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ABSTRACT

The rapid increase in vehicle numbers has exacerbated challenges in modern transportation, leading to 
traffic congestion, accidents, and operational inefficiencies. Intelligent Transportation Systems (ITS) leverage 
computer vision techniques for vehicle detection, improving safety and efficiency. This paper aims to provide 
a comprehensive review of vehicle detection methods in ITS. Traditional image-processing techniques, 
including Scale-Invariant Feature Transform (SIFT), Viola-Jones (VJ), and Histogram of Oriented Gradients 
(HOG), are analyzed. Additionally, modern deep learning-based approaches are examined, distinguishing 
between two-stage methods such as R-CNN and Fast R-CNN, and one-stage methods like YOLO and SSD. 
Various image acquisition techniques, including Mono-vision, Stereo-vision, Thermal/Infrared Cameras, and 
Bird’s Eye View, are also reviewed. The analysis highlights the evolution from handcrafted feature-based 
methods to deep learning techniques, demonstrating significant improvements in detection accuracy and 
efficiency. One-stage detectors, particularly YOLO and SSD, offer real-time performance, while two-stage 
methods provide higher precision. The impact of different imaging modalities on detection reliability is also 
discussed. Advances in deep learning and imaging techniques have significantly enhanced vehicle detection 
capabilities in ITS. Future research should focus on improving robustness in diverse environmental conditions 
and optimizing computational efficiency for real-time deployment.

Keywords: Computer Vision; Object Detection; Intelligent Transportation Systems; Vehicle Detection; Deep 
Learning.

RESUMEN

El rápido aumento en el número de vehículos ha agravado los desafíos en el transporte moderno, causando 
congestión del tráfico, accidentes e ineficiencias operativas. Los Sistemas de Transporte Inteligente (ITS) 
utilizan técnicas de visión por computadora para la detección de vehículos, mejorando la seguridad y 
la eficiencia. Este artículo tiene como objetivo proporcionar una revisión exhaustiva de los métodos de 
detección de vehículos en ITS. Se analizan técnicas tradicionales de procesamiento de imágenes, incluyendo 
Transformada de Características Invariantes a la Escala (SIFT), Viola-Jones (VJ) y Histogramas de Gradientes 
Orientados (HOG). Además, se examinan enfoques modernos basados en aprendizaje profundo, diferenciando 
entre métodos de dos etapas como R-CNN y Fast R-CNN, y métodos de una etapa como YOLO y SSD. También 
se revisan diversas técnicas de adquisición de imágenes, como visión monocular, visión estéreo, cámaras 
térmicas/infrarrojas y vista cenital. El análisis destaca la evolución de los métodos basados en características 
manuales hacia técnicas de aprendizaje profundo, demostrando mejoras significativas en precisión y 
eficiencia de detección. Los detectores de una etapa, especialmente YOLO y SSD, ofrecen un rendimiento en
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tiempo real, mientras que los métodos de dos etapas proporcionan mayor precisión. Asimismo, se analiza el 
impacto de las diferentes modalidades de imagen en la fiabilidad de la detección. Los avances en aprendizaje 
profundo y técnicas de imagen han mejorado significativamente la capacidad de detección de vehículos en 
ITS. Las investigaciones futuras deben centrarse en mejorar la robustez en diversas condiciones ambientales 
y optimizar la eficiencia computacional para su implementación en tiempo real.

Palabras clave: Visión por Computadora; Detección de Objetos; Sistemas de Transporte Inteligente; Detección 
de Vehículos; Aprendizaje Profundo.

INTRODUCTION
Intelligent Transportation Systems (ITS) are designed to enhance road safety, optimize traffic flow, and 

improve transportation efficiency.(1) A fundamental component of ITS is autonomous vehicles, which rely on 
object detection to perceive and interact with their surroundings. Object detection is a key task in computer 
vision, enabling vehicles to recognize and track objects such as pedestrians, traffic signs, and other vehicles.

