Classification of diseases in tomato leaves with Deep Transfer Learning

Authors

DOI:

https://doi.org/10.56294/dm2023181

Keywords:

Tomato Diseases, Deep Learning, Transfer Learning

Abstract

Plant diseases are important factors because they significantly affect the quality, quantity, and yield of agricultural products. Therefore, it is important to detect and diagnose these diseases at an early stage. The overall objective of this study is to develop an acceptable deep learning model to correctly classify diseases on tomato leaves in RGB color images. To address this challenge, we use a new approach based on combining two deep learning models VGG16 and ResNet152v2 with transfer learning. The image dataset contains 55 000 images of tomato leaves in 5 different classes, 4 diseases and one healthy class. The results of our experiment are promising and encouraging, showing that the proposed model achieves 99,08 % accuracy in training, 97,66 % in validation, and 99,0234 % in testing

References

1. FAOSTAT. 2018. Food and agriculture organization of the United Nations Database, Food and Agriculture Organization Corporate Statistical Database.

2. M. Ouhami, Y. Es-Saady, M. El Hajji, A. Hafiane, R. Canals, and M. El Yassa, “Deep transfer learning models for tomato disease detection,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 12119 LNCS, pp. 65–73, 2020, doi: 10.1007/978-3-030-51935-3_7. DOI: https://doi.org/10.1007/978-3-030-51935-3_7

3. S. Marino, P. Beauseroy, and A. Smolarz, “Deep learning-based method for classifying and localizing potato blemishes,” ICPRAM 2019 - Proc. 8th Int. Conf. Pattern Recognit. Appl. Methods, no. Icpram, pp. 107–117, 2019, doi: 10.5220/0007350101070117. DOI: https://doi.org/10.5220/0007350101070117

4. Mohammed Brahimi, Deep learning for plants diseases. Springer International Publishing, 2018. doi: 10.1007/978-3-319-90403-0. DOI: https://doi.org/10.1007/978-3-319-90403-0

5. Elhassouny and F. Smarandache, “Smart mobile application to recognize tomato leaf diseas-es using Convolutional Neural Networks,” Proc. 2019 Int. Conf. Comput. Sci. Renew. Ener-gies, ICCSRE 2019, pp. 1–4, 2019, doi: 10.1109/ICCSRE.2019.8807737. DOI: https://doi.org/10.1109/ICCSRE.2019.8807737

6. V. Seth, R. Paulus, M. Kumar, and A. Kumar, Tomato Leaf Diseases Detection, vol. 894 LNEE. 2022. doi: 10.1007/978-981-19-1677-9_5. DOI: https://doi.org/10.1007/978-981-19-1677-9_5

7. El Massi, I., Es-Saady, Y., El Yassa, M., Mammass, D., Benazoun, “A hybrid combina-tion of multiple SVM classifiers for automatic recognition of the damages and symptoms on plant leaves,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9680, pp. 40–50, 2016, doi: 10.1007/978-3-319-33618-3_5. DOI: https://doi.org/10.1007/978-3-319-33618-3_5

8. D. Tiwari, M. Ashish, N. Gangwar, A. Sharma, S. Patel, and S. Bhardwaj, “Potato Leaf Dis-eases Detection Using Deep Learning,” in Proceedings of the International Conference on In-telligent Computing and Control Systems, ICICCS 2020, May 2020, pp. 461–466. doi: 10.1109/ICICCS48265.2020.9121067. DOI: https://doi.org/10.1109/ICICCS48265.2020.9121067

9. S. P. Mohanty, D. P. Hughes, and M. Salathé, “Using deep learning for image-based plant dis-ease detection,” Front. Plant Sci., vol. 7, no. September, pp. 1–10, 2016, doi: 10.3389/fpls.2016.01419. DOI: https://doi.org/10.3389/fpls.2016.01419

10. M. A. Jasim and J. M. Al-Tuwaijari, “Plant Leaf Diseases Detection and Classification Using Image Processing and Deep Learning Techniques,” Proc. 2020 Int. Conf. Comput. Sci. Softw. Eng. CSASE 2020, pp. 259–265, 2020, doi: 10.1109/CSASE48920.2020.9142097. DOI: https://doi.org/10.1109/CSASE48920.2020.9142097

11. El Massi, Y. Es-saady, M. El Yassa, and D. Mammass, “Combination of multiple classifi-ers for automatic recognition of diseases and damages on plant leaves,” Signal, Image Video Process., vol. 15, no. 4, pp. 789–796, 2021, doi: 10.1007/s11760-020-01797-y. DOI: https://doi.org/10.1007/s11760-020-01797-y

12. M. Francis and C. Deisy, “Disease Detection and Classification in Agricultural Plants Using Convolutional Neural Networks - A Visual Understanding,” 2019 6th Int. Conf. Signal Pro-cess. Integr. Networks, SPIN 2019, pp. 1063–1068, 2019, doi: 10.1109/SPIN.2019.8711701. DOI: https://doi.org/10.1109/SPIN.2019.8711701

13. Tan, J. Lu, and H. Jiang, “Tomato Leaf Diseases Classification Based on Leaf Images: A Comparison between Classical Machine Learning and Deep Learning Methods,” AgriEngi-neering, vol. 3, no. 3, pp. 542–558, 2021, doi: 10.3390/agriengineering3030035. DOI: https://doi.org/10.3390/agriengineering3030035

