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ABSTRACT

Depression is a frequent mental condition requiring precise diagnosis in its early onset. Traditional methods 
are less than accurate and occur late. Following these deficits, this investigates the multi-modal data 
fusion and Deep Learning (DL) with the purpose of enhancing accuracy for diagnosis. A new DL model, 
Dynamic Dolphin Echolocation-tuned Effective Temporal Convolutional Networks (DDE-ETCN), is utilized for 
depression diagnosis. Different sources of data, such as physiological signals (EEG, heart rate), behavioral 
indicators (facial expressions), and biometric data (activity levels), are fused. Data preprocessing includes 
wavelet transformation and normalization of biometric and physiological data, and median filtering of 
behavioral data to provide smooth inputs. Feature extraction is performed through Fast Fourier Transform 
(FFT) to obtain frequency-domain features of depression indicators. Feature-level fusion is a good fusion of 
all data sources, which improves the model’s performance. The DDE tuning mechanism improves temporal 
convolution layers to improve the model’s ability in detecting sequential changes. The proposed DDE-ETCN 
model highly improves depression diagnosis when it is developed in Python. The model attains an RMSE 
of 3,59 and an MAE of 3,09. It has 98,72 % accuracy, 98,13 % precision, 97,65 % F1-score, and 97,81 % 
recall, outperforming conventional diagnostic models and other deep learning-based diagnostic models. The 
outcomes show the efficiency of the model, rendering a more objective and accurate depression diagnosis. 
Its higher performance justifies its potential for practical use, providing enhanced accuracy and reliability 
compared to traditional approaches. This innovation emphasizes the necessity of incorporating deep learning 
for enhanced mental health evaluations. 

Keywords: Multi-Modal Data; Deep Learning (DL); Diagnosis; Depression; Dynamic Dolphin Echolocation-
Tuned Effective Temporal Convolutional Networks (DDE-ETCN).

RESUMEN

La depresión es una condición mental frecuente que requiere un diagnóstico preciso en su inicio temprano. 
Los métodos tradicionales son menos precisos y ocurren tarde. Siguiendo estos déficits, se investiga la 
fusión multimodal de datos y el aprendizaje profundo (DL) con el propósito de mejorar la precisión para el 
diagnóstico. Un nuevo modelo DL, Dynamic Dolphin Echolocation-tuned Effective Temporal convolunetworks 
(DDE-ETCN), se utiliza para el diagnóstico de depresión. Se fusionan diferentes fuentes de datos, como 
señales fisiológicas (EEG, frecuencia cardíaca), indicadores de comportamiento (expresiones faci) y datos 
biométricos (niveles de actividad). El preprocesamiento de datos incluye la transformación wavelet y la 
normalización de los datos biométricos y fisiológicos, y el filtrado medio de los datos de comportamiento 
para proporcionar entradas suaves. La extracción de características se realiza a través de la transformada
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rápida de Fourier (FFT) para obtener características de dominio de frecuencia de los indicadores de 
depresión. La fusión a nivel de características es una buena fusión de todas las fuentes de datos, lo que 
mejora el rendimiento del modelo. El mecanismo de ajuste DDE mejora las capas de convolución temporal 
para mejorar la capacidad del modelo en la detección de cambios secuenciales. El modelo propuesto de 
DDE-ETCN mejora el diagnóstico de depresión cuando se desarrolla en Python. El modelo alcanza un RMSE 
de 3,59 y un MAE de 3,09. Tiene un 98,72 % de precisión, un 98,13 % de precisión, un 97,65 % de F1-score 
y un 97,81 % de recuerdo, superando a los modelos de diagnóstico convencionales y otros modelos de 
diagnóstico basados en el aprendizaje profundo. Los resultados muestran la eficiencia del modelo, haciendo 
un diagnóstico de depresión más objetivo y preciso. Su mayor rendimiento justifica su potencial para el uso 
práctico, proporcionando una mayor precisión y fiabilidad en comparación con los enfoques tradicionales. 
Esta innovación enfatiza la necesidad de incorporar el aprendizaje profundo para mejorar las evaluaciones 
de salud mental.