Early object detection methods were based on handcrafted features and traditional image processing 
techniques, including the Viola-Jones (VJ) algorithm (Viola and Jones, Histogram of Oriented Gradients (HOG),(2) 
and Scale-Invariant Feature Transform (SIFT).(3) While these methods contributed to initial advancements, they 
suffered from computational inefficiencies and limited adaptability to complex environments. The introduction 
of deep learning revolutionized object detection by automating feature extraction and improving accuracy. 
Models such as R-CNN,(4) Fast R-CNN,(5) Faster R-CNN,(6) YOLO,(7) and SSD enabled real-time detection with 
high precision.(8) More recently, transformer-based models such as Vision Transformer (ViT), DETR, and Swin 
Transformer have further enhanced object detection capabilities.

In addition to algorithmic advancements, sensor technologies play a crucial role in vehicle detection. 
Monovision cameras provide visual data but lack depth perception, which stereovision systems address by offering 
3D spatial awareness. LiDAR technology enhances depth accuracy but remains costly. Given the strengths and 
limitations of these methods, sensor fusion has emerged as a key approach to improving detection robustness 
in autonomous driving applications.

This review analyzes vehicle detection techniques in ITS, comparing traditional image-processing methods 
with modern deep learning-based approaches. It also evaluates different sensor acquisition techniques, 
including monovision, stereovision, and LiDAR, discussing their advantages and limitations. The objective is 
to assess the effectiveness of these methods and highlight the increasing role of multi-sensor integration in 
advancing intelligent transportation systems.

METHOD
A systematic bibliographic review was conducted to evaluate the evolution of object detection methods in the 

context of vehicle detection. The review focused on peer-reviewed articles, conference papers, and technical 
reports available in prominent databases such as IEEE Xplore, Scopus, Web of Science, and Google Scholar. 
Keywords used in the search included “object detection,” “vehicle detection,” “intelligent transportation 
systems,” “autonomous vehicles,” “deep learning,” “sensor fusion,” and related terms. The period covered by 
the review spans from the inception of traditional techniques in the late 1990s through recent advancements 
up to 2021. Inclusion criteria were established to select studies written in English that provided detailed 
methodological descriptions and performance analyses. Articles that met these criteria were further processed 
through a multi-step selection process, which involved an initial screening of titles and abstracts followed by 
a full-text review to ensure relevance and methodological rigor. The final selection was based on the clarity of 
contribution and the extent to which the study addressed the evolution of object detection in vehicle detection 
applications.

RESULTS
The bibliographic review revealed a marked transition from traditional object detection methods based on 

image processing and handcrafted features to modern deep learning-based approaches. Traditional methods, 
while foundational, are increasingly supplanted by deep learning techniques that offer enhanced accuracy and 
speed through end-to-end training paradigms. In particular, the literature shows a pronounced shift toward 
one-stage detectors, such as YOLO variants, which have become prevalent due to their real-time performance 
and favorable speed-to-accuracy ratio. Two-stage approaches continue to offer superior precision but are less 
suited to the stringent temporal demands of autonomous systems. Additionally, the review underscored the 
growing importance of sensor fusion—combining data from cameras, LiDAR, and other sensors—to overcome the 
limitations inherent in individual acquisition modalities. This multi-sensor integration is recognized as a critical 
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enabler for improving detection reliability, especially under challenging environmental conditions. These 
findings justify the need for further investigation into sensor fusion strategies and the continuous refinement of 
deep learning models to meet the evolving requirements of modern transportation systems.

The increasing research interest in object detection is evident from the rise in publications over the past 
two decades. As shown in figure 1, the number of studies on this topic has significantly grown, reflecting the 
rapid advancements and applications of object detection techniques in various domains, including autonomous 
driving and intelligent transportation systems.

Figure 1. Increasing number of publications in object detection from 1998 to 2021. (Data from Google scholar advanced 
search: allintitle: “object detection” or “detecting objects”.(9)

TRADITIONAL METHODS
Traditional methods can be classified into handcrafted and classical machine learning models.

Scale-Invariant Feature Transform (SIFT)
Lowe introduced Scale-Invariant Feature Transform (SIFT);(3) it is used with a classifier to find objects in 

images. SIFT is not an object detection method by itself, but it can help by finding special points in an image 
called key points. These key points are like unique fingerprints of the image and don’t change even if the image 
is rotated, scaled, or lit differently. After SIFT finds these key points, a classifier like SVM, can be used to decide 
what object these key points belong to.

