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ABSTRACT

This study discusses the application of nonparametric regression for bi-response ordinal logistic modeling
based on the Multivariate Adaptive Regression Spline (MARS) estimator in assessing the risk of diabetes
mellitus and hypertension. The MARS estimator provides greater flexibility by allowing for nonlinearity and
interactions among predictors, making it well-suited for modeling health-related risk factors. Parameter
estimation in this study is conducted using the Maximum Likelihood Estimation (MLE) method. However,
due to the non-linearity of the first derivative of the log-likelihood function, the Berndt-Hall-Hall-Hausman
(BHHH) numerical iteration method is applied to obtain parameter estimates. The complexity of the
likelihood function poses challenges in constructing the Hessian matrix, necessitating an approximation of
the second derivative using the first derivative in the BHHH method. The analysis identifies Age, Body Mass
Index (BMI), and Total Cholesterol as significant predictor variables influencing the risk of diabetes mellitus
and hypertension. Model evaluation is carried out using accuracy, the Area Under the Curve (AUC), and the
Apparent Error Rate (APER). The results demonstrate an accuracy of 82,44 %, indicating strong classification
performance. Additionally, the AUC value of 73,42 % suggests the model falls within the good category, while
the APER value of 17,56 % confirms the model’s stability and reliability. The findings suggest that the MARS-
based bi-response ordinal logistic regression model effectively captures the relationship between significant
risk factors of diabetes mellitus and hypertension.

Keywords: Nonparametric Bi-Response Ordinal Logistic Regression; Diabetes Mellitus; Mars; Bmi; High Blood
Pressure.

RESUMEN

Este estudio analiza la aplicacion de la regresion no paramétrica para el modelado logistico ordinal de
birespuesta basado en el estimador Spline de Regresion Adaptativa Multivariante (SRAM) para evaluar el
riesgo de diabetes mellitus e hipertension. El estimador SRAM proporciona mayor flexibilidad al permitir la
no linealidad y las interacciones entre predictores, lo que lo hace adecuado para modelar factores de riesgo
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relacionados con la salud. La estimacion de parametros en este estudio se realiza utilizando el método de
Estimacion de Maxima Verosimilitud (EMV). Sin embargo, debido a la no linealidad de la primera derivada de
la funcion de log-verosimilitud, se aplica el método de iteracion numérica Berndt-Hall-Hall-Hausman (BHHH)
para obtener estimaciones de parametros. La complejidad de la funcion de verosimilitud plantea desafios en
la construccion de la matriz Hessiana, lo que requiere una aproximacion de la segunda derivada utilizando
la primera derivada en el método BHHH. El analisis identifica la edad, el indice de Masa Corporal (IMC) y
el colesterol total como variables predictoras significativas que influyen en el riesgo de diabetes mellitus e
hipertension. La evaluacion del modelo se realiza mediante la precision, el Area Bajo la Curva (ABC) y la Tasa
de Error Aparente (TEA). Los resultados demuestran una precision del 82,44 %, lo que indica un excelente
rendimiento de clasificacion. Ademas, el valor del ABC del 73,42 % sugiere que el modelo se encuentra en
la categoria de bueno, mientras que el valor de TEA del 17,56 % confirma su estabilidad y fiabilidad. Los
hallazgos sugieren que el modelo de regresion logistica ordinal de birespuesta basado en SRAM captura
eficazmente la relacion entre los factores de riesgo significativos de diabetes mellitus e hipertension.

Palabras clave: Regresion Logistica Ordinal de Birespuesta no Paramétrica; Diabetes Mellitus; SRAM; IMC;
Presion Arterial Alta.

INTRODUCTION

In regression analysis, a nonparametric regression approach is used when the shape of the relationship
between the response variable and predictor variables is not assumed to be a specific pattern.-? This approach
it does not rely on the assumption of a specific curve shape, thus providing greater flexibility.®* The model
estimation of the relationship pattern is derived from the observed pattern in the data.®® The ability of
nonparametric regression to find the shape of the regression curve pattern is supported by the existence of
parameters in each type of nonparametric regression approach which makes the estimation of the regression
curve pattern more flexible.” The nonparametric regression methods that provide flexibility in parameter
estimation have been developed so far, including a spline approach consisting of a truncated spline®?10.11.12,13)
and Multivariate Adaptive Regression Spline (MARS).(415.1® Spline methods is mostly developed because it
has excellent flexibility and interpretation among other nonparametric regression methods or approaches.
According to 7, spline is a polynomial function that has segmented properties. With this segmented nature,
splines are able to provide more flexibility than ordinary polynomials.® Therefore, splines have statistical
properties that are useful for analyzing relationships in regression.(%2%.2 Spline in nonparametric regression
continues to evolve until the adaptive model, where this model has the ability to adjust better in following the
shape of the data pattern. The adaptive computation approach in the development of nonparametric regression
has been much in demand and applied, one of which is Multivariate Adaptive Regression Spline (MARS).(%

The MARS method is an adaptive approach that combines spline and Recursive Partitioning Regression (RPR).
15 When there are several predictors involved, the spline approach is limited in its ability to determine the
location and quantity of knots employed. The knot selection process on the truncated spline will produce
so many combinations regarding the number of predictors, knot positions, and also the number of knots.
Since the MARS determines knots through an adaptive process rather than seeking them individually from the
combination, it can overcome the shortcoming of the truncated spline in this instance. The adaptive process in
the MARS is carried out using a stepwise algorithm, consisting of forward and backward steps. In the forward
stepwise process, the MARS method constructs a model by incorporating truncated spline basis functions (knots
and interactions) to achieve the maximum number of base functions. The backward stepwise process then
refines the model by selecting the most influential basis functions from the forward stepwise stage, aiming
to create a more parsimonious model. This selection is based on minimizing the Generalized Cross Validation
(GCV) value to improve the estimation of the response variable.® The MARS also has the benefit of being
appropriate for high-dimensional data instances since it can handle interactions between predictor variables
represented by basis function. The MARS model is able to cover the weakness of the RPR model which is not
continuous at the knot, because the basis function in the selected MARS model is polynomial with a continuous
derivative at each knot point.?”

