A model for Industry 4.0 readiness in manufacturing industries
DOI:
https://doi.org/10.56294/dm2023200Keywords:
Digital Technologies, Readiness Model, Adoption, Fuzzy LogicAbstract
In the context of digital transformation, to assess the current state of manufacturing companies, a readiness model is proposed in this paper. Using a literature review and a framework considering maturity as an 'input' enabler and not as an 'output'. Three dimensions are considered in this model (Organization maturity, Technology maturity, and Process Maturity), to assess the company readiness (Ready or Not ready). Allowing compagnies to identify their readiness for Industry 4.0 (I4.0) adoption, by developing a decision support model, is the goal of this research. This model based on Fuzzy Inference System, considers the three decision criteria and then ranks the enterprise according to its output indicator. For the validation of this proposed model, an experimental study was conducted to assess the readiness of 2 manufacturing companies, a multinational in automotive sector and an SME in Apparel sector. The proposed model meets the desired objective and is therefore retained for the evaluation of the readiness to I4.0 in different manufacturing contexts
References
1. Jazdi, N.(2014). Cyber-phisical systems in the context of Industry 4.0. IEEE/AQTR,1–4, Romania: IEEE (Institute of Electrical and Electronics Engineers). https://doi.org/10.1109/AQTR.2014.6857843
2. Zhong, R., Xu, X., Klotz, E., & Newman, S. T. (2017). Intelligent manufacturing in the context of industry 4.0: A review. Engineering, 3(5), 616–630. https://doi.org/10.1016/J.ENG.2017.05.015
3. Schneider, P. (2018). Managerial challenges of Industry 4.0: An empirically backed research agenda for a nascent field. Review of Managerial Science, 12(3), 803–848. https://doi.org/10. 1007/s11846-018-0283-2
4. Nayernia, H., Bahemia, H., & Papagiannidis, S. (2022). A systematic review of the implementation of industry 4.0 from the organisational perspective. International Journal of Production Research, 60(14), 4365-4396.
5. Gajdzik, B., Grabowska, S., & Saniuk, S. (2021). A theoretical framework for industry 4.0 and its implementation with selected practical schedules. Energies, 14(4), 940.
6. Simetinger, F., & Zhang, Z. (2020). Deriving secondary traits of industry 4.0: A comparative analysis of significant maturity models. Systems Research and Behavioral Science, 1–16. https://doi.org/10.1002/sres.2708
7. Bruna Felippes, Isaac da Silva, Sanderson Barbalho, Tobias Adam, Ina Heine & Robert Schmitt (2022) 3D-CUBE readiness model for industry 4.0: technological, organizational, and process maturity enablers, Production & Manufacturing Research, 10:1, 875-937, DOI:10.1080/21693277.2022.2135628
8. Auza-Santivañez JC, Lopez-Quispe AG, Carías A, Huanca BA, Remón AS, Condo-Gutierrez AR, et al. Improvements in functionality and quality of life after aquatic therapy in stroke survivors. AG Salud 2023;1:15-15.
9. Castillo-González W. Kinesthetic treatment on stiffness, quality of life and functional independence in patients with rheumatoid arthritis. AG Salud 2023;1:20-20.
10. Renteria, C., Gil-Garcia, J.R. & Pardo, T.A. (2019). Toward an enabler-based digital government maturity framework: A preliminary proposal based on theories of change. ICEGOV,Melbourne, VIC, Australia. https://doi.org/10.1145/3326365.3326419
11. Tortorella, G. L., Pradhan, N., Macias de Anda, E., Trevino Martinez, S., Sawhney, R., & Kumar, M. (2020). Designing lean value streams in the fourth industrial revolution era: Proposition of technology-integrated guidelines. International Journal of Production Research, 58(16), 5020– 5033. https://doi.org/10.1080/00207543.2020.1743893
12. Hizam-Hanafiah, M., Soomro, M. A., & Abdullah, N. L. (2020). Industry 4.0 readiness models: a systematic literature review of model dimensions. Information, 11(7), 364.
13. K. Tachibana,T. Furuhashi,M. Shimoda,Y. Kawakami,T. Fukunaga “An application of fuzzy modeling to rowing motion analysis”. IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028)
14. Makrem Ben Jeddou, Wahiba Bali Kalboussi, Ahmed Dhouibi. « Application de la méthode AHP pour les choix multicritères des fournisseurs ». Revue Marocaine de recherche en management et marketing. N°12, 2015. PP : 60 -71
15. U-Dominic, C. M., Orji, I. J., Okwu, M. O., Mbachu, V. M., & Ayomoh, M. (2021). The Impact of Covid-19 Pandemic on Sustainable Supplier Selection Process. Advancing Industrial Engineering through Teaching, 1-28.
16. Safaei Ghadikolaei, A., Khalili Esbouei, S., & Antucheviciene, J. (2014). Applying fuzzy MCDM for financial performance evaluation of Iranian companies. Technological and Economic Development of Economy, 20(2), 274-291.
17. Caero L, Libertelli J. Relationship between Vigorexia, steroid use, and recreational bodybuilding practice and the effects of the closure of training centers due to the Covid-19 pandemic in young people in Argentina. AG Salud 2023;1:18-18.
18. Ogolodom MP, Ochong AD, Egop EB, Jeremiah CU, Madume AK, Nyenke CU, et al. Knowledge and perception of healthcare workers towards the adoption of artificial intelligence in healthcare service delivery in Nigeria. AG Salud 2023;1:16-16.