SIFT features are invariant to image-scaling, translation, rotation and changes in illumination. Meher and 
Murty used SIFT features to extract the vehicle features of shaded and non-shaded regions of an image.(10)

Viola-Jones detector
Viola and Jones proposed Viola-Jones detector, consisting of a sequence of classifiers.(11) Each classifier is a 

single perceptron with several binary masks (Haar features). To detect faces in an image, a sliding window is 
computed over the image. For each image, the classifiers are applied.

VJ uses Haar-like features to capture edges and textures, an integral image for quick calculations, and 
AdaBoost to select the most important features. A cascade of classifiers speeds up detection by quickly rejecting 
non-object regions.

Histogram of Oriented Gradients HOG
Dalal and Triggs proposed the Histogram of Oriented Gradients (HOG),(3) a significant improvement over 

previous methods like SIFT. HOG is a feature descriptor designed to capture object shape and appearance by 
analyzing edge orientation distributions. This method converts an image of size w×h×3 (width, height, and color 
channels) into a feature vector of length n, making it suitable for tasks like object detection.

Feature extraction
Feature extraction converts the image into grayscale first, then computes the gradient magnitude and 

direction by applying simple filters, for instance, the Sobel operator. A gradient representation then divides 
an image into small cells, where each cell will collect a histogram of edge directions; hence, these histograms 
are the local shape information in different parts of the image. It then normalizes groups of cells into blocks 
to make the features more robust against illumination changes, as the gradients can be affected by lighting 
conditions. Finally, all the histograms are combined into one feature vector representative of the entire image.
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HOG + SVM
After feature extraction of HOG, classification is done using the Support Vector Machine (SVM). First, HOG 

features are extracted from training images, then an SVM is trained that separates different classes, such as 
human vs. non-human. Once the model is trained, it can classify new images based on their HOG features.

Before the deep learning-based methods dominated object detection, HOG + SVM was widely used. Now-
days, it could be helpful for some use cases, especially real-time, due to efficiency and low computation 
compared to deep learning models.

Comparison and Conclusion
Traditional object detection algorithms often rely on manual feature extraction, which can be time- 

consuming, less portable, and error-prone. These methods, such as SIFT, HOG, and Viola-Jones, require domain 
expertise to design features that are effective for specific tasks. For example, SIFT focuses on scale- invariant 
keypoints, HOG captures gradient orientations, and Viola-Jones uses Haar- like features. While these techniques 
were groundbreaking in their time, they have significant limitations like lack of generalization, sensitivity to 
variations (lightening, viewpoint) and computational costs. Table 1 summarizes some key differences between 
SIFT, HOG and VJ.

Table 1. Comparison of SIFT, HOG, and Viola-Jones

Feature SIFT HOG Viola-Jones (VJ)

Type Keypoint-based Feature descriptor Cascade classifier

Scale Invariance Yes No No

Rotation Invariance Yes No No

Robust to Illumination Yes Moderate Low

Speed Slow Moderate Fast

Common Usage Object recognition Object detection Face detection

Machine Learning Dependency Requires classifier Requires classifier Uses cascades

DEEP LEARNING METHODS
The advancement in deep learning methods revolutionized the field of object detection.

Two Stage Methods
Two-stage approach have devided the process of identifying and locating objects within an image into two 

parts, the first step is region proposal where the system looks for potential regions that might contain objects, 
the second step is object classification which looks at the proposed regions to determine what object exist. The 
most known two-stage object detection methods includes Faster R- CNN which is proposed by Ren et al.(6) This 
method has proven its successful detection of vehicles by leveraging the power of CNN. Han proposed a two-
stage approach that used stereo vision cues to generate potential object positions and then used extended HOG 
features and SVM classifiers to verify all hypotheses,(12) enabling the identification of both people and vehicles 
with high detection accuracy while achieving faster processing speeds.

Qing Luo et al. proposed a multi- scale algorithm for vehicle detection in natural environment, an 
improvement to the Faster R-CNN.(13) They introduced a feature extraction method using Neural Architecture 
Search to find the best way to connect different layers, which helps the model to detect small vehicles. 
The algorithm is tested on UA-DETRAC dataset which is a challenging multi-target dataset for detection and 
tracking. Compared with other algorithms their method achieved good results in the detection. Faster R-CNN 
has insufficient ability to detect small vehicles, the average precision for Fast-RCNN is only 14,16 % but their 
method improved it to 43,64 %.