Palabras clave: Datos Multimodales; Aprendizaje Profundo (DL); Diagnóstico; Depresión; Redes Convolucionales 
Temporales Efectivas Sintonizadas con Ecodelación de Delfines Dinámicos (DDE-ETCN).

INTRODUCTION
Depression is established among individuals between the ages of 15 and 25 and is reflected to be a major 

contributor to disability. Using neuroimaging data, researchers have been identifying and mapping the link 
between brain shape and function for years.(1) The depressions affect over 300 million people worldwide, 
as reported by the World Health Organization (WHO). Major psychological suffering, including self-harm 
and suicidal thoughts, can be caused by depression.(2) Negative schemas about oneself, other people, and 
situations are connected to depression. It is maintained that depressed individuals in particular are hyper-
aware of adverse information and try to find constant negative reactions in societal situations. It’s frequently 
believed that depressed individuals have abnormal facial expression recognition behaviors.(3) Depression is 
characterized by a low mood and a loss of interest and excitement, but those who are severely depressed might 
harm themselves or take their lives. To seriously prejudice individuals’ lives, depression also troubles society. 
Reducing the loss of people and society is assisted by early identification of depression. Depression must be 
recognized early and treated.(4) Interaction between the various types of data, such as text, speech, image, and 
sensor data, is permitted for multimodal analysis, which uses the information collected to assess the diverse 
emotions and behaviors of different individuals.(5) There are two types of stress in humans: good and negative. 
Stress that lasts a brief period when a person’s talents are adequate to handle the task is known as positive 
or severe stress. Stress that persists for a long period when a problem beyond a person’s capacity is known as 
negative or chronic stress. Everyone encounters a difficult situation at some time in their lives and responds 
appropriately.(6) Heart Rate Variability (HRV), Electro Encephalogram (EEG), and Multimodal Mood Classification 
(MMC) are three different models and techniques for the determination of an individual’s Mood State (MS). It 
might be tough to combine many multimodal data kinds and show them immediately as an MS. Over the past 
ten years, high-level multimodal information was efficiently fused.(7) The research objective is to enhance the 
examination of depression by joining biometric, physiological, EEG, and auditory data in a DL-based multimodal 
framework. 

Fully Connected Heterogeneous Neural Network (FC-HGNN) is used to classify mood states.(8) It functions in 
two stages: first, a connectome network extracts individual brain properties, followed by multimodal data fusion 
to produce a heterogeneous population graph. While the approach recognizes key biomarker regions for illness 
classification, confirmation on larger datasets is necessary for broader generalizability. The combination of 
Artificial Intelligence (AI) with multimodal physiological inputs is essential for Affective Disorder (AD) detection.
(9) Neuromorphic Computing (NC) chips improve wearable diagnostics by providing energy-efficient methods 
for processing spatial-temporal data. Despite advancements in multimodal AD detection, challenges such as 
hardware constraints and data heterogeneity continue. The research addresses obtainable progress, challenges, 
and future directions to support clinical adoption and further research. An enhanced version of the Multimodal 
Fusion Transformer (MF Former), Spatio-temporal Feature Fusion Transformer (STF2Former), is intended to 
extract temporal and spatial characteristics from resting-state functional Magnetic Resonance Imaging (rs-
fMRI) data for bipolar disorder diagnosis.(10) The STF Aggregation Module (STFAM) enhances multimodal fusion 
and feature extraction, outperforming MF Former and other advanced methods. Despite its efficiency, further 
testing on diverse datasets is required, and its computational complexity limits real-time clinical applications. 
Deep learning (DL) is utilized for depression severity recognition through visual emotion, autonomous auditory, 
and audiovisual emotion sensing.(11) 
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A baseline behavioral variable, including speech prosody and facial expressions, was introduced, along with 
a discussion on trial design and data collection for computer-aided diagnosis. Various baseline attributes were 
analyzed, contributing to a better understanding of automated depression severity assessments. However, real-
world applications and feature generalizability remain challenging, necessitating further clinical validation. 
For major depressive disorder (MDD) diagnosis, Multi-Stage Graph Fusion Networks (MSGFN) was implemented.
(12) Functional connectivity was computed to analyze white and gray matter interactions. A graph convolutional 
fusion module integrated graphs and features at each stage. The experimental results demonstrated MSGFN’s 
superior performance over existing techniques, though additional verification is needed for clinical applications. 
A DL-based multimodal system utilizing EEG and audio data was proposed for MDD classification while maintaining 
privacy.(13) Bi-directional Long Short-Term Memory (Bi-LSTM) was selected as the foundation model due to its 
superior accuracy for EEG and audio processing. Federated learning demonstrated higher accuracy, preserving 
data privacy while ensuring reliable MDD classification. However, real-world validation and further optimization 
are necessary for deployment in edge devices. To overcome troubles with multi-modal feature fusion and long-
term context extraction, a design of multi-modal adaptive fusion transformer network is utilized to calculate 
depression levels.(14)

