Geospatial Clustering of Potential Tourist Locations Using the K-Means Algorithm: A Case Study of Unesco Global Geopark (Sukabumi, Indonesia)
DOI:
https://doi.org/10.56294/dm20251206Keywords:
Tourism Clustering, Potential Mapping, Spatial Analysis, Economic Development, Machine LearningAbstract
Sukabumi Regency, located in southern West Java, Indonesia, is home to abundant natural tourism resources. However, many of these sites remain underutilized due to limited infrastructure, insufficient promotion, and the lack of data-driven planning. Tourism is essential for local economic development, making the identification of high-potential areas critical for growth strategies. This study applied the CRISP-DM methodology to classify tourism destinations in Sukabumi using data from 17 tourist sites. Variables such as average visitor numbers, ticket prices, monthly growth rates, and area usage percentages were analyzed. After data preprocessing and normalization, the K-Means algorithm was employed for clustering. The Elbow Method determined the optimal number of clusters, and cluster quality was assessed using the Silhouette Score and Davies-Bouldin Index. Three distinct clusters were identified: developed, developing, and emerging tourism sites. The Silhouette Score of 0.226 and Davies-Bouldin Index of 1.323 indicated moderate cluster cohesion and separation. A thematic map visualized the spatial patterns, showing clear geographical distinctions between clusters. Cluster 0 (red) represented low-performing destinations, Cluster 1 (green) included high-traffic, developed sites, and Cluster 2 (blue) contained mid-level destinations with growth potential. The results provide valuable insights for regional tourism development. The study offers a data-driven foundation for targeted promotion, resource allocation, and sustainable planning. The findings demonstrate that geospatial clustering can effectively support tourism strategies tailored to local needs, contributing to inclusive economic growth in Sukabumi Regency.
References
Merylova I. Revitalizing industrial territories in Ukraine: Spatial model of the tourism cluster in the Prydniprovsk region. Front Archit Res [Internet]. 2024;13(6):1342–62. Availablefrom: https://www.sciencedirect.com/science/article/pii/S2095263524000761
Mutiara S, Auliasari K, Zahro HZ. Penerapan Metode K-Means Untuk Pengelompokan Populasi Ternak Di Kabupaten Sumbawa Provinsi Ntb. JIKA (Jurnal Inform. 2025;9(1):118–25.
Fundeanu DD. Innovative Regional Cluster, Model of Tourism Development. Procedia Econ Financ [Internet]. 2015;23:744–9. Available from: https://www.sciencedirect.com/science/article/pii/S2212567115005018.
Bittencourt JCN, Costa DG, Portugal P, Peixoto MLM, Vasques F. On the spatiotemporal knowledge-driven vulnerability assessment of urban areas: A clustering-based approach. Int J Disaster Risk Reduct [Internet]. 2025;127(July):105681. Available from: https://doi.org/10.1016/j.ijdrr.2025.105681.
Ajustina F, Nisa LF. Implementasi Prinsip Ekonomi Syariah Terhadap Pengembangan Ekonomi Umat Untuk Meningkatkan Pertumbuhan Ekonomi. J Ilm Ekon dan Manaj [Internet]. 2024;2(6):626–37. Available from: https://doi.org/10.61722/jiem.v2i6.1575.
Seftia M, Efan E, Arif A, Teknologi I, Alam P. Optimalisasi Strategi Wisata Di Kota Pagar Alam Menggunakan Algoritma K-Means Clustering. Vol. 01, Jurnal Informatika (JURI) e-ISSN. 2024.
Jauhari A, Anamisa DR, Mufarroha FA. Analysis of Clusters Number Effect Based on K-Means Method for Tourist Attractions Segmentation. J Phys Conf Ser. 2022;2406(1).
Rahmiyati D, Nuraeni, Ervan Britantono Siswantoro. Penerapan Metode K-Means untuk Pemetaan Objek Wisata sebagai Rekomendasi Prioritas Pengembangan Pariwisata. J Ilmu Komput dan Teknol. 2025;6(1):17–24.
