RIFD-LZW: A Hybrid Approach for Lossy Image Compression Using Intensity Rounding, Division, and Lempel-Ziv-Welch Encoding
DOI:
https://doi.org/10.56294/dm20251055Keywords:
Lossy Image Compression, RIFD-LZW, Lempel-Ziv-Welch (LZW), Image Quality, Bits Per Pixel (BPP), PSNRAbstract
This research presents RIFD-LZW, a new hybrid lossy image compression algorithm designed for both color and grayscale images across varying resolutions. The method integrates the Rounding the Intensity and Dividing (RIFD) technique with Lempel-Ziv-Welch (LZW) encoding to enhance compression efficiency while preserving high image quality. The RIFD stage reduces data redundancy through intensity quantization and scaling, while LZW applies efficient lossless dictionary-based encoding to the transformed data.
Comprehensive experiments were conducted on four benchmark datasets EPFL, Kodak, Waterloo, and HQ-50K to evaluate the performance of the proposed method. The results demonstrate that RIFD-LZW consistently outperforms traditional RIFD, LZW, and standard compression algorithms including JPEG2000, JPEG-LS, and RIFD-Huffman. On average, RIFD-LZW achieved a compression efficiency of 7,51 Bits Per Pixel (BPP) for color datasets, representing a 49,93% improvement over RIFD and 62,49% over LZW. For grayscale images, RIFD-LZW attained an average BPP of 1,92, significantly outperforming RIFD (5,00) and LZW (4,74), with an improvement exceeding 59%.
The RIFD-LZW algorithm delivers high visual quality despite being lossy, achieving average PSNR values 38,36 dB with minimal visible distortion. It effectively reduces file sizes while preserving acceptable image quality, making it well-suited for applications that require efficient compression with good visual retention.
References
1. Bashir SM, Wang Y, Khan M, Niu Y. A comprehensive review of deep learning-based single image super-resolution. PeerJ Computer Science. 2021 Jul 13;7:e621.
2. Olson D, Anderson J. Review on unmanned aerial vehicles, remote sensors, imagery processing, and their applications in agriculture. Agronomy Journal. 2021 Mar;113(2):971-92.
3. Jayasankar U, Thirumal V, Ponnurangam D. A survey on data compression techniques: From the perspective of data quality, coding schemes, data type and applications. Journal of King Saud University-Computer and Information Sciences. 2021 Feb 1;33(2):119-40. doi: 10.1016/j.jksuci.2018.05.006.
4. Viswanthan P, Kalavathi P. Subband thresholding for near-lossless medical image compression. International Journal of Computing and Digital Systems. 2023 May 5;14(1):1-, doi: 10.12785/ijcds/140106.
5. Chamain LD, Racapé F, Bégaint J, Pushparaja A, Feltman S. End-to-end optimized image compression for machines, a study. In2021 Data Compression Conference (DCC) 2021 Mar 23 (pp. 163-172). IEEE.
6. Guo Z, Zhang Z, Feng R, Chen Z. Causal contextual prediction for learned image compression. IEEE Transactions on Circuits and Systems for Video Technology. 2021 Jun 15;32(4):2329-41, doi: 10.1109/TCSVT.2021.3089491.
7. Abrardo A, Barni M, Bertoli A, Grimoldi R, Magli E, Vitulli R. Low-complexity approaches for lossless and near-lossless hyperspectral image compression. InSatellite Data Compression 2011 Sep 29 (pp. 47-65). New York, NY: Springer New York,doi: 10.1007/978-1-4614-1183-3_3.
8. Karim AZ, Miah MS, Al Mahmud MA, Rahman MT. Image Compression using Huffman Coding Scheme with Partial/Piecewise Color Selection. In2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON) 2021 Sep 24 (pp. 1-6). IEEE, doi: 10.1109/GUCON50781.2021.9573863.
9. Xue X, Marappan R, Raju SK, Raghavan R, Rajan R, Khalaf OI, Abdulsahib GM. Modelling and analysis of hybrid transformation for lossless big medical image compression. Bioengineering. 2023 Mar 6;10(3):333, doi: 10.3390/bioengineering10030333.
10. Manga I, Garba EJ, Ahmadu AS. Lossless Image Compression Schemes: A Review. Journal of Scientific Research and Reports. 2021;27(6):14-22, doi: 10.9734/jsrr/2021/v27i630398.
11. AlQerom M. An intelligent system for the classification and selection of novel and efficient lossless image compression algorithms [dissertation on the Internet]. Manchester (UK): University of Salford; 2020. Available from: https://www.proquest.com/openview/0582c4c16da48ebfb0877f6753969321/1?pq-origsite=gscholar&cbl=51922&diss=y
12. Al Qerom M, Otair M, Meziane F, AbdulRahman S, Alzubi M. LICA-CS: efficient lossless image compression algorithm via column subtraction model. J Robot Control (JRC). 2024;5(5):1311–21. doi: 10.18196/jrc.v5i5.21834.