Audio-visual data was recovered using transformer-based methods, which also incorporated an added 
depression categorization employment to improve evaluation precision. The method achieved a Concordance 
Correlation Coefficient (CCC) of 0,733, surpassing the state-of-the-art approach (CCC = 0,696) by 6,2 %. Further 
refinements are needed for broader practical applications. To address the limitations of the Self-Reported 
Anxiety Scale (SAS) and Self-Reported Depression Scale (SDS), a multimodal framework was proposed for 
improved anxiety and depression analysis.(15) The method integrates facial expressions and movement data 
from video recordings taken while participants complete the scales, enhancing diagnostic accuracy. Combining 
scale data with facial expressions and movements improves consistency with clinical diagnoses. 

The research organization was categorized as following phases, such as phase 2 defined the related research, 
phase 3 denoted the methodology, phase 4 represented the results and the conclusion was depicted in phase 5.

METHOD

Figure 1. Structure of the proposed methodology
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Data gathering from physiological, behavioral, and biometric sources was the measurement of the technique. 
Wavelet transform, median filtering, and normalization were utilized for preprocessing. While feature-level 
fusion enhances the analysis of depression, feature extraction applies FFT to physiological, and biometric data 
and behavioral cues. After that, the effectiveness of the DDE-ETCN model is evaluated and trained. Figure 1 
represents the complete process of the enhanced method.

Data Collection
The required data for the diagnosis of depression was collected from the open source called Kaggle: https://

www.kaggle.com/datasets/s3programmerlead/multimodal-dataset-for-depression-analysis. 
These datasets utilize multimodal data, such as EEG recordings and audio (speech and music), to facilitate 

emotion recognition and depression diagnosis. To examine expressive and cognitive patterns to provide vital 
resources for AI-driven mental health evaluation was completed by the dataset. The programs enhance models 
for repeated and more precise diagnosis.

Data Preprocessing
The development of revolving raw data into a clear, organized, and useful format for examination is 

known as data preparation. To enhance signal clarity, wavelet transform and normalization were used in data 
preparation for physiological and biometric data for depression diagnosis. To remove noise and outliers from 
behavioral data, especially facial expressions, median filtering is used. By standardizing feature ranges, data 
normalization guarantees consistency. 

