Predictive Analytics in Digital Marketing: A Statistical Modeling Approach for Predicting Consumer Behavior
DOI:
https://doi.org/10.56294/dm20251061Keywords:
predictive analytics, digital marketing, consumer behavior, machine learning, statistical modelingAbstract
Introduction: The evolution of predictive analytics in digital marketing is deeply rooted in the development of statistical modeling and data analytics. Aim: The aim of the present research was to analyze the use of advanced statistical models for predicting consumer behavior in digital marketing environments, highlighting the relevance of predictive analytics in data- driven strategic decision making. Methodology: five machine learning, logistic regression, decision tree, random forest, support vector machines (SVM) and neural networks models were evaluated on a synthetic dataset representative of digital consumers belonging to Generation
Z. The analysis considered key metrics such as overall accuracy, cross-validation mean and standard deviation, in order to measure both the effectiveness and stability of each model. Results: The results showed that the logistic regression, Random Forest, SVM and neural network models achieved an accuracy of 97% with overall consistency (standard deviation of 0.0), positioning them as reliable tools for predicting consumption trends. In contrast, the decision tree showed lower accuracy (92%) and higher variability, which limits its applicability in complex scenarios. Conclusion: The study concludes that the combination of accuracy and stability is essential for the implementation of effective predictive models in digital marketing and also highlights the importance of integrating these models into campaign automation and personalization systems to anticipate preferences, improve customer experience and optimize resources.
References
1. Theodorakopoulos, L., & Theodoropoulou, A. (2024). Leveraging big data analytics for understanding consumer behavior in digital marketing: A systematic review. Human Behavior and Emerging Technologies, 2024(1), 3641502.
http://dx.doi.org/10.1155/2024/3641502
2. Chkoniya, V. (2021). Challenges in decoding consumer behavior with data science. European Journal of Economics and Business Studies, 7(1), 140-153. http://dx.doi.org/10.26417/897ovg79t
3. Chaudhary, K., Alam, M., Al-Rakhami, M. S., & Gumaei, A. (2021). Machine learning- based mathematical modelling for prediction of social media consumer behavior using big data analytics. Journal of Big data, 8(1), 73.
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-021-00466-2
4. Gan, M., & Ouyang, Y. (2022). Study on tourism consumer behavior characteristics based on big data analysis. Frontiers in psychology, 13, 876993.
http://dx.doi.org/10.3389/fpsyg.2022.876993
5. Wïodarczyk, K. (2021). Trends of evolution in consumer behavior in the contemporary World. Problemy Zarządzania, 19(1 (91)), 39-50. http://dx.doi.org/10.7172/1644-
9584.91.3
6. Gabhane, D., Varalaxmi, P., Rathod, U., Hamida, A. G. B., & Anand, B. (2023). Digital marketing trends: Analyzing the Evolution of consumer behavior in the online Space. Boletin de Literatura Oral Literary J, 10(1), 462-473.
https://www.rgcms.edu.in/wp-content/uploads/2023/10/52_TITLE126.pdf
7. Liu, H. (2021). Big data precision marketing and consumer behavior analysis based on fuzzy clustering and PCA model. Journal of Intelligent & Fuzzy Systems, 40(4), 6529- 6539. http://dx.doi.org/10.3233/JIFS-189491
8. Rozenkowska, K. (2023). Theory of planned behavior in consumer behavior research: A systematic literature review. International Journal of Consumer Studies, 47(6), 2670- 2700. http://dx.doi.org/10.1111/ijcs.12970
9. Sunarya, P. A., Rahardja, U., Chen, S. C., Lic, Y. M., & Hardini, M. (2024). Deciphering digital social dynamics: A comparative study of logistic regression and random forest in predicting e-commerce customer behavior. Journal of Applied Data Sciences, 5(1), 100-
113. https://doi.org/10.47738/jads.v5i1.155
10. Xiao, S., & Tong, W. (2021). Prediction of user consumption behavior data based on the combined model of TF-IDF and logistic regression. In Journal of physics: conference series (Vol. 1757, No. 1, p. 012089). IOP Publishing. https://doi.org/10.1088/1742- 6596/1757/1/012089
11. Mehrolia, S., Alagarsamy, S., & Solaikutty, V. M. (2021). Customers response to online food delivery services during COVID‐19 outbreak using binary logistic regression. International journal of consumer studies, 45(3), 396-408. http://dx.doi.org/10.1111/ijcs.12630
12. Arumugam, T., Hameed, S. S., & Sanjeev, M. A. (2023). Buyer behaviour modelling of rural online purchase intention using logistic regression. International Journal of Management and Enterprise Development, 22(2), 139-157.