Djenouri et al. also proposed a two-stage algorithm for vehicle detection, first cleaning the noise from the 
data using the SIFT extractor,(14) then applying the region proposal approach, as they stated it has the goal of 
generating bounding boxes for the regions of interests first, using a convolution neural network. after extracting 
the potential regions that might contain the object, they classified them into vehicles where the refinement 
of the results is done by regression process. Their second experiment outperformed the other mentioned 
algorithms in their paper achieving 0,85 of mAP for handling 1,9 annotated vehicles and 200 000 images while 
the mAP for other algorithms is below 0,75 dealing with the same number of instances.

One Stage Methods
YOLO (You Only Look Once)

YOLO models are a series of one stage object detection models introduced by Redmon et al.,(7) which 
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brought a different approach to object detection by passing the whole image at once through the model, which 
then predicts both the class probabilities and bounding box coordinates. This process starts by splitting the 
image into a grid of NxN cells, for each cell a predefined number of bounding boxes is predicted, with their 
confidence scores and class probabilities, the classes containing the center of an object are responsible for the 
detection of that object. The improved real-time performance of YOLO models attracted the interest of the 
research community to apply it in real-time vehicle detection.

Kang et al. proposed YOLO-FA,(15) which aims to reduce the effect of high uncertainty factors like illumination 
variations, motion blur, occlusion, etc. Using type-1 fuzzy attention (T1FA) where fuzzy entropy is introduced to 
change the feature map’s weights to reduce uncertainty, along with a mixed depth convolution in MetaFormer 
(MDFormer) used as a token mixer to capture multi-scale perceptual fields in order to detect vehicles of 
different sizes. their experiments show that T1FA can bring a 3,2 % AP50 boost on the UA- DETRAC vehicle 
detection dataset, and a 4,2 % and 8,1 % in scenarios of rain and nighttime respectively.

Pan et al. proposed LVD-YOLO,(16) a lightweight vehicle detection model for resource-limited environments, 
this model uses EfficientNetv2 as its backbone reducing parameters and enhancing feature extraction 
capabilities, in addition to a bidirectional feature pyramid structure and a dual attention mechanism for 
efficient information exchange across feature layers improving multiscale feature fusion. Moreover, the 
model’s loss function is refined with SIoU loss to boost regression and prediction performance. Experiments 
on PASCAL VOC and MS COCO datasets show that this model outperforms YOLOv5s, acheiving a 0,5 % increase 
in accuracy along with a 64,6 % reduction in FLOPS and a 48,6 % parameters reduction. Liu et al. proposed 
PV-YOLO,(17) a model based on YOLOv8n for real-time pedestrian and vehicle detection, this implementation 
focuses on making the model light-weight and efficient. For the architecture, receptive-field attention 
convolution (RFAConv) are used as the backbone network, for the neck, a bidirectional feature pyramid 
network (BiFPN) is used instead if the original path aggregation network (PANet) to simplify the feature 
fusion process. Additionally, a lightweight detection head is introduced to reduce the computational burden 
and improve the overall detection accuracy. Finally the lightweight C2f module is utilized to compress the 
model to further decrease the computational costs. Experiments were carried on the BDD100K and KITTI 
datasets, where PV-YOLO achieved accuracies of 54,5 % and 78,9 % for pedestrian detection and car detection 
respectively in the BDD100k dataset, which is a 9,5 % and 6,4 % increase from YOLOv8n results, for KITTI, PV-
YOLO achieved 88,2 % mAP0.5, a 0,5 % over YOLOv8n.

SSD (Single Shot multibox Detector)
Single Shot multibox Detector are another type of one stage models, similar to YOLO models, it predicts 

object class and bounding box boundaries in a single forward pass, starting with feature extraction usually 
using a pretrained model like ResNet or VGG, then its generate multiple scale feature maps to detect objects 
of different scales, next, a set of pre-defined anchor boxes are generated for each feature map location which 
represent candidate boxes of various sizes and shapes, then SSD applies convolutions and fully connected 
operations on each anchor box for classification while at the same time calculating confidence scores of target 
object existance in each candidate box.