The MARS modeling has been developed depending on the type of response can be divided into continuous
and categorical response regression models. According to " mentioned that the MARS is also a modern
statistical classification method that has utilized the flexibility of the model and estimated a distribution
within each class that ultimately provides a clustering rule. Thus, the MARS is also suitable for the case of
calculating the accuracy of data classification that requires the response variable to be categorical. The MARS
method with categorical responses (binary and ordinal) can serve as a modern statistical classification method,
where classification in the MARS is based on the logistic regression approach. Logistic regression is an analysis
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used to see the relationship between categorical response variables and categorical and continuous predictor
variables.? The logistic regression equation is obtained from the estimated form of the probability function
of a success event or a certain event occurring, which then on this probability function is carried out logit
transformation so that a logit link function is formed. This logit link function is the MARS model, or referred to
as the logit MARS model.

Previous researchers who examined the MARS method with a single response in the form of categories
include Kishartini et al. who applied the MARS method to classify work status, Annur et al.?¥ who applied the
MARS method to determine the factors that influence student study period, Binadari et al.® who compared
logistic regression modeling with MARS applied to the response of major interest, and Serrano et al.?® who
applied the MARS method to identify gender differences. Meanwhile, previous researchers who applied the
MARS approach with a single continuous response include Nisai and Budiantara®” who modeled Dengue Fever
(DHF) cases using survival analysis with the MARS approach, Otok et al."™® modeled the lecturer performance
index using survival analysis with the MARS approach, and Wang et al.® analyzed the probabilistic stability of
earth dam slopes using MARS.

The studies mentioned above developed or applied the MARS method in the case of a single response only.
In the real cases, we often find cases where we must employ the MARS approach with more than one response,
such as bi-response MARS and multi-response MARS models. The bi-response or multi-response regression model
consists of several equations with the assumption that there is a correlation between responses. In this case, we
can accommodate this correlation by using a covariance matrix that is used as a weight matrix when estimating
model parameters.?® Several studies that discuss and apply the MARS method to the case of multi-response
regression models are modeling welfare indicators in Java using bi-response MARS by Ampulembang et al.?,
developing the MARS model in the form of a multivariate response and making its application by Milborrow®?,
development completion of continuous bi-response nonparametric regression models using the MARS method
by Ampulembang®", and modeling bi-response MARS using earth package for regression problems by Eyduran et
al.®2, Therefore, the novelty of this research lies in the theoretical development of parameter estimation in
the bi-response ordinal logistic nonparametric regression model using the MARS estimator. Furthermore, it will
be developed from the application aspect, namely designing algorithms and programs to apply the parameter
estimation theory of the ordinal logistic nonparametric regression model based on the MARS estimator in
modeling the risk of non-communicable diseases such as diabetes mellitus and hypertension.

Hypertension and diabetes mellitus are non-communicable diseases that are the main burden that the
Indonesian government must solve, considering that the prevalence and causes of death due to these diseases
are increasing every year.®® Diabetes mellitus is a serious chronic disease that occurs when the pancreas does
not produce enough insulin or when the body cannot effectively use the insulin it produces.®¥ The global report
on diabetes explains that the number of cases and prevalence of diabetes mellitus has continued to increase
over the past few decades.® This data is supported by the Riskesdas 2018 which shows that diabetes mellitus is
ranked fourth in the group of non-communicable diseases in Indonesia. Based on the gender category, people
with diabetes mellitus in Indonesia are more female (1,8 %) than male (1,2 %). The data above show that age
and gender are factors that are thought to affect the risk of diabetes mellitus. In addition, physical conditions
such as body mass index (BMI) determined by weight and height, cholesterol and uric acid are also thought to
affect the risk of diabetes mellitus. In patients with type-2 diabetes mellitus, an increase in blood sugar levels
often occurs along with an increase in blood pressure.®® According to Waeber et al.®”, hypertension is a major
risk factor for diabetes mellitus. Diabetes mellitus and hypertension cannot be cured but can be controlled,
and there is a significant relationship between them. Thus, theoretically and scientifically, diabetes mellitus
and hypertension have a correlation (relationship).©®

These studies mentioned above generally model hypertension and diabetes mellitus risk data separately as a
uni-response regression model, there is only one study by Hardine et al.®® which modeled diabetes mellitus and
hypertension as a bi-response nonparametric regression model. The research about nonparametric regression
modeling conducted by Hardine et al.®®, has not accommodated interactions between predictor variables and
the number of predictor variables is only one. Meanwhile this research uses the MARS approach in estimating the
parameters of the nonparametric logistic regression model which is able to accommodate interactions between
predictor variables through the basis function and also the number of predictor variables is more variety. Based
on this fact, it is important to model diabetes mellitus and hypertension as a bi-response case, because there
is a correlation between these two variables. Factors that are thought to affect the risk of diabetes mellitus
and hypertension and the interaction between factors will be accommodated in the nonparametric bi-response
ordinal logistic regression model based on the MARS estimator. On the other hand, the MARS method is also
able to analyze the classification accuracy of the resulting nonparametric regression model. This modeling is
expected to be useful for the government and stakeholders in the health sector in determining preventive
effort policies to minimize the incidence of diabetes mellitus and hypertension in Indonesia, while for the
community it is expected to add insight in managing lifestyles to avoid diabetes mellitus and hypertension.
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METHOD
Data Set and Research Variables

The data used in this study are secondary data obtained from the website: https://www.kaggle.com/
datasets/tourdeglobe/fatty-liver-disease. The data is a dataset collected in a patient program undergoing
medical examination, specifically for patient data who are declared to have diabetes mellitus and/or
hypertension.