http://dx.doi.org/10.1504/IJMED.2023.130153
13. Kasem, M. S., Hamada, M., & Taj-Eddin, I. (2024). Customer profiling, segmentation, and sales prediction using AI in direct marketing. Neural Computing and Applications, 36(9), 4995-5005. http://dx.doi.org/10.1007/s00521-023-09339-6
14. Habil, S., El-Deeb, S., & El-Bassiouny, N. (2023). AI-based recommendation systems: the ultimate solution for market prediction and targeting. In The Palgrave handbook of interactive marketing (pp. 683-704). Cham: Springer International Publishing. https://www.researchgate.net/publication/388871670_AI_and_Machine_Learning_in_M ultimedia_Platforms_Present_Applications_and_Future_Implications
15. Chakravarthy, B. S., & Perlmutter, H. V. (2023). Strategic planning for a global business. International Strategic Management, 29-42.
https://www.taylorfrancis.com/chapters/edit/10.4324/9781315058993-4/strategic- planning-global-business-balaji-chakravarthy-howard- perlmutter?context=ubx&refId=b2b6eb85-b4a9-4938-931f-d5d47530ffe4
16. Zhang, H., Zang, Z., Zhu, H., Uddin, M. I., & Amin, M. A. (2022). Big data-assisted social media analytics for business model for business decision making system competitive analysis. Information Processing & Management, 59(1), 102762.
http://dx.doi.org/10.1016/j.ipm.2021.102762
17. Hu, J., & Szymczak, S. (2023). A review on longitudinal data analysis with random forest. Briefings in bioinformatics, 24(2), bbad002. http://dx.doi.org/10.1093/bib/bbad002
18. Sun, Z., Wang, G., Li, P., Wang, H., Zhang, M., & Liang, X. (2024). An improved random forest based on the classification accuracy and correlation measurement of decision trees. Expert Systems with Applications, 237, 121549.
http://dx.doi.org/10.1016/j.eswa.2023.121549
19. De Araujo Morais, L. R., & da Silva Gomes, G. S. (2024, July). Neural Network-Enhanced Decision Support: Investigating Prediction Intervals for Real-Time Digital Marketing Return on Investment Data. In Brazilian Workshop on Social Network Analysis and Mining (BraSNAM) (pp. 47-60). SBC. http://dx.doi.org/10.5753/brasnam.2024.2232
20. Mejía Trejo, J. (2021). Digital marketing model innovation and Generation Z as consumer decision-making style. Making predictions with an artificial neural network, in Mexico. Contaduría y administración, 66(4). https://doi.org/10.22201/fca.24488410e.2021.3258
21. Ferreira, J. J., Fernandes, C. I., Rammal, H. G., & Veiga, P. M. (2021). Wearable technology and consumer interaction: A systematic review and research agenda. Computers in human behavior, 118, 106710.
https://doi.org/10.1016/j.chb.2021.106710
22. Mogaji, E., Balakrishnan, J., Nwoba, A. C., & Nguyen, N. P. (2021). Emerging-market consumers’ interactions with banking chatbots. Telematics and Informatics, 65, 101711. http://dx.doi.org/10.1016/j.tele.2021.101711
23. Khan, M., Ahmad, M., Alidjonovich, R. D., Bakhritdinovich, K. M., Turobjonovna, K. M., & Odilovich, I. J. (2025). The impact of cultural factors on digital marketing strategies with Machine learning and honey bee Algorithm (HBA). Cogent Business & Management, 12(1), 2486590. http://dx.doi.org/10.1080/23311975.2025.2486590
24. Wang, G. (2025). Customer segmentation in the digital marketing using a Q-learning based differential evolution algorithm integrated with K-means clustering. PloS one, 20(2), e0318519. http://dx.doi.org/10.1371/journal.pone.0318519
25. Kasem, M. S., Hamada, M., & Taj-Eddin, I. (2024). Customer profiling, segmentation, and sales prediction using AI in direct marketing. Neural Computing and Applications, 36(9), 4995-5005. http://dx.doi.org/10.1007/s00521-023-09339-6
26. Sharma, A., Fadahunsi, A., Abbas, H., & Pathak, V. K. (2022). A multi-analytic approach to predict social media marketing influence on consumer purchase intention. Journal of Indian Business Research, 14(2), 125-149. http://dx.doi.org/10.1108/JIBR-08-2021-0313
27. Ullal, M. S., Hawaldar, I. T., Soni, R., & Nadeem, M. (2021). The role of machine learning in digital marketing. Sage Open, 11(4), 21582440211050394.
http://dx.doi.org/10.1177/21582440211050394
28. Berlilana, B., Hariguna, T., & El Emary, I. M. (2025). Enhancing Digital Marketing Strategies with Machine Learning for Analyzing Key Drivers of Online Advertising Performance. Journal of Applied Data Sciences, 6(2), 817-827.
http://dx.doi.org/10.47738/jads.v6i2.658
29. Gutnik, S. (2021). Application of data mining and machine learning methods to enhance the effectiveness of digital marketing strategies. Digital Strategies in a Global Market: Navigating the Fourth Industrial Revolution, 131-144. http://dx.doi.org/10.1007/978-3- 030-58267-8_10
Published
Issue
Section
License
Copyright (c) 2025 Jazmín Isabel García-Guerra, Héctor Oswaldo Aguilar-Cajas, Heidy Elizabeth Vergara-Zurita, Ana Lucía Rivera-Abarca, Freddy Armijos-Arcos, José Israel López-Pumalema (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.