13. Shnain HW, Abdullah MN, Jeiad HA. Lossless JPEG image compression based on FPGA. Solid State Technology. 2020 Nov 1;63(3):3595-603. Available from: https://www.researchgate.net/publication/349809892
14. Mozghovyi I, Sergiyenko A, Yershov R. GIF image hardware compressors. Information, Computing and Intelligent systems. 2021 Dec 16(2), doi: 10.20535/2708-4930.2.2021.244189.
15. Hossain MB, Rahman MN. An Empirical Analysis on Lossless Compression Techniques. InInternational Conference on Computer and Communication Engineering 2023 Mar 10 (pp. 158-170). Cham: Springer Nature Switzerland, doi: 10.1007/978-3-031-35299-7_13.
16. Li C, Guo C, Han L, Jiang J, Cheng MM, Gu J, Loy CC. Low-light image and video enhancement using deep learning: A survey. IEEE transactions on pattern analysis and machine intelligence. 2021 Nov 9;44(12):9396-416, doi: 10.1109/TPAMI.2021.3126387.
17. Paikrao P, Doye D, Bhalerao M, Vaidya M. Burrows–Wheeler Transform for Enhancement of Lossless Document Image Compression Algorithms. InInternational Conference on Advances in Data-driven Computing and Intelligent Systems 2022 Sep 23 (pp. 671-685). Singapore: Springer Nature Singapore. doi: 10.1007/978-981-99-3250-4_51.
18. Arunpandian S, Dhenakaran SS. An effective image compression technique based on burrows wheeler transform with set partitioning in hierarchical trees. Concurrency and Computation: Practice and Experience. 2022 Feb 28;34(5): e6705, doi: 10.1002/cpe.6705.
19. Guo H, Burrus CS. Waveform and image compression using the Burrows Wheeler transform and the wavelet transform. InProceedings of International Conference on Image Processing 1997 Oct 26 (Vol. 1, pp. 65-68). IEEE, doi: 10.1109/ICIP.1997.647385.
20. Xiao W, Wan N, Hong A, Chen X. A fast JPEG image compression algorithm based on DCT. In2020 IEEE International Conference on Smart Cloud (SmartCloud) 2020 Nov 6 (pp. 106-110). IEEE, doi: 10.1109/SmartCloud49737.2020.00028.
21. Descampe A, Keinert J, Richter T, Fößel S, Rouvroy G. JPEG XS, a new standard for visually lossless low-latency lightweight image compression. InApplications of Digital Image Processing XL 2017 Sep 19 (Vol. 10396, pp. 68-79). SPIE, doi: 10.1117/12.2273625.
22. Cao Z, Zhang T, Liu M, Luo H. Wavelet-supervision convolutional neural network for restoration of JPEG-LS near lossless compression image. In2021 IEEE Asia Conference on Information Engineering (ACIE) 2021 Jan 29 (pp. 32-36). IEEE, doi: 10.1109/ACIE51979.2021.9381071.
23. Otair M, Alrawi AF, Abualigah L, Jia H, Altalhi M. Enhancing the quality of compressed images using rounding intensity followed by novel dividing technique. Multimedia Tools and Applications. 2024 Jan;83(1):1753-86. doi: 10.1007/s11042-023-15612-6.
24. Alshami, A.L. and Otair, M., 2018. Enhancing quality of lossy compressed images using minimum decreasing technique. International Journal of Advanced Computer Science and Applications, 9(3), doi: 10.14569/IJACSA.2018.090353.
25. Otair MA, Shehadeh F. Research article lossy image compression by Rounding the Intensity Followed by Dividing (RIFD). Research Journal of Applied Sciences, Engineering and Technology. 2016;12(6):680-5, doi: 10.19026/rjaset.12.2716.
26. KaggLE Kodak Lossless True Color Image Suite. Kodak dataset. Available from: https://www.kaggle.com/datasets/sherylmehta/kodak-dataset
27. The Waterloo Fractal Coding and Analysis Group. Waterloo dataset. Available from: https://links.uwaterloo.ca/Repository.html
28. EPFL. EPFL dataset. Available from: http://documents.epfl.ch/groups/g/gr/gr-eb-unit/www/IQA/Original.zip
29. Yang Y, Zhang Y, Liu S. HQ-50K: a high-quality 50K dataset for benchmarking image restoration. arXiv; 2023. Available from: https://arxiv.org/abs/2306.05390
30. Al Qerom M. Improved intensity rounding and division near lossless image compression algorithm using delta encoding. Int J Data Netw Sci. 2025;9(1):173–86. doi: 10.5267/j.ijdns.2024.9.002.
31. Otair M, Hasan OA, Abualigah L. The effect of using minimum decreasing technique on enhancing the quality of lossy compressed images. Multimed Tools Appl. 2023 Jan;82(3):4107–38. doi: 10.1007/s11042-022-13404-y.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Mahmoud Al Qerom (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.