Ramadanti E, Muslih M, Arianti ND. Design of Web-Based Virtual Tourism Information System At Geopark Ciletuh Sukabumi. J Ris Inform. 2022;4(3):259–68.
Arsezen-Otamisa P, Yuzbasioglu N. Analysis of Antalya Tourism Cluster Perceived Performance with Structural Equation Model. Procedia - Soc Behav Sci [Internet]. 2013;99:682–90. Available from: https://www.sciencedirect.com/science/article/pii/S1877042813039840.
Sabolak Y, Zebua F. Analisis Keberlanjutan Dan Peran Csr Dalam Pengembangan Ekonomi Lokal. J Ilmu Ekon dan Bisnis. 2024;1(1):20–6.
Xu J, Wang P. Study on distribution characteristic of tourism attractions in international cultural tourism demonstration region in South Anhui in China. PLoS One [Internet]. 2022;17(6 June):1–16. Available from: http://dx.doi.org/10.1371/journal.pone.0269948
Utama A, Imama Sabilla W, Wakhidah R. Sistem Rekomendasi Tempat Wisata di Malang Raya Menggunakan Metode K-Means Clustering. J Inform dan Multimed. 2024;16(1):1–15.
Wiangkham A, Kieanwatana K, Vongvit R. Journey into virtual reality: Identifying behavioral intentions to use virtual reality in tourism through spectral clustering. J Open Innov Technol Mark Complex [Internet]. 2025;11(1):100442. Available from: https://www.sciencedirect.com/science/article/pii/S2199853124002361.
Gura KS, Nica E, Kliestik T, Puime-Guillén F. Circular economy in territorial planning strategy: Incorporation in cluster activities and economic zones. Environ Technol Innov. 2023;32.
Muqorobin, Sri Supatminingsih, Dewi Hermawati Wahyuningsih. Pengembangan Metode Klasterisasi Untuk Pengelompokan Potensi Wisata guna Menunjang Digitalisasi Wisata di Indonesia. JST (Jurnal Sains dan Teknol. 2024;13(2):217–30.
ermawati A, Mahastuti Panunjul N, Sopanah A, Suhermin dan. Penerapan Cluster Analysis untuk Pemilihan Prioritas Variabel Penentu Kinerja UKM Industri Pariwisata di Jawa Timur. SENIMA (Seminar Manajemen) [Internet]. 2024;9(1):347–62. Available from: https://proceeding.unesa.ac.id/index.php/senima/article/view/3717.
Nafri TC, Pinasty S, Kartika Dini S, Nurcahayani H. Studi Klasterisasi Usaha Pertanian Perorangan di Kabupaten Bantul Tahun 2023 dengan Pendekatan Hirarki. Emerg Stat Data Sci J. 2025;3(1):462–71.
Parra-Sanchez DT, Viviescas-Jaimes PA. Application of digital technologies in nature-based tourism: A scientometric analysis. J Digit Econ. 2024;3(January):249–59.
Shen Y, Zhang X. Journal of Innovation. J Innov Knowl [Internet]. 2023;8(3):100384. Available from: https://doi.org/10.1016/j.jik.2023.100384.
Liu T, Kou ITE. Determinants for the development of creative tourism: A stakeholder perspective. Heliyon. 2024;10(13).
Li Y, Zhao Y, Xiang X, Zhang Q, Yuan F, Wang Z, et al. Rural integrated sanitation assessment at community level in Chongqing, China—A cluster analysis. Ecol Indic. 2024;165(June).
Casado-Aranda LA, Sánchez-Fernández J, Bastidas-Manzano AB. Tourism research after the COVID-19 outbreak: Insights for more sustainable, local and smart cities. Sustain Cities Soc. 2021;73(June).
Mendoza Poma RM, Sampedro Arrieta MA, Álvarez Lema FA, Abarca Zaquinaula MA. Analysis of technological tools for tourism in the Pichincha province. Data Metadata. 2024;3.
Amodio ML. Effects of seasonal variation on MAP response of fresh-cut artichokes. Acta Hortic. 2024;(1386):175–6.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Nunik Destria Arianti, Rahmat Hidayat , Adhitia Erfina, Muhamad Muslih, Riyan Mirdan Faris (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.