Table 1. Dataset of DM Cases

Patient l:::ﬁit:: Hypertension Age (X.) Gender Body Mass Total
Number Status (V,) Status (Y,) 1 (X,) Index (X;) Cholesterol (X,)
1 1 2 53 2 34,95 103

1 2 33 2 31,02 102

1 2 23 2 25,91 144
664 3 2 32 2 48.23 200

Details about the dataset utilized in this study are given in table 1. The response variables in this dataset
include the presence of hypertension and diabetes mellitus. Next, we present information on factors that
are believed to affect diabetes mellitus and hypertension, including age, gender, body mass index, and total
cholesterol users. There are 664 patients in this data set. Here, category 1 denotes normal, category 2 denotes
stage-1 diabetes mellitus, and category 3 denotes stage-2 diabetes mellitus. The diabetes mellitus status is
as the first response variable (Y,) on an ordinal scale.®” The second response variable, namely the status of
hypertension (Y,) is on an ordinal scale, where 1 represents normal, 2 represents stage-1 hypertension, and 3
represents stage-2 hypertension.®® There is an interval scale for the age variable (X,). Next, category 1 denotes
male and category 2 denotes female, and the gender variable (X,) has a nominal scale. Furthermore, the body
mass index variable (X,) and total cholesterol X, have a scale of ratio.

Bi-response Ordinal Logistic Regression

When the response variables are polychotomous and have an ordinal scale, ordinal logistic regression is
a regression analysis used to examine the relationship between the predictor and response variables.“) The
cumulative logit model can be used for ordinal logistic regression. In this model, the ordinal response variable
Y is expressed in cumulative probability. The cumulative probability Y is expressed as follows:??

exp(6, + 3P, a;x;;)
1+ exp (QT + Z?=1 a]-xﬁ)

P(Y <7lX;) = n(x) = (1)

Where x,=(x1i,xzi,...,xpi ) : the i-th (i=1,2,...,n)observation predictor variable for each p predictor variable,
while r=1,2,...,r is the response variable category. Equation (1) is a proportional odds model, where each
cumulative logit model has a different intercept 8 but the same effect a;.

Estimating ordinal logistic regression parameters involves decomposing them using the logit transformation
P(Y=r|X; ) in equation (1), which is described by the following equation:®

_ P(Y <rlX;
g-(x) =logitP(Y < r|X;) = In (%) =0, + z ajxji (2)

j=1

For example, the cumulative probability of the r -th category response is explained by the following
equations, if there are three response categories, namely r=1,2,3.

exp(BZ +Z§?:1 a]-x]-i)

1+exp(92+Z§':1 a]-xﬁ)

exp(el +Z§?:1 ajx]-i)

1+exp(91 +Z§':1 ajx]-i)

P(Y <1|x) = and P(Y < 2|x;) = (3)

If equation (2) is applied to three response categories, namely r=1,2,3, then the cumulative logit model for
each response category can be described as follows:
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g (x) = ln(MJ = ln[MJ =0, +(a]X, +a,X, +...+apo)

1—P(Y§1|x) P(Y>1|x)
P(Y<2]x) P(Y <2]|x) @
n hS X = X
g, (x):ln(m]=ln(m]:02+(0{1X1+a2X2+...+apo)

The bi-response ordinal logistic regression model develops the ordinal logistic regression model, where two
ordinal scale response variables are correlated. For example, the first response variable is denoted by and has
as many as categories, while denotes the second response variable and has as many as categories, then the
bi-response ordinal logistic regression model is expressed as follows:“"

3,00 = logit(P(1; < al:0)) = logit(F,(¥)) = In (%) = 0,0 +alx
¢ (5)
F
3:0) = logit(P(¥, < b|x)) = logit(Fy () = In (%) = 6, + alx

Where a=1,2,...,A-1 and b=1,2,...,B-1; {9 a,0,b,A 1} is intercept parameters that meet the requirement
0,,<0,,5...<0,a and 8,,<0,,<...<0, b X= [(x X, )]AT1s a vector of predictor variables; a,=[(a,, a,,...a,k )]" and
a [ 51 Gy @ K)]T are vetors of parameters F .. (X)=P(Y,<a|x) is the marginal cumulatlve probab1l1ty of variable
Y being less than or equal to category-a with respect to x; and F  (x)=P(Y,sb|x) is the marginal cumulative
probability of variable Y, being less than or equal to category-b with respect to x.

Thus, the marginal cumulative probabilities F_, (x) and F  (x) are obtained as follows: "

exp(6p+al x)
1+exp(f,p+alx)

exp(01g+alx)
1+exp(B1q+alx)

F,.(x) = and F,,(x) =

(6)

The Maximum Likelihood Estimation (MLE) method can be used to estimate parameters for the bi-response
ordinal logistic regression model.“? For example, suppose that (X, 1,%,1,...,X,y,1,y,i )is paired data from n
independent random samples, (x1i,xzi,...,xpi ) is data from predictor variables, and (y,i,y,i ) is data from two
categorical response variables on an ordinal scale. Next, Y, has as many as A categories, and Y, has as many as
B categories. Then, there are Y, random variables with a multinomial distribution for each probability of _.
Thus, the joint probability density function between variables Y, and Y, is given by the following equation:

B
P(Yi1i = Y11ir--+» Yapi = Yapi) = H”Zz‘ii’i (7)

Hence, the likelihood function is obtained as follows:
o =[T[ [ ] e
i=1 a=1 b=
Where, u=[6," 8,182 8,2a " a"a,"...aVa?a,® a,®...a @]
, NN Qg
The principle of the MLE method is to estimate the parameters of the bi-response ordinal logistic regression

model by maximizing the likelihood function. To simplify the calculation, a logarithm transformation is
performed on the likelihood function as follows:

€p) =InL(p) = Zn: zA: i Yabi IN(Tap;)

i=1a=1b=1 9)

= Z[Yﬂi Inmyy; + Y12 N+ +Yapi In ”ABi]
i=1
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Based on equation (9), the next step is to perform the first partial derivative of the ln-likelihood function
with respect to the parameters, and then set it to zero. The results of the first partial derivative obtained are
nonlinear functions on the parameters to be estimated, so a numerical method is needed to obtain parameter
estimates, namely using the Berndt-Hall-Hall-Hausman (BHHH) iteration method.

