Gray Level Homogeneity Analysis: A Novel Approach
DOI:
https://doi.org/10.56294/dm2023170Keywords:
CLH Matrix, Co-occurrence Matrix, Sobel, LCD, Denoising, Texture, Segmentation, HistogramAbstract
In this article, we propose a method that helps us to analyze the homogeneity of gray levels locally by calculating a coefficient for each pixel based on the nature of neighboring pixels. This principle of encoding pixels according to their adjacent neighbors is described the nature of the distribution of gray levels within the image and measures their degree of homogeneity locally. This allows us to detect the different regions of the image and their contours based on the coefficient of homogeneity of the gray levels. In addition, this allows us to exploit these homogeneity coefficients to restructure regions of the image, extract and enhance the image contours while reducing the noise present in the image. This homogeneity study principle has several functions in the study and analysis of image texture, as do other methods of homogeneity assessment, such as the local contrast descriptor (LCD) and the co-occurrence matrix
References
1. Bashir Idris, Lili N. Abdullah, Alfian Abdul Halim, Mohd Taufik Abdullah Selimun (2022) Comparison of Edge Detection Algorithms for Texture Analysis on Copy-Move Forgery Detection Images. In: International Journal of Advanced Computer Science and Applications Vol 13, Issue 10, pp 155-156. Doi: 10.14569/IJACSA.2022.0131021.
2. Canny, J.F. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 8, 679–698.
3. F. M. Khellah, Texture classification using dominant neighborhood structure, IEEE Transactions on image Processing 20(11), 3270–3279 (2011).
4. Hanifi Majdoulayne (2005) Extraction de caracteristiques de texture pour la classification d’images Satellites, vol 19, pp 19-48. Doi: 10.3166/ria.19.633-659.
5. Jiangping He, Hongwei Ji, Xin Yang (2013) Texture analysis using local region contrast. Vol 22, Doi: 10.1117/1.JEI.22.2.023007.
6. Romero-Carazas R. Prompt lawyer: a challenge in the face of the integration of artificial intelligence and law. Gamification and Augmented Reality 2023;1:7–7. https://doi.org/10.56294/gr20237.
7. L. Li, C. S. Tong, and S. K. Choy, Texture classification using refined histogram, IEEE Transactions on image Processing, vol.19, no.7, pp.1371–1378, Jul. 2010.
8. Laurent Navarro, Guy Courbebaisse, Christian Roux. Une rédefinition des conditions aux limites de la méthode Lattice Boltzmann pour le débruitage d’images.
9. Gonzalez-Argote J. A Bibliometric Analysis of the Studies in Modeling and Simulation: Insights from Scopus. Gamification and Augmented Reality 2023;1:5–5. https://doi.org/10.56294/gr20235.
10. M. Subrahmanyam, R. P. Maheshwari, R. Balasubramanian. Local maximum edge binary patterns: A new descriptor for image retrieval and object tracking. Signal Processing, vol.92, pp.1467–1479, 2012.
11. Medina-Carnicer, R. Muñoz-Salinas, R. Yeguas-Bolivar, E. Diaz-Mas, L. A novel method to look for the hysteresis thresholds for the Canny edge detector. Pattern Recogn. 2011, 44, 1201–1211.
12. Meni Babakidi Narcisse (2022) Development of a gaussian filter for noise reduction in medical images. In : International Journal of Innovation and Applied Studies, vol. 32, pp 295-300.
13. Gonzalez-Argote D, Gonzalez-Argote J, Machuca-Contreras F. Blockchain in the health sector: a systematic literature review of success cases. Gamification and Augmented Reality 2023;1:6–6. https://doi.org/10.56294/gr20236.
14. Milan Sonka, Vaclav Hlavac, Roger Boyle. Image processing analysis and machine vision (2013), pp 133-328.
15. Olivier Regniers. Méthodes d'analyse de texture pour la cartographie d'occupations du sol par télédétection très haute résolution: Application à la forêt, la vigne et les parcs ostréicoles (2014), pp 8-14.
16. Ouslimani Farida. Etude comparative des techniques de codage d’images en vue d’une segmentation (2018), pp 15-88.
17. Gonzalez-Argote J. Analyzing the Trends and Impact of Health Policy Research: A Bibliometric Study. Health Leadership and Quality of Life 2023;2:28-28. https://doi.org/10.56294/hl202328.
18. Qu Ying-Dong, Cui Cheng-Song, Chen San-Ben, Li Jin-Quan (2005) A fast subpixel edge detection method using Sobel–Zernike moments operator, vol 23 Doi: 10.1016/j.imavis.2004.07.003.
19. R. M. Haralick, I. Dinstein, and K. Shanmugam, Textural features for image classification, IEEE Trans. Syst. Man Cybern. 3(6), 610–621(1973).
20. Gonzalez-Argote J. Patterns in Leadership and Management Research: A Bibliometric Review. Health Leadership and Quality of Life 2022;1:10-10. https://doi.org/10.56294/hl202210.
21. S. Moore and R. Bowden. Local binary patterns for multi-view facial expression recognition, Computer Vision Image Understanding 115(2011) 541–558.
22. Saban Öztürk, Bayram Akdemir (2015) Comparison of Edge Detection Algorithms for Texture Analysis on Glass Production. In: World Conference on Technology, Innovation and Entrepreneurship, Elsevier, 195(2015)2675–2682.
23. Sana Sadeghi, Alireza Rezvanian, Ebrahim Kamrani (2012) An efficient method for impulse noise reduction from images using fuzzy cellular automata. In: AEU - International Journal of Electronics and Communications, vol 66, pp 772-229. Doi: 10.1016/j.aeue.2012.01.010.
24. Sonia Tabti. Modélisation des images par patchs pour leur restauration et leur interprétation. Applications à l’imagerie SAR, 2016.
25. Wiem Fourati, Mohamed Salim Bouhlel. Nouvelle Méthode pour le Débruitage d’images, 2007. In: 4rth International Conference: Sciences of Electronic, Technologies of Information and Telecommunications March 25-29, 2007 – Tunisia.
26. X. Huang, S. Z. Li, and Y. Wang, Shape localization based on statistical method using extended local binary pattern, in Proceedings of the Third International Conference on Image and Graphics, 2004, pp. 184–187.
Published
Issue
Section
License
Copyright (c) 2023 Abdelhamid El Beghdadi, Mohammed Merzougui , Ahmad El Allaoui (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.