Ontology-Based Semantic Retrieval for Museum News Systems

Authors

  • Supavit Phuvarit Khon Kaen University, Department of Information Science, Faculty of Humanities and Social Sciences, Khon Kaen, Thailand Author https://orcid.org/0009-0000-4934-921X
  • Pongsathon Pookduang Rajamangala University of Technology Isan, Department of Information System, Faculty of Business Administration and Information Technology, Khon Kaen, Thailand Author https://orcid.org/0009-0007-1359-1195
  • Rapeepat Klangbunrueang Khon Kaen University, Department of Information Science, Faculty of Humanities and Social Sciences, Khon Kaen, Thailand Author https://orcid.org/0009-0006-0869-6614
  • Sumana Chiangnangam Khon Kaen University, Department of Information Science, Faculty of Humanities and Social Sciences, Khon Kaen, Thailand Author https://orcid.org/0009-0003-3516-681X
  • Wirapong Chansanam Khon Kaen University, Department of Information Science, Faculty of Humanities and Social Sciences, Khon Kaen, Thailand Author https://orcid.org/0000-0001-5546-8485
  • Kulthida Tuamsuk Khon Kaen University, Department of Information Science, Faculty of Humanities and Social Sciences, Khon Kaen, Thailand Author https://orcid.org/0000-0003-0852-8945
  • Tassanee Lunrasri Rajamangala University of Technology Isan, Department of Information System, Faculty of Business Administration and Information Technology, Khon Kaen, Thailand Author https://orcid.org/0009-0006-7211-7226

DOI:

https://doi.org/10.56294/dm20251147

Keywords:

Semantic Retrieval, Museum Ontology, SPARQL, Cultural Heritage, Ontology-Based Data Access

Abstract


Introduction: Museums face challenges in managing and retrieving timely news content due to fragmented information systems. This study investigates how semantic web technologies can enhance contextual accuracy and accessibility in museum information retrieval.
Methods: We created a domain-specific ontology integrated with relational databases via Ontology-Based Data Access (OBDA). A semantic search system accepting natural language queries was implemented and evaluated by experts using standard information retrieval metrics.
Results: The system achieved strong performance with precision of 0,85, recall of 0,96, and F1-score of 0,88, demonstrating effective semantic retrieval of museum news.
Conclusions: The findings demonstrate that semantic web technologies improve the accessibility and contextual relevance of museum news, contributing to digital heritage information management.

 

References

1. Chansanam W, Ahmad AR, Li C. Contemporary and future research of digital humanities: a scientometric analysis. Bull Electr Eng Inform. 2022;11(2):1143–1156. https://doi.org/10.11591/eei.v11i2.3596

2. Yalovitsyna S, Volokhova V, Korzun DG. Smart museum. In: Korzun DG, Borodin AV, Balandin SI, editors. Tools and technologies for the development of cyber-physical systems. Springer; 2020. p. 125–147.

3. Chansanam W, Tuamsuk K, Supnithi T. Digital content management of Heet Sib Sorng custom for semantic search. Period Eng Nat Sci. 2020;8(3):1935–1950.

4. Sung H, Chi Y. Applications of Semantic Web in integrating open data and bibliographic records: a development example of an infomediary of Taiwanese indigenous people. Electron Libr. 2021;39(2):337–353. https://doi.org/10.1108/el-09-2020-0258

5. Varagnolo D, Melo D, Rodrigues IP. Translating Natural Language questions into CIDOC-CRM SPARQL queries to access Cultural Heritage knowledge bases. J Comput Cult Herit. 2025. https://doi.org/10.1145/3715156

6. Zachila K, Kotis K, Paparidis E, Ladikou S, Spiliotopoulos D. Facilitating semantic interoperability of trustworthy IoT entities in cultural spaces: the Smart Museum Ontology. IoT. 2021;2(4):741–760. https://doi.org/10.3390/iot2040037

7. Yipei Y. Museum collection search improvement based on knowledge graph: Semantic mapping from cataloging metadata to the CIDOC-CRM. In: 2023 Int Conf on Culture-Oriented Sci Technol (CoST), Xi’an, China. IEEE; 2023. https://doi.org/10.1109/CoST60524.2023.00049