Multivariate Adaptive Regression Spline (MARS)

The MARS is a nonparametric regression method with an adaptive approach that combines truncated
spline regression and RPR. The MARS method can overcome the weaknesses of truncated splines because the
determination of knots in the MARS is done through an adaptive process. The adaptive process in the MARS was
carried out using a stepwise algorithm, which included forward and backwards. The MARS also overcomes the
weaknesses of the RPR method, which is not continuous at the knot point. The advantage of the MARS model is
that it can model high-dimensional data and accommodate interactions between predictor variables. The MARS
model is obtained from the forward and backward stepwise algorithm as follows:

+ Z%:l Am Hfilll [Skm (xv(k,m) - tkm)] (10)

Where a, is main of basis function, a_ is coefficient of basis function m, M is maximum of basis function

(non-constant basis function), K is degree of interaction, X,om) is predictor variable, t,__is knot point, and:
P {1 if the data is on the right hand side of the knot point
km =11 if the data is on the left hand side of the knot point

The MARS is also a modern statistical classification method that utilize model flexibility and estimates a
distribution within each class, ultimately providing a grouping rule.“ Classification in the MARS is based on the
logistic regression approach. Thus, the logit link function of the MARS model is as follows:("

f(x) = logit P(Y < rlxj) = Q + Z%:l Om Hlk(ﬂ:q[skm(xv(k,m) - tkm)] (1 1)

In the MARS, selecting the optimum (the best) model is based on the Generalized Cross Validation (GCV)
value of the model has the most minimum value among the other models.“¥ The GCV function is given as
follows:

AR YR [fGo-fuGo]

GCV (M) = e~ ey

(12)

Where f(x,) is response variable, f, (x,) is the estimated value of response variable on M basis function, n

is the numbe1r of observation, K is degree of interaction, C(M)=C(M)+dM, d is value when each basis function
reaches the optimization that are d=2 (for additive model) and d=3 (for interaction model).

Evaluation of Classification Procedures

Table 2. The (9x9)-Confusion Matrix

Prediction
Actual
y11 y12 y13 yZ1 y22 y23 y31 y32 y33

y11 n1111 n11,12 n11,13 n11,Z1 n11,22 n11,23 n11,31 n11,32 n11,33
y1Z n1Z,11 n12,12 r112,13 n12,21 n1Z,ZZ n12,23 n12,31 n1Z,3Z n1Z,33
Yi3 r‘13,11 n13,12 n13,13 n13,21 r‘13,22 n13,z3 n13,31 n13,32 r‘13,33
Yo n21,11 n21,12 nz1,13 nz1,z1 n21,22 n21,23 nz1,31 nz1,32 n21,33
y22 n22,11 n22,12 n22,13 n22,21 nZZ,ZZ n22,23 n22,31 n22,32 n22,33
y23 n23,11 nZ3,1Z n23,13 nZ3,21 n23,22 nZ3,Z3 n23,31 nZ3,3Z n23,33
Y3 r‘31,11 n31,12 n31,13 n31,21 r‘31,22 n31,z3 n31,31 n31,32 r‘31,33
y32 n32,11 n32,12 n32,13 n32,21 n32,22 n32,23 n32,31 n32,32 n32,33
y33 n33 1 n33 12 n33 13 n33 21 n33 22 n33 23 n33 31 n33 32 n33 33

Source: Fahmy“®
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Classification procedure evaluation is an evaluation that looks at the chances of classification errors made by
a classification function.“ A confusion matrix is formed to evaluate the strength of the model obtained in the
classification procedure. The confusion matrix is a table that summarizes the performance of the classification
model.“ The (9x9)-confusion matrix is presented in table 2.

The elements of the confusion matrix are used to find several values of the model’s strength, Area Under
Cover (AUC), and APER.“" The Area Under Cover (AUC) measure can evaluate classification with unbalanced
data cases. If the data has three or more categories, the average AUC calculation can be used as follows:“®

2
AUCrotqr = m2a<b AUC(a,b)

AUC(a, b) = Auc(a|b)2+AUC(b|a)

(13)

Where c is the number of class:

AUC(alb) = ——
NabmntNabmmn+1)t " tNabmgq
AUC(bla) = Rabmr

NabmntNab+1)bmnt " tNagmn
The AUC value criteria are presented in table 3.4

Table 3. AUC Value Criteria

AUC Value Criteria
0,9<AUC<1,0 Excellent
0,8<AUC<0,9 Very Good
0,7<AUC<0,8 Good
0,6<AUC=0,7 Sufficient
0,5<AUC<0,6 Bad
AUC<0,5 Test is not useful

Source: Simundi¢“?

Furthermore, the test statistics determine the extent to which the classified groups can be separated
using the existing variables that have stability in classification accuracy, APER (Apparent Error Rate) is used.
The APER value states the proportion of samples that are incorrectly classified by the classification function
formulated as follows:®?