Chen et al. proposed an improved SSD algorithm with MobileNet v2 as the backbone feature extraction 
network,(18) channel attention mechanism for feature weighting, and a deconvolution module is used to 
construct a bottom-top feature fusion structure. this algorithm was tested on the BDD100K and KITTI datasets, 
where it achieved average precision scores of 82,59 % and 84,83 %, respectively.

Zhang and Fu presented a method for traffic density recognition based on deep residual network- single 
shot multi-box detector (ResNet-SSD) with feature fusion,(19) the deep residual network is used for feature 
extraction, experiments were conducted on PAS- CAL VOC, MS COCO and custom recorded datasets, on PASCAL 
VOC, model achieved average precisions of 0,817, 0,819, 0,777 and 0,797 for car, bicycle, bus and motorcycle 
classes respectively. for MS COCO the model acheived average precision of 0,343 for small-sized traffic objects, 
and for the custom recorded dataset, the model achieved average precision of 0,913, 0,881, 0,862 and 0,903 
for car, motorcycle, bus and truck classes, respectively.

Transformers
Transformers are a type of deep learning architecture that transforms or changes an input sequence into an 

output sequence. Vaswani et al. introduced in their paper that transformers rely on self-attention mechanisms 
to process the input.(20) In this context, the paper of Sun et al. proposed an algorithm that detects vehicles 
based on swin transformer in hazy images,(21) their main features starts with proposing a dehazing model 
that uses an attention mechanism to dehaze the images using encoding decoding module to extract semantic 
features from the input hazy image, it starts with passing the image by the encoder first to capture essential 
features and then through the decoder to reconstruct the image. after that they tried to solve the problem 
of datasets scarcity in hazy conditions for vehicle detection by collecting and labeling the dataset Haze-Car 
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for training the model and then used Haze-100 dataset for testing it. The next feature is fusing the dehazing 
module and swin transformer, the first one is reponsible for extracting clean features from hazy images, and the 
second module is responsible for object classification and localization. After that they compared the algorithm 
with other object detection algorithms such as YOLO, SSD, Faster-RCNN, etc. The obtained results shows that 
their accuracy is better than the other algorithms achieving an average precision of 91 % on the Haze-Car 
dataset and 82,3 % on the Real Haze-100 dataset.

DETR is a fully end-to-end framework for object detection. Unlike traditional methods such as Faster R-CNN, 
SSD, and YOLO, DETR eliminates the need for predefined region proposals and anchors. It also removes the 
non-maximum suppression (NMS) step. By leveraging a Transformer-based approach, DETR formulates object 
detection as an ensemble prediction problem, directly identifying both the object’s location and category 
within an image. This results in enhanced detection speed and accuracy. Zhang et al. introduced TSD-DETR,(22) 
a lightweight model for traffic sign detection based on RTDETR.

The model achieves a high mean average precision (mAp) of 96,8 % on the Tsinghua-Tencent 100K dataset 
and 99,4 % on the Changsha University of Science and Technology Chinese Traffic Sign Detection Benchmark 
dataset, outperforming existing state-of-the-art models

ACQUISITION METHODS
The acquisition phase plays a fundamental role in vehicle detection by providing the necessary data for 

perception systems. This phase serves as the primary source of environmental information, enabling object 
detection and tracking in real-world driving conditions. The effectiveness of an autonomous system heavily 
depends on the accuracy, reliability, and efficiency of these acquisition methods.(23) We distinguish between 
two primary sensor categories—camera-based systems and LiDAR—each offering unique capabilities for vehicle 
detection. Camera systems include monovision, using a single camera for object detection and classification, 
and stereovision, which employs dual cameras to provide depth perception. Additionally, there are other 
sensors like infrared (IR) and birds-eye cameras. IR cameras excel in detecting heat signatures and are 
particularly useful in low-light or night-time conditions. Birds-eye cameras provide a panoramic view, aiding in 
the detection of objects around the vehicle by combining multiple images. In contrast, LiDAR (Light Detection 
and Ranging) offers high-precision 3D spatial data, providing detailed depth measurements and environmental 
models. Each of these two categories of technologies—cameras and LiDAR— presents its own advantages 
and limitations in terms of accuracy, adaptability to various environmental conditions, and computational 
complexity.