Wavelet Transform (WT)
A popular data preparation technique for attaining signal characteristics in the frequency and temporal 

domains is WT. It generates time-frequency images that represent signal properties by converting the raw signals 
into time-frequency distributions. An interior operation using WT was executed on the signal and a wavelet 
family was obtained by scaling and translating a mother wavelet. The feature set was advanced and improved 
by the integration of physiological and biometric data, like Heart Rate Variability (HRV), activity levels. WT is 
used in this research for DL-based depression diagnosis through multimodal data fusion. The approach enhances 
feature extraction by converting auditory and EEG inputs into time-frequency representations, which elevates 
the robustness and accuracy of analysis. The mother wavelet is represented by equation (1).
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Where represents the parameter of translation,  is the scale parameter,  has an inverse relationship with 
frequency. The following mathematical classification (equation 2), can be performed to establish the WT of a 
given signal y(s).
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Where the complex conjugate was represented by ψ*.This process evaluates the WT to the Fourier transform, 
which crack down a signal into its entity frequencies. Using the wavelet family, this equation breaks down 
the signal y(s) into a collection of wavelet coefficients. According to the abovementioned equations, family 
wavelets have two different parameters: t ands. By utilizing the potential, the research means to improve 
the diagnosis of depression by integrating biometric, EEG, aural data, and psychological data in a DL-based 
multimodal framework. The signal y(s)is transformed by the family wavelets following the convolution process, 
and it is expected to the two-dimensional (2-D) time and frequency dimensions. Temporal-frequency images 
are generated from one-dimensional temporal data. The selected scales are associated to the frequency range.

Min-Max Normalization
A preprocessing method called normalization regulates feature values to maintain relationships and 

guarantee consistency across various data formats. Normalization develops the integration of multimodal data 
for analyzing depression, which amplifies the model’s capacity to successfully categorize patterns linked to 
depression. In the proposed approach for depression diagnosis, min-max normalization is engaged to preprocess 
physiological and biometric data and make certain consistency across multiple modalities. This technique 
scales feature values with a predefined range, typically [0, 1], preserving the intrinsic interaction within the 
data. The transformation follows the equation (3).
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The normalized value was signified by u’, the imaginative feature value was symbolized by u’, the maximum 
and minimum values of feature B were designated by maxB and minB, and new_maxB together with new_minB 
provided the normalization goal range. By optimizing the combination of multimodal data, this preprocessing 
step improves the model’s capacity to identify patterns associated with depression.

Median Filtering 
A non-linear filtering technique called the median filter generates the output by scheming the median of 

the input values within a secured window size. A spatial median filter was used for two-dimensional data, such 
as image structures of facial expressions, whereas an equivalent window was engaged for one-dimensional 
behavioral data, such as face expression sequences. The median filter was utilized in the research to eliminate 
noise and outliers from behavioral data, resulting in more reliable and responsible facial expression inputs for 
the analysis of depression. By removing salt-and-pepper noise and supporting important structural information, 
the filtering process improves the ability of features utilized in the recommended model. The median filter was 
computed using the equation (4).
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Where Img(w,z) characterizes the output image of the filter at position (w,z), Imgact (w+j, z+i) was the real 
image values, j,i∈Q represents the adjoining pixels and the median computes the median values of all pixels.

Feature Extraction using Fast Fourier Transform
Feature extraction extracts important patterns from multi-modal data sources, was necessary to enhance 

the diagnosis accuracy of depression. To transform time-domain signals into frequency-domain representations, 
FFT is utilized in this research on physiological and biometric signals, such as heart rate, activity levels, and 
EEG. This adjustment makes it possible to recognize the prominent frequency components associated with 
physiological changes conveyed by depression. The process involved in the FFT is given below:

1.	 Fourier coefficient calculation: the Fourier coefficients of a specified signal x(t) in the frequency 
range [0,2π] were at tained through the FFT algorithm. The Fourier transform was represented in 
equation (5).
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Where Eq depicts the frequency domain coefficients, and n is the length of the input signal.

2.	 Magnitude Computation: the entire values of the computed coefficients are achieved as Bq=|Eq|, 
ensuring robust feature representation.

3.	 Matrix Representation: the removed frequency-domain features are permitted into an ordered 
n×m matrix, assist well-organized input into DL models. The transformation is followed in equation (6).
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Where m and n signify the columns and rows of the matrix, respectively. The applied FFT-based feature 
extraction allows the DDE-ETCN model to efficiently identify depression-related signal variations, enhancing 
diagnostic accuracy by leveraging frequency-domain characteristics.