8. Calvanese D, De Giacomo G, Lembo D, Lenzerini M, Poggi A, Rodriguez-Muro M, Rosati R. Ontologies and databases: The DL-Lite approach. In: Tessaris S, Francesconi F, Kuhn T, Nuzzolese AC, editors. Reasoning Web. Semantic Technologies for Information Systems. Lecture Notes in Computer Science. 2009;5689:255–356. https://doi.org/10.1007/978-3-642-03754-2_7

9. Chansanam W, Tuamsuk K. Development of imaginary beings ontology. In: Digital Libraries: Knowledge, Information, and Data in an Open Access Society: 18th Int Conf on Asia-Pacific Digital Libraries, ICADL 2016, Tsukuba, Japan, Dec 7–9, 2016. Springer; 2016. p. 231–242. https://doi.org/10.1007/978-3-319-49304-6_28

10. Gómez-Pérez A, Rojas-Amaya MD. Ontological reengineering for reuse. In: Fensel D, Studer R, editors. Knowledge Acquisition, Modeling and Management: Proc of the 11th European Workshop, EKAW’99. Lecture Notes in Artificial Intelligence. Springer; 1999. p. 139–156. https://doi.org/10.1007/3-540-48775-1_9

11. Cristani M, Cuel R. A survey on ontology creation methodologies. Int J Semant Web Inf Syst. 2005;1(2):49–69. https://doi.org/10.4018/jswis.2005040103

12. Paslaru Bontas Simperl E, Tempich C, Sure Y. ONTOCOM: A cost estimation model for ontology engineering. In: Cruz I, et al., editors. The Semantic Web – ISWC 2006. Lecture Notes in Computer Science. Springer; 2006. p. 625–639. https://doi.org/10.1007/11926078_45

13. Hartmann J, Spyns P, Giboin A, Maynard D, Cuel R, Suárez-Figueroa MC, Sure Y. D1.2.3 Methods for ontology evaluation (Version 1.3) [Project deliverable]. EU-IST Network of Excellence (Knowledge Web Project, IST-2004-507482); 2005. http://knowledgeweb.semanticweb.org/semanticportal/deliverables/D1.2.3.pdf

14. Tartir S, Arpinar IB, Sheth AP. Ontological evaluation and validation. In: Poli R, Healy M, Kameas A, editors. Theory and applications of ontology: Computer applications. Springer; 2010. p. 115–130. https://doi.org/10.1007/978-90-481-8847-5_5

15. Noy NF, McGuinness DL. Ontology development 101: A guide to creating your first ontology (KSL-01-05). Stanford Knowledge Systems Laboratory, Stanford Univ; 2001. http://protege.stanford.edu/publications/ontology_development/ontology101.pdf

16. Boley H, Tabet S, Wagner G. Design rationale of RuleML: A markup language for semantic web rules. In: Proceedings of the First International Conference on Semantic Web Working. CEUR-WS.org; 2001. p. 381–401.

17. Lozano-Tello A, Gómez-Pérez A. ONTOMETRIC: A Method to choose the Appropriate Ontology. J Database Manag. 2004;15(2):1–18. https://doi.org/10.4018/jdm.2004040101

18. Handcock MS, Gile KJ. Comment: On the Concept of Snowball Sampling. Sociol Methodol. 2011;41(1):367–371. https://doi.org/10.1111/j.1467-9531.2011.01243.x

19. Gómez-Pérez A, Fernández M, de Vicente A. Towards a method to conceptualize domain ontologies. In: Proc of the ECAI’96 Workshop on. 1996. http://oa.upm.es/7228/1/Towards_a_Method_.pdf

20. Belew RK, van Rijsbergen CJ. Finding out about: A cognitive perspective on search engine technology and the WWW. Cambridge: Cambridge University Press; 2000.

Downloads

Published

2025-08-09

Issue

Section

Original

How to Cite

1.
Phuvarit S, Pookduang P, Klangbunrueang R, Chiangnangam S, Chansanam W, Tuamsuk K, et al. Ontology-Based Semantic Retrieval for Museum News Systems. Data and Metadata [Internet]. 2025 Aug. 9 [cited 2025 Aug. 24];4:1147. Available from: https://dm.ageditor.ar/index.php/dm/article/view/1147