Total nmber of misclassified samples

APER(%) =

(14)

Total number of samples

Analysis Method
This research follows these stages for data analysis:

a. Conduct data exploration from response and predictor variables to determine each research
variable’s descriptive statistics.

b. Conducting dependency testing between response variables using the Mantel-Haenszel test.

c. Determining the MARS bi-response ordinal regression model.

d. Forming basis functions for each response in the MARS bi-response ordinal regression model.

e. Dividing the data into two parts, namely in-sample data (90 % of the total data) and out-sample
data (10 % of the total data).

f. Determining the nonparametric bi-response ordinal logistic regression model with the MARS
estimator based on the results of step (d) using in-sample data.

g. Estimating parameters from the bi-response ordinal logistic regression model with the MARS
estimator for each response through Berndt-Hall-Hall-Hausman (BHHH) iteration.

h. Evaluating the classification procedure on in-sample data through AUC (according to equation
(13)), and APER values (according to equation (14)).

i. Evaluating the model on out-sample data by determining the 9x9 confusion matrix to obtain
accuracy, AUC, and APER values.
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RESULTS AND DISCUSSION
This section discusses the estimation of bi-response nonparametric logistic regression models with the MARS
estimator and implements the estimation theory on diabetes mellitus and hypertension risk data.

Estimation of Bi-response Ordinal Logistic Nonparametric Regression Model Based on MARS Estimator
Given paired data (x11‘,x2i,...,xpi,y1i ) and (x1i,x2i,...,xpi,yzi ) with i=1,2,...,n, X,,X,,...,X_is predictor variable
and y, “,” vy, is response variable, n indicates the number of observations. Suppose the relationship between
the predictor and response variables is expressed in a regression function f, whose form is unknown and can be
approached using a bi-response ordinal logistic regression model. In that case, the following model is obtained:

Yii = fl(xli:xZi' . --.xpi) + &1

(15)
2i = fz(xu.le', . "'xpi) + &y

The regression functions f, and f, in equation (15) are nonparametric regression functions whose forms are
assumed to be unknown because these functions are approximated by the MARS regression function as follows.
The MARS regression function for response 1 (f,) is written as follows in equation (16):

Km,

1 1
f(l)(xli,le-,...,xpl = a(() )+ z ( ) Sklml- (xv(kl.ml)i - tklml)] (16)

my=1 k1—1

Where:
P n
xv(k1,TI’L1) € {xj}j=1’ tk1TI’L1 € {xv(k1,Tn1)i}i=1 ymy = 1,2,..., Ml

Ifs,,.,=+1, then:

Xpkomy); — tkeymyr M Xpkymy), > teym
+(xv(k1,m1)i _tk1m1) —{ M) 1mq 1mi); imy

+ 0, otherwise

If s, =1, then:

tkymy — Xv(ky,my) if tkymy > Xv(ky,my);
_(xv(kpmﬂi - tk1m1)+ -

0, otherwise

The MARS regression function for response 2 is written as follows in equation (17):

KM,

2 2
f(z)(xli:xZi:---:xpl = 0((() ) + Z @) 1_[ Skzmz (xv(kz my) tkzmz)] (17)

my=1

Where:
p n
xv(kz,mz) € {xj}j=1l tkzmz € {x‘li(kz,mz)i}i=1 yMy = 112; ey M2
Ifs,,.,=+1, then:

+(X L —t ) = xv(kz,mz)i o tk2m2’ ]lka xv(kz'mz)i > tkzmz
v(kymap)i T tkomay ) 0, sebaliknya

If s, =1, then:
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_ tkzmz - x”(kz'mz)i’ jika tkzmz > xV(kz’mz)i
_(xv(kz ma)i k2m2)+ - 0, sebaliknya

Equation (16) and equation (17) then obtain the nonparametric bi-response regression function with the
MARS estimator as follows:

f(l)(xlil xZil"'lxpl - a(()l) + Z a(l) Bmll(lc L—)

m11

f(z)(xli,xZi,...,xm = a(()z) + Z a(z) By, (x,1)

my=1

Next, the bi-response ordinal logistic regression model will be defined with the MARS regression function
estimator, which has been described in equation (18).
Ordinal logistic regression model with MARS estimator for response variable 1 in equation (19):

. P(Y<1) P(Y<i
g'()(x)_ln(l—P(Ysl))_lnP(Y>1)

P(Yzl) ) (1)KMl
ZIHP(Y:2)+P(Y=3) l: +Za H|: kﬂ"l( v(kymy) tklm‘):|:|
P(Y<2) P(Y£2)

" iP(r<2)) >2)

P ertr ., o+l B T 00

(19)

For m =P(Y=1);m,=P(Y=2);m,=P(Y=3) to response 1, it can be written as follows:

K,
st 1 1 1
lnn- 4+ = 91( . ( . + z ) n[skﬂnl (xv(k1 my) T tk1m1)]
2 3 m1—1 kl—l 20
o 1 (0
T+ 1 1 1
In T = 92( . ( ) z ) 1_[ [Sk1m1 (xv(k1 my) T tk1m1)]
3 mqy=1 k1—1

Meanwhile, the ordinal logistic regression model with the MARS estimator for response variable 2 is written
in equation (21):

~(2) B ( 1) P(YSI)
& ( )_ln( P( - )) =In (Y>1)
~ P(Y=1) N o
_1HP(y:2)+p(Y:3) [ +Za _l[skzmz( (kz,mz)_szmz)ﬂ )
e (x) == PY<2) 2
2 (1I-P(r<2)) " P(r>2)

DD L S (o]
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For m =P(Y=1);m =P(Y=2);m,=P(Y=3) to response 2, it can be written as follows:
1 2 3 p

M Km,
US 2 2 2
In = 61( ) + a(() ) z ) 1_[ Skomy: (xv(kz,mz) tkzmz)]
%) + T3 e

(22)

T
3 my=1

M; KMz
T+, 2 2 2
n——= 92( ) + a(() ) + Z ar(nz 1_[ [Skzmz' (xv(ermZ) — tkzmz)]]
k2:1