Multimodal Data Fusion based depression diagnosis
To increase the accuracy and reliability of diagnosing depression, a DL architecture that combines multimodal 

data fusion was essential. Conventional diagnostic methods repeatedly rely on subjective, one-modal data, 
including self-reported feedback or clinical assessments, which are exposed to prejudice and unpredictability. 
It is possible to get a more methodical and impartial valuation of depressed trends by methodically integrating 
behavioral, biometric, and psychological data.
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Psychological Data: this includes self-reported cognitive evaluations, mood states, and emotional reactions. 
These components supply an improved acceptance of depression tendencies by offering an approach to mental 
health state and cognitive processes. 

Biometric Data: neurophysiological alterations associated to depression were captured by physiological 
signals, such as EEG measurements, HRV, and galvanic skin response (GSR). These intentional assessments are 
significant markers of emotional deregulation and stress.

Behavioral Information: speech, facial expressions, sleep patterns, and social interactions can show signs of 
depression. This technique was useful for premature detection because subtle behavioral changes frequently 
occur before clinical diagnosis.

The DL models develop feature extraction and pattern recognition by integrating all three data sources, 
which elevates the classification accuracy and resilience of depression. The combined method supports more 
accurate and prompt depression diagnosis by reducing biases, ensuring data integrity, and improving predictive 
capacities.

Dynamic Dolphin Echolocation-tuned Effective Temporal Convolutional Networks (DDE-ETCN) for the 
diagnosis of depression

The DDE-ETCN model is recommended for specific depression identification. This technique integrates 
temporal CNN with optimization stimulated by dolphin echolocation to get better feature extraction and 
classification. The evaluation enhances detection accuracy by efficiently capturing slight behavioral indicators 
and emotional fluctuations. The recommended approach dynamically optimizes network parameters to conquer 
the limitations of current models. The improved framework affords a dependable and flexible way to identify 
depression early and accurately.

Effective Temporal Convolutional Neural Network
A proficient technique for time-series prediction, (TCNs) was particularly useful for applications like voice 

modeling and human activity detection. TCNs’ primary elements were residual connections, causal convolutions, 
and dilated convolutions, which are exceptional for use, such as the real-time recognition of depression. To 
enhance long-term dependency representation while preserving computing efficiency, the ETCN was created. The 
technique was especially helpful for tasks like speech-to-speech depression detection, where precise predictions 
depend on sequential dependencies and minute changes in voice features. To enhance learning stability and 
predictive performance, the ETCN combines residual connections, dilated convolutions, and causal convolutions.

Causal convolution
To avoid future information from affecting the present time step, causal convolution that forecast at time 

t is exclusively based on historical data. For real-time depression identification, where recent and previous 
speech data only available, and this is essential for the detection. Here’s the causal convolution operation 
depicted in equation (7).
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Where the voice signal input at time E is denoted by ws and E stands for the convolution kernel of size l. The 
sequential integrity of speech components is sustained by this configuration, which is necessary for examining 
temporal patterns in the identification of depression.

Dilated convolution
A minimal increase in network depth and dilated convolutions allows the model to capture long-term 

dependencies in speech signals, which is especially functional for detecting depression because emotional and 
prosodic variations occur over long periods. The receptive field Z is given by the equation (8).
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Where M is the number of layers, l is the size of the kernel, and c is the exponentially growing dilation 
factor. The ETCN model learns pertinent speech characteristics effectively and with minimal computing cost 
by employing dilation.

Residual connections
ETCN utilizes residual connections to improve training efficiency and stability by dropping problems, like 

disappearing and bursting gradients. Deeper structures are prepared and made feasible by these connections 
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without sacrificing efficiency, which makes them useful for intricate sequential tasks like depression detection. 
The representation of the residual block is shown in equation (9).
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Where E(w) and conv1 C(w)designate the transformation operations applied to the input speech features 
and the 1D convolution in the residual path, respectively. ETCN uses residual learning to guarantee reliable 
feature extraction from speech data, increasing the precision of depression prediction models.