19. Kumar, P., Singh, R. K., & Vaish, A. (2017). Suppliers’ green performance evaluation using fuzzy extended ELECTRE approach. Clean Technologies and Environmental Policy, 19, 809-821.
20. Haleh, H., & Hamidi, A. (2011). A fuzzy MCDM model for allocating orders to suppliers in a supply chain under uncertainty over a multi-period time horizon. Expert Systems with Applications, 38(8), 9076-9083.
21. Chen, V. Y., Lien, H. P., Liu, C. H., Liou, J. J., Tzeng, G. H., & Yang, L. S. (2011). Fuzzy MCDM approach for selecting the best environment-watershed plan. Applied soft computing, 11(1), 265-275.
22. Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega, 53, 49-57.
23. Ishak Riali,Messaouda Fareh,Hafida Bouarfa . « Fuzzy Probabilistic Ontology Approach ». International Journal on Semantic Web and Information Systems. Issue: 2019,4. PP: 1-20.
24. Othman Bakkali Yedri,Abdelali Slimani,Lotfi El Aachak,Mohamed Bouhorma. «Serious Games Adaptation According to the Learner’s Motivational State». Innovations in Smart Cities Applications Edition 2 Lecture Notes in Intelligent Transportation and Infrastructure. Issue: 2019.PP: 419-436
25. Youness Chaabi,Khadija Lekdioui,Mounia Boumediane. “Semantic Analysis of Conversations and Fuzzy Logic for the Identification of Behavioral Profiles on Facebook Social Network”. International Journal of Emerging Technologies in Learning (iJET). Issue: 2019,07. PP: 144.
26. Tabit, S., & Zoulhi, A. (2021). Road Traffic Management with Fuzzy Logic Approach (No. 5330). EasyChair.
27. TABIT, S., & SOULHI, A. (2022). A MODEL FOR SUPPLIER SELECTION IN MANUFACTURING INDUSTRIES. Journal of Theoretical and Applied Information Technology, 100(20).
28. Alberto Alfonso Aguilar Lasserre,Marina Violeta Lafarja Solabac,Roberto HernandezTorres,Rubén Posada-Gomez,Ulises JuárezMartínez,Gregorio Fernández Lambert. “Expert System for Competences Evaluation 360° Feedback Using Fuzzy Logic”. Mathematical Problems in Engineering. Issue: 2014. PP: 1-18.
29. E. Schmitt,V. Bombardier,L. Wendling. “Improving Fuzzy Rule Classifier by Extracting Suitable Features From Capacities With Respect to the Choquet Integral”. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics). Issue: 2008,5. PP: 1195-1206.
30. Hernández-Flórez N. Breaking stereotypes: “a philosophical reflection on women criminals from a gender perspective". AG Salud 2023;1:17-17.
31. Agnese Marchini,Tullio Facchinetti,Michele Mistri. “F-IND: A framework to design fuzzy indices of environmental conditions”. Ecological Indicators. Issue: 2009,3. PP: 485- 496.
32. Youness Chaabi,Khadija Lekdioui,Mounia Boumediane. “Semantic Analysis of Conversations and Fuzzy Logic for the Identification of Behavioral Profiles on Facebook Social Network”. International Journal of Emerging Technologies in Learning (iJET). Issue: 2019,07. PP: 144
33. GUO-JUN WANG. “COMPARISON OF DEDUCTION THEOREMS IN DIVERSE LOGIC SYSTEMS”. New Mathematics and Natural Computation. Issue: 2005,01. PP: 65- 77
34. Introduction to Fuzzy Logic Fuzzy Sets Shadi T (slidetodoc.com) (consulted on 22.05.2023).
35. Selma Basic “Developing process quality measurement in shipbuilding industry”. Master of Science in Industrial Engineering and Management. September 2019.
36. Hossein Azadi,Mansour Shahvali,Jan van den Berg,Nezamoddin Faghih. “Sustainable rangeland management using a multi-fuzzy model: How to deal with heterogeneous experts’ knowledge”. Journal of Environmental Management. Issue: 2007,2. PP: 236-249
37. Yih-fong TZENG,Fu-chen CHEN. “Optimization of the High-Speed CNC Milling Process Using Two-Phase Parameter Design Strategy by the Taguchi Methods”. JSME International Journal Series C. Issue: 2005,4.
38. Zhong, R., Xu, X., Klotz, E., & Newman, S. T. (2017). Intelligent manufacturing in the context of industry 4.0: A review. Engineering, 3(5), 616–630. https://doi.org/10.1016/J.ENG.2017.05.015
39. Safaei, M., A. Sundararajan, E., Asadi, S., Nilashi, M., Ab Aziz, M. J., Saravanan, M. S., ... & Alsaqour, R. (2022). A Hybrid MCDM Approach Based on Fuzzy-Logic and DEMATEL to Evaluate Adult Obesity. International Journal of Environmental Research and Public Health, 19(23), 15432.
40. Maués, L. M. F., Sá, J. A. S. D., Costa, C. T. D., Kern, A. P., & Duarte, A. A. A. M. (2019). Construction duration predictive model based on factorial analysis and fuzzy logic. Ambiente Construído, 19, 115-133.
Published
Issue
Section
License
Copyright (c) 2023 Younes Jamouli , Samir Tetouani , Omar Cherkaoui, Aziz Soulhi (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.