14. Romero-Carazas R. Prompt lawyer: a challenge in the face of the integration of artificial intelligence and law. Gamification and Augmented Reality 2023;1:7–7. https://doi.org/10.56294/gr20237. DOI: https://doi.org/10.56294/gr20237

15. Gonzalez-Argote J. A Bibliometric Analysis of the Studies in Modeling and Simulation: Insights from Scopus. Gamification and Augmented Reality 2023;1:5–5. https://doi.org/10.56294/gr20235. DOI: https://doi.org/10.56294/gr20235

16. Gonzalez-Argote D, Gonzalez-Argote J, Machuca-Contreras F. Blockchain in the health sector: a systematic literature review of success cases. Gamification and Augmented Reality 2023;1:6–6. https://doi.org/10.56294/gr20236. DOI: https://doi.org/10.56294/gr20236

17. R. Aravind Krishnaswamy, R. Purushothaman, and A. Ramesh, “Tomato crop disease classi-fication using pre-trained deep learning algorithm,” Procedia Comput. Sci., vol. 133, pp. 1040–1047, 2018, doi: 10.1016/j.procs.2018.07.070. DOI: https://doi.org/10.1016/j.procs.2018.07.070

18. Gangwar, D. Tiwari, A. Sharma, M. Ashish, A. Mittal, and G. K. Vishwavidyalaya, “Grape Leaf Diseases Classification using Transfer Learning,” no. September, pp. 3171–3177, 2020.

19. S. U. Habiba and M. K. Islam, “Tomato Plant Diseases Classification Using Deep Learning Based Classifier from Leaves Images,” 2021 Int. Conf. Inf. Commun. Technol. Sustain. Dev. ICICT4SD 2021 - Proc., pp. 82–86, 2021, doi: 10.1109/ICICT4SD50815.2021.9396883. DOI: https://doi.org/10.1109/ICICT4SD50815.2021.9396883

20. L. Perez and J. Wang, “The Effectiveness of Data Augmentation in Image Classification using Deep Learning,” 2017, [Online]. Available: http://arxiv.org/abs/1712.04621

21. L. Fei-Fei, J. Deng, and K. Li, “ImageNet: Constructing a large-scale image database,” J. Vis., vol. 9, no. 8, pp. 1037–1037, 2010, doi: 10.1167/9.8.1037. DOI: https://doi.org/10.1167/9.8.1037

22. J. Pan and Q. Yang, “A Survey on Transfer Learning - {IEEE} Xplore Document,” IEEE Trans. Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, 2009. DOI: https://doi.org/10.1109/TKDE.2009.191

23. Hu, J. Lu, and Y. P. Tan, “Deep transfer metric learning,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 07-12-June, pp. 325–333, 2015, doi: 10.1109/CVPR.2015.7298629. DOI: https://doi.org/10.1109/CVPR.2015.7298629

24. H. Lei et al., “A deeply supervised residual network for HEp-2 cell classification via cross-modal transfer learning,” Pattern Recognit., vol. 79, pp. 290–302, 2018, doi: 10.1016/j.patcog.2018.02.006. DOI: https://doi.org/10.1016/j.patcog.2018.02.006

25. Gulli and S. Pal, “Deep Learning with Keras,” p. 318, 2017, [Online]. Available: https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras

26. Kumar, H. Arora, Harsh, and J. Sisodia, “ResNet-based approach for Detection and Classi-fication of Plant Leaf Diseases,” Proc. Int. Conf. Electron. Sustain. Commun. Syst. ICESC 2020, no. Icesc, pp. 495–502, 2020, doi: 10.1109/ICESC48915.2020.9155585. DOI: https://doi.org/10.1109/ICESC48915.2020.9155585

27. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc., pp. 1–14, 2015.

28. J. Brown, L. A. Hutchinson, M. J. Rainbow, K. J. Deluzio, and A. R. De Asha, “A compar-ison of self-selected walking speeds and walking speed variability when data are collected during repeated discrete trials and during continuous walking,” J. Appl. Biomech., vol. 33, no. 5, pp. 384–387, 2017, doi: 10.1123/jab.2016-0355. DOI: https://doi.org/10.1123/jab.2016-0355

29. T. Carneiro, R. V. M. Da Nobrega, T. Nepomuceno, G. Bin Bian, V. H. C. De Albuquerque, and P. P. R. Filho, “Performance Analysis of Google Colaboratory as a Tool for Accelerating Deep Learning Applications,” IEEE Access, vol. 6, pp. 61677–61685, 2018, doi: 10.1109/ACCESS.2018.2874767. DOI: https://doi.org/10.1109/ACCESS.2018.2874767

30. D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc., pp. 1–15, 2015.

Downloads

Published

2023-12-01

Issue

Section

Original

How to Cite

1.
Hajraoui N, Azrour M, El Allaoui A. Classification of diseases in tomato leaves with Deep Transfer Learning. Data and Metadata [Internet]. 2023 Dec. 1 [cited 2026 Jan. 9];2:181. Available from: https://dm.ageditor.ar/index.php/dm/article/view/114