Next, to determine the likelihood function of the ordinal bi-response random variable, nine random variables
are formed, including (y,,i,¥,,1,Y,51,¥,,1,Y,,1,Y,31,Y5,1,¥5,1,Y551), which follows a multinomial distribution with each
probability (mwi,m i, mi,m i,mi,mim im.im.i). The joint probability density function of variables Y1 and
Y2 is:

P(Y11i=Y110 Y12i=Y12i Y13i=Y130 Y21i=Y21ir Y22i=Y22i» Y23i=Y230 Ya1i=Y310r Y32i=Y32is Y33i=Y33i)

Yi1i . V12i . Y13i.Y12i.Y22i..Y23i..Y31i.YV32i.Y33i
= T1qi Mg Ty3i o1 Mo2i T3 315 T32i T334

(23)

For estimating the parameters of the bi-response ordinal logistic regression model with the MARS estimator
using the Maximum Likelihood Estimation (MLE) method. The principle of the MLE method is to estimate the
model parameters, namely:

—_[p® €)) @ @ 1 1 €Y} @® 2 2 () @’
ll—[@l 0, 0, 0, a(()) ai) a, c a(()) ag) a, PR ]

By maximizing the likelihood function. Here, the likelihood function of the y parameter can be written:

_ Ymni _— Yi1i 3’121 3’131’ Yi12i..Y22i.YV23i..Y31i..Y32i..Y33i
L(w = | || || | Tnni | | Typi Mag; Mig; Moq; Mopi Mozi May; Map; Maz (29

i=1 m=1n=

To simplify the calculation, an In transformation is performed on the likelihood function to form the following
In-likelihood function:

((i)=InL(i)=)

< |:ylli Inz,, +y, Inz, +yy,Inz, +y,, Inz,, +y,, Inz,,
-1

Yy N7y 4y, In 7y, + vy In 7y, + vy, In 7y, (26)

The next step, the In-likelihood function in equation (27), is performed as the first partial derivative on the
parameters to be estimated and then equated to zero. The results of the log-likelihood function derivative on
the parameters are described as follows:

a. The first derivative is obtained from the estimated results of the 6, parameter as follows:

}’111 _Yi2i Yaui 3’221' Yi2i  Yi3i  Y22i | YV23i
ae( ) P11i + - - + P12i +
n ”111 Ty Toqi 7T22i Ti2i T13; T22i T3¢
(1) y W14 (27)
96! 13i }’231
”131 7T23z

Where, w, =F, (1-F, ).

b. The first derivative is obtained from the estimated results of the 6, parameter as follows:
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2w — ym [(M_M_M‘FM)PZH""(M_M_M"'M)Pzzi"'(m_u)]wzi (28)

6951) T A=t T21i  T22i T31i T32i Tl22i  T32i  T32i T33§ 230  T33i
Where, w, =F, (1-F, ).
c. The first derivative is obtained from the estimated results of the 6, parameter as follows:

FY . . . . . . . . . .
(W _ n [(J/nL _ Yi2i_ Yaai g J’zz:) Ty + (3’211 _ Y22i _ Yaui g J’321) Tyyi + (J’31L _ J’321)] Suvi (29)

2) T . : : . . . . : : :
aei ) T11i Tazi T21i T22i T21i  T22i  T31i  T32i 310 T32i

Where 6,=F, (1-F,).

d. The first derivative is obtained from the estimated results of the 6, , parameter as follows:

ae(w) Yi2i  Yi3zi  Ya2i , Y23i Ya2i  Y23i  Y32i , Y33i Y32i _ Y33i
— ‘£l=1 [( 12i _ Y131 22l+ 23l)T12i+( 221 _ 2231 _ 321+ 331) T22i+( 321 331)] 52,: (30)

69§ ) T12i  T13i  T22i  T23i T22i  T23i  T32i  T33i T32i  T33i

Where, &,=F, (1-F,).

The results of the first derivative of the In-likelihood function for each estimated parameter are non-linear,
so numerical iteration is needed to obtain the estimated value of each parameter. This study uses the Berndt-
Hall-Hall-Hausman (BHHH) iteration.

Implementation of Bi-response Ordinal Logistic Nonparametric Regression Model Based on MARS Estimator
on Diabetes Mellitus and Hypertension Risk Data

To describe the distribution of data on the response variable, a contingency table is presented as follows in
table 4.

Table 4. Descriptive of Response Variables

Hypertension (HT)

Diabetes Mellitus (DM) Total
1 (normal) 2 (stage-1 HT) 3 (stage-2 HT)

1 (normal) 74 179 14 267

2 (stage-1 DM) 31 87 47 165

3 (stage-2 DM) 22 119 91 232

Total 127 385 152 664

Table 4 above shows that out of 664 respondents who were the research sample, 74 people (11,14 %) were
in normal condition in both responses (diabetes mellitus and hypertension). Meanwhile, respondents who had
normal category of stage 2 diabetes mellitus but had stage 1 hypertension were 179 people (26,96 %) and
had stage 2 hypertension were 14 people (2,11 %). Respondents with the stage 1 diabetes mellitus category
but normal hypertension were 31 people (4,67 %), those in the stage 1 hypertension category were 87 people
(13,10 %), and those suffering from stage 2 hypertension were 47 people (7,08 %). Respondents who had stage 2
diabetes mellitus status but normal hypertension condition were 22 people (3,31 %), stage 1 hypertension was
119 people (17,92 %) and respondents who suffered from stage 2 diabetes mellitus and stage 2 hypertension
were 91 people (13,70 %).

Next, a descriptive description of the predictor variables is presented, which have a continuous scale
(interval or ratio) as follows in table 5.