Dynamic Dolphin Echolocation
Dolphins utilize echolocation, which absorbs making ultrasonic clicks and examines the echoes that return, 

to find the way and locate objects in the environment. To exploit sequential data processing for depression 
detection, DDE approach minimizes the detection range according to received signals. The DDE technique 
suggests how dolphins gradually sharpen their search. The Convergence Factor (CF), which energetically 
modifies the search space, was a mathematical representation of the procedure represented in equation (10).
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Where CFi represents the convergence factor for the variablei, ULi-LLi depicts the upper and lower limits 

of variable i, and 2SDi represents the standard deviation of location values. The approach can dynamically 
regulate its feature extraction progression, which also amplifies the sensitivity to tiny changes in speech and 
physiological data, thusenhancing the classification of depression. By iteratively fine-tuning weights, the model 
optimally discovers temporal relationships, much like dolphins adjust their echolocation signals to accurately 
identify targets. DDE optimization was integrated into the recommended framework to efficiently classify 
behavioral and emotional indicators connected to depression. Improved accuracy and robustness in AI-driven 
mental health evaluation are assured by this method. The DDE-ETCN method improves feature extraction and 
pattern identification by the combination of effective temporal convolutional networks with dynamic dolphin 
echolocation-based optimization. By optimizing multimodal data processing, this fusion enhances the precision 
and dependability of depression diagnosis.

RESULTS
The DDE-ETCN model performed exceptionally well in accuracy, precision, recall, and F1-score when tested 

for depression diagnosis with error estimation using MSE and RMSE. Feature extraction and sequential pattern 
recognition were enhanced by combining multi-modal data fusion, and DDE-based optimization, which improved 
diagnostic dependability.

Experimental setup 
Python 3.8 was utilized to develop the implemented technique with an Intel i7 CPU running on Windows 

11. Some libraries were used for DL. TensorFlow, and PyTorch were utilized for model implementation and 
behavioral data analysis, an OpenCV was used. Matplotlib and Seaborn were used to interpret the model’s 
evaluation metrics.

Performance Analysis
The DDE-ETCN technique’s performance displays the function of multi-modal data fusion to identify 

depression. The technique improves its capability to acquire a range of depression-related characteristics by 
integrating physiological signals (heart rate, EEG), biometric data (activity levels), and behavioral cues (facial 
expressions). The technique outperforms conventional diagnostic methods in terms of prediction accuracy and 
dependability by integrating many modalities. The results emphasize how crucial it is to combine different 
kinds of data to enhance the model performance.

Table 1. Comparison of performance metrics across modalities

Modality Accuracy (%) Precision (%) F1-Score (%) Recall (%)

Psychological signal 98,55 97,45 97 97,12

Behavioral Cues 98 97 96,19 96,55

Biometric Information 97 96,55 96 96,12

Multi-Modal fusion (DDE-ETCN) 98,72 98,13 97,65 97,81
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The DDE-ETCN technique metrics were evaluated across several modalities in table 1. These measurements 
show that the model works with multi-modal data to identify depression.

Accuracy: the accuracy of the technique, which determines the percentage of correct predictions, determines 
its overall performance. The accuracy of the depression, diagnostic technique measures how effectively the 
system recognizes cases of depression guaranteeing accurate and successful predictions based on multi-modal 
data. The depiction of accuracy in figure (2) over different factors was illustrated.

Figure 2. The graphical representation of accuracy

Precision: precision evaluates the percentage of actual positive diagnoses for depression out of all the 
estimated positives. Precision lowers the possibility of false positives and increases dependability in the model 
by undertaking that a diagnosis was made with a high probability of precision. Figure 3 shows the illustration 
of precision over various parameters.

