/3431379.3460651
https://doi.org/10.1186/s40537-020-00361-2
https://doi.org/10.1186/s40537-020-00361-2
https://doi.org/10.1007/978-3-030-33614-1_4
https://doi.org/10.56294/dm2025194
https://doi.org/10.1016/j.atech.2025.101147
https://doi.org/10.1016/j.atech.2025.101147
https://doi.org/10.1007/978-3-031-70760-5_40
https://doi.org/10.1109/LA-CCI47412.2019.9037043
https://doi.org/10.1007/978-3-031-32213-6_7
https://doi.org/10.1007/978-3-031-75702-0_10
https://doi.org/10.1007/978-3-031-75702-0_13
https://doi.org/10.1007/978-3-031-75702-0_13
https://doi.org/10.56294/dm2025193
https://doi.org/10.56294/dm2025835

2021 31st International Conference Radioelektronika (RADIOELEKTRONIKA). 2021:1-6. https://doi.org/10.1109/
RADIOELEKTRONIKA52220.2021.9420213.

34. Amaral V, Norberto B, Goulão M, Aldinucci M, Benkner S, Bracciali A, et al. Programming languages for
data-Intensive HPC applications: A systematic mapping study. Parallel Comput. 2020;91:102584. https://doi.
org/10.1016/j.parco.2019.102584.

35. Abdullah EA, Ahmed Saleh I, Al Saif OI. Performance Evaluation of Parallel Particle Swarm Optimization
for Multicore Environment. ICOASE 2018 - International Conference on Advanced Science and Engineering.
2018:81-6. https://doi.org/10.1109/ICOASE.2018.8548816.

36. Rangavajhala A, Tadepalli A, Mitra K. Accelerating the Multi-Objective Optimization of Crystallization
Process using High Fidelity Population Balance Model Under NUMBA CUDA Environment. 2024 Tenth Indian
Control Conference (ICC). 2024:428-33. https://doi.org/10.1109/ICC64753.2024.10883754.

37. Alrawais A. Parallel Programming Models and Paradigms: OpenMP Analysis. Proceedings - 5th International
Conference on Computing Methodologies and Communication, ICCMC 2021. 2021:1022-9. https://doi.
org/10.1109/ICCMC51019.2021.9418401.

38. Moreno K. Complejidad de un algoritmo (notación Big-O). https://guias.makeitreal.camp/docs/
algoritmos/complejidad#complejidad-espacial.

39. Rossainz López M. Programación Concurrente y Paralela. 2020.

FINANCING
The authors did not receive financing for the development of this research.

CONFLICT OF INTEREST
The authors declare that there is no conflict of interest.

AUTHORSHIP CONTRIBUTION
Conceptualization: Katari Tituaña, MacArthur Ortega-Bustamante, Pedro Granda, Marco Pusdá-Chulde.
Data curation: Katari Tituaña, MacArthur Ortega-Bustamante, Pedro Granda, Marco Pusdá-Chulde.
Formal analysis: Katari Tituaña, MacArthur Ortega-Bustamante, Pedro Granda, Marco Pusdá-Chulde.
Research: Katari Tituaña, MacArthur Ortega-Bustamante, Pedro Granda, Marco Pusdá-Chulde.
Methodology: Katari Tituaña, MacArthur Ortega-Bustamante, Pedro Granda, Marco Pusdá-Chulde.
Project management: Katari Tituaña, Marco Pusdá-Chulde.
Resources: Katari Tituaña, MacArthur Ortega-Bustamante, Marco Pusdá-Chulde.
Software: Katari Tituaña, MacArthur Ortega-Bustamante.
Supervision: MacArthur Ortega-Bustamante, Marco Pusdá-Chulde.
Validation: Katari Tituaña, Marco Pusdá-Chulde.
Display: Katari Tituaña, MacArthur Ortega-Bustamante, Pedro Granda, Marco Pusdá-Chulde.
Drafting - original draft: Katari Tituaña, MacArthur Ortega-Bustamante, Marco Pusdá-Chulde.
Writing - proofreading and editing: Katari Tituaña, MacArthur Ortega-Bustamante, Pedro Granda, Marco

Pusdá-Chulde.

Data and Metadata. 2025; 4:835 12

https://doi.org/10.56294/dm2025835 ISSN: 2953-4917

https://doi.org/10.1109/RADIOELEKTRONIKA52220.2021.9420213
https://doi.org/10.1109/RADIOELEKTRONIKA52220.2021.9420213
https://doi.org/10.1016/j.parco.2019.102584
https://doi.org/10.1016/j.parco.2019.102584
https://doi.org/10.1109/ICOASE.2018.8548816
https://doi.org/10.1109/ICC64753.2024.10883754
https://doi.org/10.1109/ICCMC51019.2021.9418401
https://doi.org/10.1109/ICCMC51019.2021.9418401
https://doi.org/10.56294/dm2025835