Monovision
Monovision, employing a single camera, is a widely adopted approach in intelligent transportation systems 

(ITS) due to its cost-effectiveness, simplicity, and ease of integration. This method facilitates vehicle detection, 
lane tracking, and object recognition by analyzing visual data from a single perspective. However, a fundamental 
limitation of monovision is its inability to directly capture depth information, making accurate distance 
estimation inherently challenging. This constraint significantly affects applications such as forward collision 
avoidance and autonomous navigation, where precise spatial awareness is crucial for optimal performance.
(24) To address these challenges, researchers have developed monocular vision-based algorithms that leverage 
geometric modeling, machine learning, and deep learning techniques to infer depth from a single viewpoint. 
Methods such as structure-from-motion and supervised depth estimation using convolutional neural networks 
(CNNs) have demonstrated improved accuracy in depth perception, enhancing the functionality of monovision-
based systems.(25) However, these techniques remain susceptible to environmental variations, including lighting 
changes, occlusions, and adverse weather conditions, which can degrade detection accuracy and system 
robustness.

Stereovision
Stereovision, inspired by human binocular vision, is a powerful acquisition technique widely used in intelligent 

systems for depth estimation, 3D reconstruction, and real-time environmental perception. By leveraging two 
spatially separated cameras, stereovision enables precise distance measurement, making it a key component 
in autonomous navigation, robotics, and intelligent transportation systems. Recent research highlights its 
effectiveness in construction automation and vehicle safety systems. In construction machinery, stereovision 
enhances obstacle detection, terrain adaptability, and autonomous mobility, contributing to safer and more 
efficient operations.(26) In intelligent vehicles, it plays a crucial role in real-time road recognition and collision 
prevention, improving driver assistance systems and enhancing road safety compared to monocular vision,(27) 
stereovision provides superior depth perception without relying on expensive active sensors like LiDAR, making 
it a coefficient and scalable alternative.
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Thermal/Infrared Cameras
Infrared (IR) cameras are essential in vehicle detection, particularly under challenging conditions such as low 

visibility at night or in foggy environments. By detecting the thermal radiation emitted by objects, IR cameras 
can identify vehicles and living organisms especially pedestrians by their heat signatures, which makes them a 
valuable enhancement for intelligent transportation systems (ITS). As part of modern vehicle detection systems, 
infrared cameras are widely integrated with other sensors like LiDAR and visible light cameras to improve 
accuracy. Ding et al. demonstrated how IR imaging can aid vehicle and pedestrian detection,(28) particularly in 
environments where visibility is compromised. Their approach fused normalized grayscale with Felzenszwalb’s 
Histogram of Oriented Gradients (FHOG) to robustly track objects, even under adverse conditions. Further, Sun 
et al. proposed an enhanced infrared detection model, Multi-YOLOv8, which addresses the inherent challenges 
of infrared small object detection, such as low pixel size, dim light, and complex backgrounds. Their model 
uses multi-input data, including optical flow and background suppression images, alongside the original infrared 
frames to boost detection performance, especially for small, fast-moving objects like vehicles. While IR cameras 
excel in capturing heat signatures, their limitations include lower resolution compared to visible light cameras, 
which may hinder fine-detail detection. Environmental conditions such as temperature fluctuations can also 
affect the thermal readings, potentially impacting the accuracy of vehicle detection. Despite these challenges, 
integrating IR cameras with deep learning algorithms, such as YOLOv8, and using advanced techniques like 
attention mechanisms and small-object detection layers, significantly improves the reliability of detection in 
diverse scenarios.