Table 5. Descriptive of Continuous Scale Predictor Variables

Variable Minimum Maximum Mean Standard Deviation
Age (X)) 18 71 46,77 10,38
Body Mass Index (X;,) 18,12 56 32,11 4,95
Total Cholesterol (X,) 31,2 291 137,86 36,71

Table 5 shows that the average age of respondents is around 46 years, with the lowest age being 18 years
and the highest age being 71 years. In this study, respondents had an average Body Mass Index (BMI) of 32,11
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kg/m2, with the largest BMI being 56 kg/m2 and the smallest BMI being 18,12 kg/m2. In contrast, the average
LDL cholesterol level of respondents was 137,86 mg/dL with the highest LDL cholesterol level being 291 mg/dL
and the lowest being 31,2 mg/dL. The description of the predictor variables with a categorical measurement
scale, namely gender (X,), is presented in table 6 below.

Table 6. Descriptive of Categorical Scale Predictor Variable

Diabetes Mellitus (DM) Hypertension (HT)
Gender (X,) 1 2 3 Total 1 2 3 Total
(normal) (stage 1 DM) (stage 2 DM) (normal) (stage 1 HT) (stage 2 HT)
Male 98 80 131 309 46 176 87 309
Female 169 85 101 355 81 209 65 355
Total 267 165 232 664 127 385 152 664

In table 6, it can be seen that in the male gender, the largest number has a diabetes mellitus response
category, namely 131 people (19,73 %), while in the hypertension response, the most significant number of
men is in the pre-hypertension category, namely 176 people (26,51 %). Respondents based the female gender
in the largest diabetes mellitus response were in normal conditions, namely, 169 people (25,45 %), while in the
hypertension response, the largest number was in the pre-hypertension category, namely 209 people (31,48 %).

Modelling the risk of diabetes mellitus (Y,) and the incidence of hypertension (Y,) using a bi-response logistic
regression model based on the MARS estimator begins with a dependency test between response variables. This
test aims to determine whether there is a dependency between the two response variables so that it is feasible
to analyze them bi-response (bivariate). The test was carried out using the Mantel-Haenszel test statistic. The
dependency test results concluded that there was dependency between the response variables, thus fulfilling
the assumptions for conducting a bi-response analysis.

The results of the estimation using OSS-R obtained an ordinal bi-response MARS model formed with a
minimum GCV value of 0,4601877 for response model 1 (f "((1) ) (x)) and a GCV of 0,3751423 for response
model 2 (f™((2) ) (x)); both models can be seen in equation (31) and equation (34) as follows:

MARS Ordinal Response Model 1 (Y,):

U (x)=2,18938124—0,04985149 BF, + 0,09586090BF, — 0,01189331BF, +
0,04402806BF, + 0,08493989BF, —0,04407316 BF, —0,137359268F, + (31)
0,11902546BF, +0,25710867 BF, +0,00221592BF,, +0,01346406 BF,,

Where:

BF,= h(168-X, ); BF,= h(X,-36)h(X,-27,99); BF,= h(42-X, )h(168-X, ); BF,=h(60-X, )h(X,-27,99); BF.=h(X,-48)h(X,-
27,99); BF,=h(56-X, )h(168-X, ); BF =h(X,-27,99)h(91-X, ); BF,=h(X,-27,99)h(104-X, ); BF,=h(X,-27,99)h(99-X, );
BF,,=h(36-X, )h(168-X, ); BF,,=h(X,-22)h(168-X, )

After logit transformation, the MARS ordinal cumulative logit model for response variable 1 (Y,) is presented
as follows in equation (32).

2,18938124 —0,04985149 BF, + 0,09586090BF, — 0,01189331BF, +
8" (x)=4,515+| 0,04402806BF, + 0,08493989 BF, —0,04407316BF, —0,13735926 BF, +
0,11902546 BF, +0,25710867 BF, +0,00221592 BF,, +0,01346406 BF,,
= 6,70438124—0,04985149BF, + 0,09586090BF, — 0,01189331BF, +
0,04402806 BF, + 0,08493989 BF, —0,04407316 BF, —0,13735926 BF, +
0,11902546 BF, +0,25710867 BF, +0,00221592 BF,, +0,01346406 BF,,
2,18938124 —0,04985149 BF, + 0,09586090BF, — 0,01189331BF, +
8V (x) =5,966+| 0,04402806 BF, + 0,08493989BF, —0,04407316BF, —0,13735926BF, +
0,11902546 BF, +0,25710867 BF, +0,00221592BF,, +0,01346406 BF,,
=8,15538124—0,04985149BF, + 0,09586090BF, — 0,01189331BF, +
0,04402806BF, + 0,08493989 BF, —0,04407316BF, —0,13735926 BF, +
0,11902546 BF, +0,25710867 BF, +0,00221592BF,, +0,01346406 BF,,

(32)
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MARS Ordinal Response Model 2 (Y,):

f® (x)=1,74830762+0,02391818BF + 0,06008681BF, (33)

Where:

BF,= h(X,-36);
BF,= h(X,-22,08)

After logit transformation, the MARS ordinal cumulative logit model for response variable 2 (Y,) is presented
as follows in equation (34).

¢ (x)=~1,8444+[1,74830762 +0,02391818 BF, + 0,06008681BF, |

= —0,09609238+0,02391818BF, + 0,06008681BF,
(34)
87 (x)=1,1231+[1,74830762 +0,02391818BF, + 0,06008681BF, |

=2,87140762+0,02391818BF, + 0,06008681BF,

Based on equation (31), it can be seen that the MARS ordinal model of response variable 1 (Y,) contains the
interaction of two predictor variables. There are three variables included in the model, namely variables X,
(age), X, (body mass index) and X, (total cholesterol). In equation (35), it can be seen that the MARS ordinal
model of response variable 2 (Y,) does not contain interactions between predictor variables, and there are two
variables included in the model, namely variables X, (age) and X, (body mass index). The factors that influence
diabetes mellitus contained in equation (31) and hypertension contained in equation (33) are supported by
several previous relevant studies.