Figure 3. The graphical representation of Precision

Recall: a recall in this technique ensures that the structure constantly identifies depression, reducing false 
negatives and makes certain rapid interference. The model’s recall estimates how well it can identify depressive 
symptoms. Figure 4 shows the compared recall values.
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Figure 4. The graphical representation of recall

F1-Score: the accuracy and recall were stabilized with the help of F1-Score that was used to analyze the 
model’s overall performance. It assured both accuracy and sensitivity when detecting reserved depression 
signals from multi-modal data, making it more supportive in assessing the DDE-ETCN strategy for depression 
diagnosis. Figure 5 depicts the F1-Score comparison over various modalities.

Figure 5. Graphical representation of F1-Score

Evaluation of error metrics 
Multi-Feature Modulation with Attention (MFM-Att) enhances feature extraction by dynamically selecting 

relevant features, but its dependence on single-modal data limits its effectiveness in capturing depression-
related patterns.(16) The implemented method overcomes by incorporating multi modal data, ensuring a more 
inclusive demonstration of depressive states. MAE and RMSE were used in the evaluation to assess the DDE-ETCN 
model’s performance. With the use of multi-modal data, such as biometric data, physiological signals, and 
behavioral cues, these metrics assist in calculating the model’s prediction accuracy for diagnosing depression. 
By leveraging various data sources, DDE-ETCN reduces prediction errors more effectively than the existing 
approach, enhancing model reliability in real-world applications. Through a comparison of the error metrics, 
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the measurement shows the model that decreases prediction errors and guarantees reliability in practical 
applications. Table 2 depicts the comparative analysis of error metrics across methods.

Table 2. Error Metrics comparison for the 
model’s performance

Methods MAE RMSE

MFM-Att(16) 3,18 3,68

DDE-ETCN [Proposed] 3,09 3,59

MAE: a standard absolute feature between the designed values and actual values was developed to examine 
the MAE measure, which approximates the depression detection technique’s accuracy. When analyze a 
depression, a lesser MAE shows that the model’s predictions were concatenated in line with the actual values, 
signifying the implication of multi-modal data fusion and the recommended DL method for precise depression 
identification. Figure 6 depicts the graphical representation of MAE.

Figure 6. Graphical representation of MAE over methods

Figure 7. Graphical Representation of RSME
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RMSE: an important measure for evaluating depression detection algorithms efforts was RMSE, which 
illustrates the difference between predicted and actual results. Better prediction accuracy in the classification 
of depression based on multi-modal data, such as behavioral cues, physiological signals, and biometric 
information, is shown in figure 7. The DDE-ETCN representations were utilized to reduce RMSE to enhance 
clinical decision-making by increasing the reliability of depression diagnosis.

DISCUSSION
To enhance the accuracy and reliability of diagnosing depression by the integration of physiological signals 

(heart rate, EEG), behavioral cues (facial expressions), and biometric data (activity levels). The analytical 
performance of existing approaches was generally insufficient due to the limitations in managing multi-
modal data integration. By integrating temporal convolution with dynamic tuning, the recommended DDE-
ETCN technique effectively gets beyond these limitations and guarantees precise depression detection. The 
DDE-ETCN model outperformed existing multimodal data fusion approaches, achieving higher accuracy (98,72 
%), precision (98,13 %), F1-score (97,65 %), and recall (97,81 %), according to tentative data, which showed 
distinguished gains. The technique established assurance for practical clinical applications by outperforming 
conventional approaches in error measures similar to MAE (3,09) and RMSE (3,59).

Limitation and Future Scope
The executed DDE-ETCN techniques also have some drawbacks but demonstrate major developments in 

the diagnosis of depression. It demands a vast amount of computer power because of its difficulty, and its 
achievement is reliant on the quality and accessibility of multi-modal data, which is not available at all times. 
Additionally, the model might be influenced by data irregularity and noise. Using noise-reduction approaches to 
improve the model’s resilience, making it more capable for real-time application, and expanding its applicability 
to more varied datasets that might be the major purpose of future research. Additionally, investigating more 
problematical DL techniques, such as reinforcement learning, might increase the model’s adaptability.
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