Figure 2. Four typical difficult scenes for a regular RGB camera.(23)

Bird’s Eye View
Bird’s Eye View (BEV) is increasingly utilized in autonomous driving and intelligent transportation 

systems (ITS) due to its ability to provide a comprehensive, unobstructed view of the surroundings. The BEV 
representation aggregates data from various sensors, including cameras, LiDAR, and radar, into a unified top-
down perspective. This comprehensive view enhances the detection and tracking of vehicles, pedestrians, 
and other objects by reducing occlusion and scale issues typically associated with perspective views. The 
BEV approach is widely used in path planning and collision avoidance systems. Recent research highlights 
the effectiveness of BEV for real-time vehicle detection. For instance, Wang et al. introduced an efficient 
and robust multi-camera 3D object detection framework based on BEV.(29) Their method relies on ray-
transformation to project multi-camera 2D image features into BEV space, providing a more robust solution 
to sensor calibration errors. By using a multi-level and multi-scale image encoder and incorporating temporal 
fusion across multiple frames, their framework significantly improves detection accuracy while maintaining 
computational efficiency. This approach is particularly advantageous for ITS, where timely and accurate 
detection of surrounding vehicles is critical for safe navigation. Another significant contribution comes from 
Eli- jah S. Lee a and Choi b,(30) who proposed a novel method for vehicle localization using BEV, particularly 
for partially visible vehicles. By incorporating stereo vision, depth information, and geometry, their system 
accurately estimates the longitudinal and lateral distances of vehicles from a partial appearance, ensuring 
effective tracking even when only parts of a vehicle are visible (figure 4). The integration of temporal data 
is another area where BEV methods are evolving. Junhui Zhao emphasizes that by combining multi-source 
sensor data and temporal information,(31) BEV perception systems can overcome the limitations posed by static 
single-frame analysis. Temporal fusion improves consistency in object detection and tracking, especially in 
fast-moving and complex environments. Which proved to be particularly beneficial when monitoring vehicles 
in dense traffic scenarios. Despite these advancements, challenges remain. BEV perception systems rely 
heavily on precise camera extrinsic parameters, and errors in calibration or changes in installation can 
degrade performance. To address this, Wang et al. introduced an extrinsic parameters-free approach,(29) 
which uses neural networks to predict the necessary parameters online, this improving the robustness of 
BEV-based vehicle detection systems.
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Figure 3. Thermal images and a visible light image in snow and thick fog: (a) thermal image (back side view), (b) thermal 
image (front side view), and (c) visible light image (front side view).(32)

Figure 4. Sequence of vehicle localization results.(30)

LiDAR
Since the development of the laser by Maiman,(33) various LiDAR (Light Detection and Ranging) systems 

have emerged, which could be valuable for obtaining surface properties that help in object detection and 
contribute significantly in the field of intelligent driving. LiDAR measures the reflectance of high frequency 
electromagnetic waves in order to obtain the distance to an object. The commonly used wavelength is 905 
nm near-infrared light. which is invisible to humans and also safe due to the absorption. There are 3 ways to 
generate the laser strating with polygon mirror type which is a spinning mirror with multiple faces to direct a 
laser beam across a wide range area then a tilt mirror, and the rotating type. One of the challenges that faces 
this approach is selecting the appropriate type and configuration of the sensors as there are many methods 
exist.(34) Measuring the time that the light takes to travel from the laser diode to the photodiode can cause 
latency problems. As mentioned earlier with the increase of LiDAR types each one has different capabilities 
and characteristics.

The accuracy of the measured distance can vary depending on the sensor type and configuration and also other 
several factors including the wavelength and environmental conditions. Yang et al. focuses on the difference of 
ranging accuracy which means considering both the ground truth data and the estimated informations based on 
the time it takes for the pulses to reflect off objects and return to the sensor in different channels of a vehicle 
borne LiDAR.(35) Tables 2 and Table 3 shows the results obtained under the conditions of different environments 
the channel differences of the corrected ranging results are decreased. The decrease rate reached is 82,7-94,8 
%.
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Table 2. Channel difference comparison of ranging accuracy (unit:m)

Object Sunny Day Sunny Night Rainy Day Rainy Night

Before 0,2790 0,2708 0,2621 0,2770

After 0,0252 0,0183 0,0136 0,0151

Decrease 90,9 % 93,2 % 94,8 % 94,5 %

Table 3. Channel difference comparison of ranging accuracy (unit:m)

RMSE

Object Sunny day Sunny night Rainy day Rainy night

Before 0,1664 0,1557 0,2229 0,1678

After 0,0149 0,0147 0,0385 0,0286

Decrease 91,0 % 90,5 % 82,7 % 82,9 %

Comparison
In vehicle detection systems, acquisition tools play a significant role in the precision and effectiveness of the 

overall detection process. The tools in question typically involve different sensor systems such as Monovision, 
Stereovision, Infrared Cameras, Bird’s Eye View (BEV), and LiDAR. Table 4 and Table 5 represent a comprehensive 
comparison of these acquisition methods based on their key attributes: cost-effectiveness, depth perception, 
computational complexity, and environmental adaptability.