The next step is to form a nonparametric ordinal bi-response logistic model based on the obtained MARS
estimator. The model is formed using 90 % of the 664 in-sample data, namely 598 data. The bi-response ordinal
logistic regression model based on the MARS estimator for response variable 1 (Y,) is as follows in equation (35)
and equation (36).

2,18938124 —0,04985149BF, + 0,09586090BF, —
0,01189331BF, + 0,04402806BF, + 0,08493989 BF, —
0,04407316BF, —0,13735926 BF, +0,11902546 BF, +
0,25710867 BF, +0,00221592BF,, +0,01346406 BF, (35)
=7,06124224—0,04985149 BF + 0,09586090BF, — 0,01189331BF, +
0,04402806BF, + 0,08493989 BF, —0,04407316BF, —0,13735926 BF, +
0,11902546 BF, +0,25710867 BF, +0,00221592 BF, +0,01346406 BF,

8 (x)=4,871861+

2,18938124—0,04985149BF, + 0,09586090BF, —
0,01189331BF, + 0,04402806BF, + 0,08493989BF, —
0,04407316BF, —0,13735926 BF, +0,11902546 BF, +
0,25710867BF, +0,00221592BF,, +0,01346406 BF,, (36)
=8,53153624—0,04985149BF, + 0,09586090BF, — 0,01189331BF, +
0,04402806 BF, + 0,08493989 BF, —0,04407316BF, —0,13735926 BF, +
0,11902546 BF, +0,25710867 BF, +0,00221592BF,, +0,01346406 BF,,

8 (x)=6,342155+

The bi-response ordinal logistic regression model based on the MARS estimator for response variable 2 (Y,)
is as follows equation (37) and equation (38).
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gf” (x) =-1,863083 + [1, 74830762+ 0,02391818BF, + 0,06008681BF, ] (37)
=-0,11477538+0,02391818BF, + 0.06008681BF,

817 (x) =1,155045+[1,74830762 +0,023918 18 BF, + 0,06008681BF, | (38)
=2,90335262+0,02391818BF; + 0.06008681BF,

Next, the classification procedure will be evaluated by determining the accuracy, AUC, and APER values. These
three values are obtained by first forming a confusion matrix. Here is the confusion matrix of in-sample data
in table 7.

Table 7. Confusion Matrix of In-sample Data

Prediction

Actual

y11 y12 y13 y21 y22 y23 y31 y32 y33
Yo, 19 40 0 0 1 0o 1 7 0
Yo, 59 8% 0 0O 0O 0 1 17 0
Vs 7 4 0 0 0 0 0 1 0
Y, 10 1% o0 0 0 0 2 2 0
Yy 43 28 0 0 0 0 3 8 0
Vs 6 9 0 0 0 0 2 2 0
Y, 7 10 0 0 0 0 1 0 o0
Vi) 78 2 0 0 0 0 2 0 0
Yis 67 10 0 0 0 0 3 2 0

Referring to equation (13), the in-sample data accuracy value obtained was “Accuration = “ 82,44147 %.

This accuracy value is close to 100 %, so based on the overall calculation of the classification accuracy of the
accuracy value obtained, it can be concluded that the model formed is good to classify patients with diabetes
mellitus and hypertension. Furthermore, referring to equation (14), the AUC value obtained is AUC=73,4224
%. This AUC value is in the “good” criteria range. The APER value based on equation (15) is APER=17,55853
%. Based on the APER value, which is smaller than 30 %, it can be seen that the bi-response ordinal logistic
regression model based on the MARS estimator has stability and consistency in statistical classification.

In the classification model, the classification procedure for out-sample data, including the Accuracy, AUC,
and APER values, must be evaluated. Table 8 shows the confusion matrix of out-sample data.

Table 8. Confusion Matrix of Out-sample Data

Prediction
Actual
y11 y12 y13 y21 yZZ y23 y31 y32 y33

Vi 5 1 0 0 0 0 0 0 0
Vi 16 1 0 0 0 0 0 0 0
Vi3 2 0 0 0 0 0 0 0 0
Yo 2 0 0 0 0 0 0 0 0
Yo 3 2 0 0 0 0 0 0 0
Yo 6 2 0 0 0 0 0 0 0
Ya 4 0 0 0 0 0 0 0 0
Ys 10 3 0 0 0 0 0 0 0
Va3 7 2 0 0 0 0 0 0 0

Furthermore, referring to equation (14), the AUC value obtained is AUC=72,04534 %. This AUC value is in the
“good” criteria range. The APER value based on equation (15) iSAPER=9,090909 %. Based on the APER value,
which is smaller than 30 %, it can be seen that the bi-response ordinal logistic regression model based on the
MARS estimator has stability and consistency in statistical classification.
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CONCLUSIONS

Based on the results of the analysis and discussion, several conclusions can be drawn. The parameter
estimation of the bi-response ordinal logistic regression model with the MARS estimator is obtained using the
Maximum Likelihood Estimation (MLE) method. However, due to the non-linearity of the first derivative of
the log-likelihood function, the BHHH numerical iteration method is employed to estimate the parameters.
The complexity of the likelihood function results in difficulties in forming the Hessian matrix, leading to an
approximation of the second derivative using the first derivative in the BHHH method. In modeling the risk of
diabetes mellitus and hypertension using the nonparametric ordinal bi-response logistic regression method
with the MARS estimator, it was found that the significant predictor variables influencing these risks are Age,
BMI, and Cholesterol. The AUC value of 73,42 % falls within the “good” category, while the APER value of 17,56
% is below 30 %, confirming the model’s stability and consistency. These findings suggest that the developed
model effectively captures the relationship between risk factors and the likelihood of diabetes mellitus and
hypertension.
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