Table 4. Comparison of vehicle detection acquisition tools

Feature Monovision Stereovision Infrared (IR) Bird’s Eye View
(BEV)

Cost Low Medium Medium High

E n v i r o n m e n t a l 
Adaptability

Poor in low-
light, fog, glare

Better than 
monovision, good in 
low-light

Excellent for low-light, 
limited resolution in 
harsh weather

Excellent in fog, rain

Depth Perception None Excellent (3D depth) Limited (heat signatures) Limited (no depth)

Real-Time Processing High Moderate Moderate (sensor fusion 
needed)

Moderate to High 
(fusion needed)

Sensor Complexity Low Moderate (dual 
cameras)

High (fusion required) High (multiple 
sensors)

Detection Range Limited Good (camera 
separation)

Moderate (thermal-
based)

Moderate (wide- 
angle)

Table 5. Comparison of vehicle detection acquisition tools (LiDAR)

Feature LiDAR

Cost  High

Environmental Adaptability Performs well in diverse weather conditions.
Sensitive to rain and fog.

Depth perception Excellent (3D depth estimation).

Real-time Processing capability Moderate to Low (high computational load).

Sensor Integration Complexity High (requires precise calibration).

Detection range Very High (long-range and detailed spatial data).

CONCLUSION
This study examined various computer vision techniques for vehicle detection, highlighting their evolution 

from traditional methods to deep learning-based approaches. Traditional techniques, such as Haar-like features 
and Histogram of Oriented Gradients (HOG), rely on handcrafted feature extraction but exhibit limitations in 
complex environments. In contrast, deep learning methods, particularly one-stage and two-stage detectors, 
have demonstrated significant advancements. One-stage models like YOLO and SSD offer real-time performance, 
making them well-suited for transportation systems, while two-stage models prioritize accuracy at the expense 
of higher computational cost.
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A key trend observed in recent research is the preference for one-stage algorithms, particularly YOLO 
variants, due to their favorable balance between speed and accuracy. Furthermore, the choice of acquisition 
methods plays a crucial role in detection performance. Monovision cameras enable object recognition but lack 
depth, whereas stereovision provides 3D perception. Infrared cameras enhance visibility in low-light conditions, 
while Bird’s Eye View (BEV) techniques mitigate occlusions through multiple camera feeds. LiDAR offers precise 
depth mapping but remains costly. The integration of multiple sensors has emerged as the most effective 
strategy, enhancing detection accuracy, robustness, and adaptability across diverse environments.

Recent studies increasingly emphasize sensor fusion as the optimal approach, surpassing monovision 
and LiDAR-based methods in achieving reliable perception for autonomous and assisted driving. This shift 
underscores the growing recognition of multi-sensor integration as a fundamental component of intelligent 
transportation systems.

Prospects
In the future, optimizing vehicle detection for embedded and IoT systems will enable real-time processing 

on low-power devices, making it more efficient for applications like smart surveillance and traffic monitoring. 
Another key challenge is the detection of similar objects, where vehicles with similar appearances, such as 
those of the same model or color, may lead to misclassification. Addressing this requires more robust feature 
extraction and advanced deep learning techniques. Additionally, vehicle congestion remains a critical issue, 
especially in crowded traffic intersections or parking lots. Enhancing vehicle detection algorithms to perform 
accurately in dense environments will be essential for improving traffic management and urban mobility 
solutions. Furthermore, small object detection presents a significant challenge, as distant or partially visible 
vehicles can be difficult to identify. Developing high resolution feature extraction techniques and multi-scale 
detection approaches will be crucial to improving detection accuracy in such scenarios.
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